
1

V 0.2 1

Microcontroller (µC) vs. Microprocessor (µP)
• µC intended as a single chip solution, µP requires external

support chips (memory, interface)
• µC has on-chip non-volatile memory for program storage,

µP does not.
• µC has more interface functions on-chip (serial interfaces,

Analog-to-Digital conversion, timers, etc.) than µP
• µC does not have virtual memory support (I.e, could not

run Linux), while µP does.
• General purpose µPs are typically higher performance

(clock speed, data width, instruction set, cache) than µCs
• Division between µPs and µCs becoming increasingly

blurred

V 0.2 2

PIC 16F87x µC

DC to 20 MhzClock speed

Accumulator, 35 instructions Architecture

Async serial IO, I2C, SPI, A/D,
16-bit timer, two 8-bit timers

On-chip modules

Varies, up to 368 x 8On-chip Random Access
Memory (RAM)

Varies, up to 8K x 14 wordsOn-chip program memory (non-
volatile, electrically erasable)

14 bitsInstruction width

CommentsFeatures

V 0.2 3

Accumulator-Based Instruction Set
Two operand instructions have the
Working Register (w reg) as one
operand, and memory or data in the
current instruction as the second
operand.

The destination can be either be w
reg or file registers.

A register used in the manner of
the w register is generally called an
accumulator.

The instruction register contains
the machine code of the instruction
currently being executed.

DO = data out

W

ALU

RAM File
RegistersInst. Reg

8
8

8

8

DO DI7
address

DI = data in

V 0.2 4

The addwf instruction
General form:

addwf floc, d d ← [floc] + w

floc is a memory location in the file registers (data memory)

w is the working register

d is the destination, can either be the literal ‘f’ or ‘w’

[floc] means “the contents of memory location floc”

addwf 0x70,w w ← [0x70] + w

addwf 0x70,f [0x70] ← [0x70] + w

V 0.2 5

addwf Examples
Assume data memory contents on right

w register contains 0x1D

Execute: addwf 0x59, w w ← [0x59] + w

w = [0x59] + w = 0xBA + 0x1D = 0xD7

After execution w = 0xD7, memory unchanged.

Location contents

0x58 0x2C

Data Memory

0x59 0xBA
0x5A 0x34

0x5B 0xD3

Execute: addwf 0x59, f [0x59] ← [0x59] + w

[0x59] = [0x59] + w = 0xBA + 0x1D = 0xD7

After execution [0x59] = 0xD7, w is unchanged.
V 0.2 6

addwf floc, w

W

ALU

Inst. Reg

Active data paths

w is a source and
destination.

RAM File
Registers

DO DI
addr

Address/control

2

V 0.2 7

addwf floc, f

Active paths

floc is a source and
destination.

W

ALU

Inst. Reg
RAM File
Registers

DO DI
addr

Address/control

V 0.2 8

addwf instruction encoding
See page 136 in PICF87X datasheet

addwf floc, d

0 1 0 1 1 1 d f f f f f f f

B B B B B B B B B B B B B B
1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0

‘fffffff’ lower 7-bits of floc address

‘d’: 0 = w reg, 1 = f

Machine code Instruction

0x07D9 addwf 0x59, f

0x0759 addwf 0x59, w

V 0.2 9

Move literal to w (movlw)
The previous example assumed that w contained a value of
0x1D. How did this get into w in the first place ?

movlw k

1 1 1 0 0 0 k k k k k k k k

B B B B B B B B B B B B B B
1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0

“kkkkkkkk” 8-bit constant, loaded into w register

Machine code Instruction

0x301D movlw 0x1D

Note that the instruction word contains the 8-bit
constant, not data memory.

w ← k

V 0.2 10

movlw k
Active paths

The instruction register
contains the machine code of
the instruction currently being
executed. The k value is from
the lower 8 bits of the
instruction register.

W

ALU

Inst. Reg
RAM File
Registers

DO DI
addr

Address/control

V 0.2 11

Move w to f (movwf)
A common operation is to store w to a location in the file
registers

movwf floc

0 0 0 0 0 0 1 f f f f f f f

B B B B B B B B B B B B B B
1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0

‘fffffff’ lower 7-bits of floc address

Machine code Instruction

0x00D9 movfw 0x59

[floc] ← w

V 0.2 12

movwf floc

Active paths

The w value passes through the
ALU unchanged on its way to
the RAM register file.

W

ALU

Inst. Reg
RAM File
Registers

DO DI
addr

Address/control

3

V 0.2 13

Increment (incf)
See page 136 in PICF87X datasheet

incf floc, d

0 0 1 0 1 0 d f f f f f f f

B B B B B B B B B B B B B B
1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0

‘fffffff’ lower 7-bits of floc address

‘d’: 0 = w reg, 1 = f

Machine code Instruction

0x0AD9 incf 0x59, f ;[0x59] ← [0x59] +1

0x0A59 incf 0x59, w ; w ← [0x59] + 1

Increment
destination by 1

V 0.2 14

Decrement (decf)
See page 136 in PICF87X datasheet

decf floc, d

0 0 0 0 1 1 d f f f f f f f

B B B B B B B B B B B B B B
1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0

‘fffffff’ lower 7-bits of floc address

‘d’: 0 = w reg, 1 = f

Machine code Instruction

0x03D9 decf 0x59, f ;[0x59] ← [0x59] -1

0x0359 decf 0x59, w ; w ← [0x59] - 1

Decrement
destination by 1

V 0.2 15

How is the instruction register loaded?

W

ALU

RAM File
RegistersInst. Reg

8
8

8

8

DO DI7
address

DI = data in

Program Counter
13

address

Program Memory,
non-volatile up to
8K x 14

DO

14

Program counter contains the address
of the current instruction being
executed. After reset, first instruction
fetched from location 0x0000 in
program memory.

V 0.2 16

Goto location (goto)
The program counter specifies the location of the current
location. How is this changed?

goto k

1 0 1 k k k k k k k k k k k

B B B B B B B B B B B B B B
1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0

“kkkkkkkkkkk” lower 11-bits of a location , loaded into
lower 11-bits of the program counter register (PC[10:0));
PC[12:11] ← PCLATH[4:3].

Machine code Instruction

0x2809 goto 0x9

The next instruction is fetched from the target address.

PC[10:0] ← k

V 0.2 17

PCLATH register
PCLATH is a special register located at 0x0A that is used by
instructions that modify the PC register.

The PC register is 13 bits so programs can be a maximum of 8K
(8192) instructions.

Instructions that affect the PC only change either the lower
8-bits or lower 11-bits; the remaining bits come from the
PCLATH register.

If your program is less than 2K (2048) instructions, then you do
not have to worry about modifying PCLATH before a goto
because the PCLATH[4:3] bits will already be ’00’.

V 0.2 18

A Simple Program

C Program equivalent
#define myid 100
unsigned char i,j,k;

i = myid; /* myvalue = 100 */
i = i + 1; /* i++, i = 101 */
j = i; /* j is 101 */
j = j - 1; /* j--, j is 100 */
k = j + i; /* k = 201 */

In this class, will present programs in C form, then translate
(compile) to PIC assembly language.

A ‘char’ variable is
8-bits (1 byte)

4

V 0.2 19

Where are
variables stored?

The file registers are split
into 4 banks, each bank has
128 locations (0x80).

Some locations are reserved
for special registers (like
the w register).

Easiest place to store values
is bank0 (0x00-0x7F); free
locations start at 0x20.

Assign i to 0x20, j to 0x21,
and k to 0x22. Other choices
could be made. V 0.2 20

C to PIC Assembly

i = 100;
i = i + 1;
j = i;
j = j - 1;
k = j + i;

movlw 0x64
movwf 0x20
incf 0x20,f
movf 0x20,w
movwf 0x21
decf 0x21,f
movf 0x20,w
addwf 0x21,w
movwf 0x22

Comments: The assembly language program operation is not
very clear. Also, multiple assembly language statements are
needed for one C language statement. Assembly language is
more primitive (operations less powerful) than C.

V 0.2 21

PIC Assembly to PIC Machine Code

• Could perform this step manually by determining
the instruction format for each instruction from the
data sheet.

• Much easier to let a program called an assembler
do this step automatically

• MPLAB Integrated Design Environment (IDE) is
used to assemble PIC programs and simulate them
– Simulate means to execute the program without

actually loading it into a PIC microcontroller

V 0.2 22

mptest.asm
INCLUDE "p16f873.inc"
; Register Usage
CBLOCK 0x020 ;
i, j,k ; reserve space

ENDC
myid equ D'100' ; define myid label

org 0
movlw myid ; w <- 100
movwf i ; i <- w;
incf i,f ; i <- i + 1
movf i,w ; w <- i
movwf j ; j <- w

decf j,f ; j <- j – 1

movf i,w ; w <- I
addwf j,w ; w <- w + j
movwf k ; k <- w

here
goto here ; loop forever
end

This file can be
assembled by
MPLAB into PIC
machine code and
simulated.

Labels used for
memory locations
0x20 (i), 0x21(j),
0x22(k) to increase
code clarity

V 0.2 23

mptst.asm (cont.)
INCLUDE "p16f873.inc"

; Register Usage
CBLOCK 0x020 ;
i, j,k ; reserve space

ENDC

Include file that defines
various labels for a
particular processor. This
is an assembler directive,
do not start in column 1.
Only labels start in column
1.

An assembler directive that
reserves space for named
variables starting at the specified
location. Locations are reserved
in sequential order, so i assigned
0x20, j to 0x21, etc. Use these
variable names instead of
absolute memory locations.

An assembler directive is
not a PIC instruction, but an
instruction to the assembler
program.

V 0.2 24

mptst.asm (cont.)
myid equ D'100'

org 0

An assembler directive that
equates a label to a value. The
D’100’ specifies a decimal 100.

Could have also done:
myid equ .100
myid equ 0x64
myid equ H’64’

An assembler directive that specifies the
starting location (origin) of the code after this
statement. This places the code beginning at
location 0x0000 in program memory. There
must always be valid code at location 0 since
the first instruction is fetched from here.

5

V 0.2 25

mptst.asm (cont.)
; i = 100;
movlw myid ; w <- 100
movwf i ; i <- w;
; i = i+1;
incf i,f ; i <- i + 1
;j = i
movf i,w ; w <- i
movwf j ; j <- w

The use of labels and
comments greatly
improves the clarity of the
program.

It is hard to over-comment
an assembly language
program if you want to be
able to understand it later.

Strive for at least a
comment every other line;
refer to lines

V 0.2 26

mptst.asm (cont.)

here
goto here ; loop forever

end

A label that is the target
of a goto instruction.
Labels must start in
column 1, and are case
sensitive (instruction
mnemonics are not case
sensitive.

A comment

An assembler directive specifying the end of
the program. All assembly language
programs must have an end statement.

V 0.2 27

General MPLAB Comments
• See Experiment #2 for detailed instructions on

installing MPLAB on your PC and
assembling/simulating programs.

• The assembly language file must have the .asm
extension and must be a TEXT file
– Microsoft .doc files are NOT text files
– MPLAB has a built-in text editor. If you use an external

text editor, use one that displays line numbers (e.g. don’t
use notepad – does not display line numbers)

• You should use your portable PC for experiments 1-
5 in this class, all of the required software is freely
available.

V 0.2 28

Clock Cycles vs. Instruction Cycles
The clock signal used by a PIC to control instruction execution can be generated
by an off-chip oscillator, by using an external RC network to generate the clock
on-chip.

For the PIC 16F87X, the maximum clock frequency is 20 Mhz.

An instruction cycle is four clock cycles.

A PIC instruction takes 1 or 2 instruction cycles, depending on the instruction
(see Table 13-2, pg. 136, PIC 16F87X data sheet).

An add instruction takes 1 instruction cycle. How much time is this if the clock
frequency is 20 MHz (1 MHz = 1.0e6 = 1,000,000 Hz)?

1/frequency = period, 1/20 Mhz = 50 ns (1 ns = 1.0e-9 s)

Add instruction @ 20 Mhz takes 4 * 50 ns = 200 ns.

By comparison, a Pentium IV add instruction @ 3 Ghz takes 0.33 ns (330 ps). A
Pentium IV could emulate a PIC faster than a PIC can execute! But you can’t put a
Pentium IV in a toaster, or buy one from digi-key for $5.00.

V 0.2 29

PIC18xx2

• Microchip has an extensive line of PIC
microcontrollers, of which the PIC18xx2 is the most
recent.

• During the semester, will contrast features of the
PIC16F87x with those of the PIC18xx2.

• Do not assume that because something is done one
way in the PIC16F87x, that it is the most efficient
method for accomplishing that action.

• The datasheet for the PIC18xx2 is found on the
class web site.

V 0.2 30

PIC16F87x vs. PIC18Fxx2
One word that can be used to describe the PIC16F87x Instruction
Set Architecture (ISA) is ‘small’. The small number of
instruction types, small data size width, small instruction word
size allows an implementation using a small number gates,
resulting in a microcontroller that is very inexpensive to
manufacture. This results in an unconventional instruction set,
that is inefficient at many common operations. But doing things
slowly is often good enough, if it is cheap enough.

The PIC18xx2 has a more conventional instruction set. Direct
comparisons between the PIC18xx2 instructions and
microcontroller instruction sets from Intel, Motorola, etc can be
made. The PIC18xx2 ISA is better than the PIC16F87x, and
these improvements will be discussed during the semester.

6

V 0.2 31

PIC16F87x vs PIC18Fxx2

Accumulator, 35
instructions

Max 20 Mhz

Up to 368 x 8

Up to 8K x 14

14 bits

16F87x

Max 40 MhzClock speed

Accumulator, 75
instructions

Architecture

Up to 1536 x 8Data Memory

Up to 16K x 16 wordsProgram memory

16 bits, 4 instructions take
32 bits.

Instruction width

18Fxx2Features

Features in PIC18 not present in PIC16: 8x8 hardware
multiplier, stack push/pop instructions, branch instructions,
signed, better support for signed comparisons (V, N flags).
Peripherals are essentially the same for both processors. Both
processors take 4 clock cycles for 1 instruction cycle.

V 0.2 32

What do you need to know?
• Understand the operation of movelw, addwf, incf,

decf, goto instructions
• Be able convert PIC assembly mnemonics to

machine code and vice-versa
• Be able to compile/simulate a PIC assembly

language program in MPLAB
• Understand the relationship between instruction

cycles and machine cycles
• Trace active datapaths in architectural diagram

during instruction execution.
• Be prepared to discuss PIC18, PIC16 major

differences

