
1

V 0.1 1

Subroutines
• A subroutine is a block of code that is called from

different places from within a main program or other
subroutines.
– Saves code space in that the subroutine code does not have to be

repeated in the program areas that need it; only the code for the
subroutine call is repeated.

• A subroutine can have zero or more parameters that
control its operation

• A subroutine may need to use local variables for
computation.

• A subroutine may pass a return value back to the caller.
• Space in data memory must be reserved for parameters,

local variables, and the return value.

V 0.1 2

C Subroutine
(vlshift)

/* variable left shift */

unsigned char vlshift(v,amt)
unsigned char v, amt;
{

while (amt) {
v = v << 1;
amt--;

}
return(v);

}

main(){
unsigned char i,j,k;

i=0x24; j = 2;
k = vlshift(i,j);

printf("i=0x%x, shift amount: %d, result: 0x%x\n",

i,j,k);
}

subroutine

parameters

subroutine body

subroutine return

Main program

subroutine call

V 0.1 3

vlshift.asm; Parameter space for vlshift
CBLOCK 0x040
v, amt

ENDC

;; return value in w

vlshift
movf amt,f

vlshift_loop
btfsc STATUS,Z ; amt==0?
goto vl_return
bcf STATUS,C
rlf v,f ; v = v << 1
decf amt,f ; amt--
goto vlshift_loop

vl_return
movf v,w ;return(v)
return

vlshift
parameters

subroutine body

move result into w
register before return

return to main program

V 0.1 4

vlshift.asm
(cont.)

;Parameter space for main
CBLOCK 0x020
i,j,k

ENDC

org 0
; initialize main program variables
movlw 0x24
movwf i ; i = 0x24
movlw 0x2
movwf j ; j = 2
;; setup subroutine parms
movf i,w
movwf v
movf j,w
movwf amt
call vlshift
movwf k ; k = vlshift(v,amt);

here
goto here

main() variables

initialize i , j
variables

copy i , j variables
to parameters v,
amt for subroutine

subroutine call

return value in w
register, copy to k.

V 0.1 5

call, return Statements

call k 1 0 0 k k k k k k k k k k k

B B B B B B B B B B B B B B
1 1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0

call (call subroutine) : Push PC of next instruction onto stack,
theb PC[10:0] ← k, PC[12:11] ← PCLATH

return (ret from subroutine): PC ← pop top-of-stack

retlw (return with literal in w): w ← k, PC ← pop top-of-stack

return 0 0 0 0 0 0 0 0 0 0 1 0 0 0

retlw k 1 1 0 1 x x k k k k k k k k

V 0.1 6

The Stack
• In µPs, the stack is a memory area intended for

storing temporary values.
• Data in the stack is usually accessed by a special

register called a stack pointer.
• In the PIC, the stack is used to store the return

address of a subroutine call.
– The return address is the place in the calling program

that is returned to on subroutine exit.
– On the PIC, the return address is PC+1, if PC is the

location of the call instruction.

2

V 0.1 7

Data Storage via the Stack
The word ‘stack’ is used because storage/retrieval of words in
the stack memory area is the same as accessing items from a
stack of items.

Visualize a stack of boxes. To build a stack, you place box A,
then box B, then box C.

A A
B

A
B
C

Notice that you only have access to the last item placed on
the stack (the Top of Stack – TOS). You retrieve the boxes
from the stack in reverse order (C then B then A). A stack is
also called a LIFO (last-in-first-out) buffer.

V 0.1 8

The PIC16 Stack
The PIC16 stack has limited capability compared to other µPs.
It is only used during call/return, and is 8 locations deep.

5: 0x????
6: 0x????
7: 0x????

13 bits

4: 0x????

1: 0x????
2: 0x????
3: 0x????

0: 0x????

SP

8
locations

For a call, PC+1 is pushed
onto the stack.

A push means to store PC+1
at [SP], decrement SP
([SP] ←PC+1, SP--)

A return instruction pops the
PC off the stack. A pop
means to increment SP, then
read [SP] and store to the PC
(SP++, PC ←[SP])

V 0.1 9

Call/Return Example
main
....

0x40 call Sub_A
....

Sub_A
....
0x69 call Sub_B
....
return

Sub_B
....
0x13B call Sub_C
return

Sub_C
....
return

1

2

3

4

5

6

5: 0x013C
6: 0x007A
7: 0x0041

4: 0x????

1: 0x????
2: 0x????
3: 0x????

0: 0x????

1

2

3
4SP

after
step 3

SP

5

6

after
step 6

V 0.1 10

Stack Overflow

• Stack overflows on the 9th call instruction without
a return
– Stack pointer wraps back to 7, overwrites the return

address of the first call instruction
– Obviously, this results in incorrect program behavior
– Hard to debug, no status flags that indicate stack

overflow
• Caution: on PIC16, do not nest subroutine calls

more than 8 deep
– actually want to nest less than this if interrupts are used,

more on this later.

V 0.1 11

Back to Parameter Passing
• The vlshift.asm program used a static memory area

for parameters
– static means that the location is fixed

• This happens to be the most efficient method for the
PIC16, but has limitations
– A subroutine cannot be called from within itself (this is

because the static memory area for parameters is already
in use!!!)

– If a subroutine is interrupted, then the subroutine cannot
be called from the interrupt service routine.

V 0.1 12

The problem with Static Parameters
An interrupt is an external event to the processor (e.g. a change in pin
voltage value) that causes the program to jump to an interrupt service
routine (ISR). The ISR is finished, normal program execution is
resumed. If the ISR calls Subr A, then static parameters are overwitten!

Program Execution

main(), call
Subr A

SubrA:
....
....

return

Interrupt occurs

interrupt service
subroutine, call
Subr A
return from interrupt

SubrA:
....
.....

return

SubrA
parameters

Used by main()
call when
interrupt
happens.

ISR call to SubrA
will change the
parameters seen by
main() call to
SubrA

3

V 0.1 13

Indirect Addressing
The stack pointer is an example of a pointer register. A pointer
register contains the address of data that is to be accessed.

The data is retrieved or stored using the pointer register (data is
accessed indirectly via the pointer register). The address of the
data must first be loaded into the pointer register before using it
to access the data.

The previous addressing method we used is called direct
addressing because the address is specified directly in the
instruction:

movf 0x20, w ; w ← [0x20]

The address 0x20 is encoded directly in the instruction. This
instruction will always access location 0x20.

V 0.1 14

Pointers in C Will use C to illustrate
pointer usage, then show
how this is implemented in
PIC16 assembly.

char s1[] = "Upper/LOWER.";
unsigned char strcnt (ptr)
unsigned char *ptr;
{

unsigned char i;
i = 0;
while (*ptr != 0) {
ptr++; i++;

}
return(i);

}

main(){
unsigned char i;
i = strcnt(s1);

}

‘*’ operator declares that a
variable is a pointer variable

‘*ptr’ returns data that pointer
is accessing
ptr++ increments pointer to
next address of data. For char
data, increment by 1.

strcnt returns number of
characters in string reference by
ptr. Recall that C strings are
terminated by 0x00.

s1 is address of first character

V 0.1 15

Pointers in PIC16
FSR special register (location 0x04) : holds the value of
the pointer itself (contains the address of the data)

INDF special register (location 0x00) : used to access
the data that FSR points to.

char s1[] = "Upper/LOWER.";

char *s, c;
/* point s at first

char of s1 */

s = s1;
/* get first char */
c = *s;

CBLOCK 0x20
s1:16, c

ENDC

movwl 0x20 ; w← addr. of s1
movwf FSR ;FSR points at

;first char

movf INDF,w ; w← [0x20]
; w← *s

movwf c ; c = *s

V 0.1 16

strcnt in PIC16

int strcnt (ptr)
unsigned char *ptr;
{

unsigned char i;
i = 0;
while (*ptr != 0) {
ptr++; i++;

}
return(i);

}

;parms for strcnt
CBLOCK 0x50
i,ptr

ENDC

strcnt
clrf i ;; i = 0
movf ptr,w ;; w = ptr
movwf FSR ;; FSR = ptr

strcnt_loop
movf INDF,w ;; w = *ptr
btfsc STATUS,Z ;; *ptr == 0?
return ;; yes, exit
incf i,f ;; i++
incf FSR,f ;; ptr++
goto strcnt_loop

variable i in strcnt
parameter block will
contain string length.

V 0.1 17

strcnt in PIC16 (cont.)
char s1[] = "Upper/LOWER.";

main(){

unsigned char i;

i = strcnt(s1);
}

;storage for s1 string
CBLOCK 0x20
s1[16]

ENDC

org 0
; copy string in prog. mem
; to data mem
; the init_s1 code is not shown
call init_s1

;; set up call for strcnt
movlw s1
movwf ptr ;; set ptr = s1
call strcnt ;; do strcnt

here
goto here ;; loop forever

Use label ‘s1’ instead of
0x020, increases code
clarity.

After call, variable i in
strncnt parameter block
has the string length.

V 0.1 18

Program Memory vs. Data Memory
The PIC16 has strict separation of program memory vs. data
memory (this is known as a Harvard architecture).

PIC instructions such as movf, incf, addwf, etc. cannot access
locations in program memory.

Other processors treat program memory and data memory the
same (unified memory structure). This allows instructions to
access program memory the same as data memory.

Would like to use PIC program memory to store tables of data
or constant data that does not change. This saves space in
data memory, and provides non-volatile storage for the data.

But how can the table data be accessed if it is in program
memory?

4

V 0.1 19

Tables in Program Memory
char s1[] = "Upper/LOWER.";

The above string can be stored in program memory as a
series of retlw instructions. s1const

retlw 0x55 ;’U’
retlw 0x70 ;’p’
retlw 0x70 ;’p’
retlw 0x65 ;’e’
retlw 0x72 ;’r’
retlw 0x2f ;’/’
retlw 0x4c ;’L’
retlw 0x4f ;’O’
retlw 0x57 ;’W’
retlw 0x45 ;’E’
retlw 0x52 ;’R’
retlw 0x2E ;’.’
retlw 0x00

s1const
dt “Upper/LOWER”,0

The dt (define table)
assembler directive causes
byte data to be encoded as a
series of retlw instructions in
program memory.

V 0.1 20

Accessing Table Data
s1const

dt “Upper/LOWER”,0

Assume we wanted to retrieve
s1const[5] (‘/’)

CBLOCK 0x020 ;
tdata ; data value from table
ENDC

org 0
call get_data
movwf tdata ; save tab data

here
goto here

get_data
movlw high (s1const+5)
movwf PCLATH
movlw low (s1const+5)
movwf PCL ; does retlw!

s1const
dt "Upper/LOWER.",0
end

Must be a call, so can do a retlw

Assembler directive high
returns higher 5-bits of address
s1const+5, save in PCLATH.

Put lower 8-bits of s1const+5 into
PCL; write to PCL causes
PCLATCH → PCH.
Next instruction executed is at
PCH:PCL == s1const+5.
Instruction is ‘retlw 0x2f’! So
0x2f (‘/’) returned in w reg.

V 0.1 21

PCH:PCL Loading

Table read makes use
of this capability.

Any instruction with
PCL as destination
causes transfer of
PCLATH<4:0> to
PCH.

V 0.1 22

Back to
strcnt.asm

;data storage for s1 string
CBLOCK 0x20
s1[16]
ENDC

org 0
; copy string in prog. mem
; to data mem
; the init_s1 code is not shown
call init_s1

init_s1

;;subroutine copies s1const
;; to data memory s1
. . . <code not shown > . . .

s1const
dt “Upper/LOWER”,0

The strcnt subroutine
expects s1 to be in data
memory.

The init_s1 subroutine
uses table reads to copy
s1const in program
memory to s1 in data
memory.

Complete code for
strcnt.asm attached to
lecture, see if interested
in details.

V 0.1 23

PIC18 Indirect Addressing
The PIC18 has three sets of INDF/FSR registers
⇒ INDF0/FSR0, INDF1/FSR1,INDF2/FSR2

The INDFx registers work as on the PIC16; INDFx is used to
access the value that FSRx is pointing to.

movf INDF0, w ; w ← [FSR0]

However, there are four more INDF-like registers associated
with each FSRx. These register names, and operations are shown
below:

movf POSTDEC0, w ; w ← [FSR0], FSR0--
movf POSTINC0, w ; w ← [FSR0], FSR0++
movf PREINC0, w ; FSR0++, w ← [FSR0]
movf PLUSW0, w ; w ← [FSR0+w]

V 0.1 24

Indirect Addressing Modes
• The PIC18 advanced indirect addressing modes

are common features on other processors. The
features below are useful for stack data structures
– postdec : post-decrement indirect addressing
– postinc : post-increment indirect addressing
– preinc : pre-increment indirect addressing

• The plusw addressing mode is called indexed
indirect.
– This is a base addressing mode of every modern

processor.
– Allows an address to be computed by adding an offset

to a base address. Very useful for array addressing (i.e.,
myarray[i])

5

V 0.1 25

/* variable left shift */

unsigned char vlshift(v,amt)
unsigned char v, amt;
{

while (amt) {
v = v << 1;
amt--;

}
return(v);

}

vlshift Revisited

To pass these parameters, will
use a data stack.

This is a different stack from
what is used for return
addresses. This is just a data
structure created by the
programmer.

TOS+2: amt
TOS+1: v
TOS:FSR0

Data stack
on entry to
vlshift

v will be at FSR0+1

amt will be at FSR0+2

V 0.1 26

A data stack
A data stack will be used to pass parameters.

Will place the top-of-stack at location 0x7F, will want to
the stack to grow down as items are placed on it.

Will use FSR0 as the stack pointer
0x7f: ??

To store items on stack (push):
movf POSTDEC0, w

0x00: ??

stack
growth

static
variables

To access items on stack:
movf PLUSW, w

To remove items from stack (pop):
movf PREINC, w

V 0.1 27

Use of data stack with vlshift()
Before calling vlshift, main routine will
push amt, v on stack. On entry to
vlshift, stack will look like right.

TOS+2: amt
TOS+1: v
TOS:FSR0

To perform “amt- - “ from
within vlshift subroutine, will do:

movlw 2 ; w = 2
decf ADDW0 ; [FSR0+2]--

To perform “v = v << 1 “ from within
vlshift subroutine, will do:

bcf STATUS,C ; clear carry
movlw 1 ; w = 1
rlcf ADDW0 ; [FSR0+1]--

Data stack on
entry to vlshift

V 0.1 28

vlshiftp18.asm
(vlshift subr.)

vshift
;will use w to index to v movlw 2
movf PLUSW0,f ;test ‘amt’

vshift_loop
btfsc STATUS,Z ; amt==0?
goto vl_return
bcf STATUS,C
movlw 1
rlcf PLUSW0 ; v = v << 1
movlw 2
decf PLUSW0,f ; amt--
goto vshift_loop

vl_return
;; 'v' has result, pop off into w reg
;; before return
movf PREINC0,w ; w <- v
return

Want new v value
to return in w reg,
so pop this off of
stack and place in
w before returning.

V 0.1 29

vlshiftp18.asm
(main)

org 0
;; initialize software stack
;; use FSR0 as software stack

lfsr FSR0, 0x7f
; initialize main program variables
movlw 0x24
movwf i ; i = 0x24
movlw 0x2
movwf j ; j = 2
;; setup subroutine parms
movf j,w
movwf POSTDEC0 ; push amt value onto stack
movf i,w
movwf POSTDEC0 ;push v value onto stack
call vshift
movwf k ; k = vshift(v,amt);
movf PREINC0,f ; pop amt off stack to clean up

here
goto here

Place amt, then v
onto data stack
before call.

The v parameter was removed from
stack by vlshift; need to remove the
amt parameter.

V 0.1 30

Why use stacks for a parameter passing?
Subroutine parameter variables are dynamically allocated.
If subroutine is interrupted, then called again, this works
because new space is allocated for parameters

Program Execution

main(), call
Subr A

SubrA:
....
....

return

Interrupt occurs

interrupt service
subroutine, call
Subr A
return from interrupt

SubrA:
....
.....

return

Stack

SubrA
parameters
used by
main() call

SubrA
parameters
used by
interrupt
service call

6

V 0.1 31

What do you have to know?

• How subroutine call/return works
• How the stack on the PIC16 works
• How to pass parameters to a subroutine using a

static allocation method
• How pointers work in PIC16 (INDF, FSR

registers)
• How to access byte table data that is stored in

program memory
• PIC18 indirect addressing
• How parameter passing via stack works for PIC18

