
1

BR Fall 2001 1

ASCII File Manipulation with Perl

• The previous lecture introduced you to the basics of
Perl

• This lecture will concentrate on ASCII file
manipulation with Perl

• Many engineering applications produce large
ASCII files from which data must be extracted

• Not always possible or desireable to place data in a
spreadsheet for extraction

BR Fall 2001 2

Parsing a ‘passwd’ file

root:x:0:13:admin account:/tmp:/usr/bin/ksh
daemon:x:1:1:daemons:/:/dev/null
Guest:x:499:511:guest account:/home/Guest:/usr/bin/ksh
profile:x:503:13::/home/profile:/usr/bin/ksh
reese:x:508:13::/home/reese:/usr/bin/ksh

Shown below is an /etc/passwd file

Each field is separated by colons (‘:’)

This type of file is very easy to parse via the ‘split’ function

BR Fall 2001 3

Perl script for parsing /etc/passwd

#!/usr/bin/perl -w

$fname = "passwd.txt";

open(INPUT,$fname);

while (<INPUT>) {
chop;
@words = split(':',$_);
print "name:$words[0], shell: $words[6] \n";

}

close(INPUT);

Chop off end of line

Split on ‘:’

The ‘$_’ is a special variable – typically the results of an
operation is placed automatically into this variable. The results
of the ‘chop’ operation is placed into ‘$_’, which is then used
by the ‘split’ function.

BR Fall 2001 4

Parsing an IEEE Load Flow Data File

A tougher file to parse is an IEEE Load Flow data file. This is an
ASCII data file that contains solved load flow data for a power
distribution network. These files can be thousands of lines.

The following files can be found in the directory ‘power_app’ :

‘cdf_format.txt’ Text file that defines the format
‘ieee30cdf.txt’ A CDF file with 30 busses
‘ieee300cdf.txt’ A CDF file with 300 busses
‘30bus600.bmp’ A schematic of the 30 bus system

BR Fall 2001 5

Schematic for ieee30cdf.txt

BR Fall 2001 6

Load Flow file format
The low flow file format has fixed-width field and is intended to
be parsed by FORTRAN programs.

The first few lines of ieee30cdf.txt appear below (line is clipped
because of length):

08/20/93 UW ARCHIVE 100.0 1961 W IEEE 30 Bus Test Case
BUS DATA FOLLOWS 30 ITEMS

1 Glen Lyn 132 1 1 3 1.060 0.0 0.0 0.0 …
2 Claytor 132 1 1 2 1.043 -5.48 21.7 12.7 …
3 Kumis 132 1 1 0 1.021 -7.96 2.4 1.2 …
4 Hancock 132 1 1 0 1.012 -9.62 7.6 1.6 …

Bus number
(col 1-4), integer

Bus name
(col 6-17), ASCII

Various numeric fields,
integer and float

2

BR Fall 2001 7

Load Flow file format (cont)
The file is split into various sections, the first two are called
‘BUS DATA’ and ‘BRANCH DATA’.

The ‘BUS DATA’ contains a line for each bus in the system and
gives various details about that bus such as Load MW, Base KV,
etc.

The ‘BRANCH DATA’ section details the connectivity of the
system:

30 Bus 30 33 1 1 0 0.992 -17.94 10.6 1.9 …
-999
BRANCH DATA FOLLOWS 41 ITEMS

1 2 1 1 1 0 0.0192 0.0575 0.0528 0 …
1 3 1 1 1 0 0.0452 0.1652 0.0408 0 …
2 4 1 1 1 0 0.0570 0.1737 0.0368 0 …
3 4 1 1 1 0 0.0132 0.0379 0.0084 0 …

BR Fall 2001 8

30 Bus 30 33 1 1 0 0.992 -17.94 10.6 1.9 …
-999
BRANCH DATA FOLLOWS 41 ITEMS

1 2 1 1 1 0 0.0192 0.0575 0.0528 0 …
1 3 1 1 1 0 0.0452 0.1652 0.0408 0 …
2 4 1 1 1 0 0.0570 0.1737 0.0368 0 …
3 4 1 1 1 0 0.0132 0.0379 0.0084 0 …

End of BUS DATA

Bus 1 & 2
connect.

BR Fall 2001 9

Parsing a Load Flow File
To parse a load flow file, will need to find start of BUS DATA
and BRANCH DATA sections.

#!/usr/bin/perl –w

$fname = "./power_app/ieee30cdf.txt";
open(INPUT,$fname);

first, find the bus data
while (<INPUT>) {

if ($_ =~/^BUS(.*)/) {
last;

}
}

Pattern matching – look for a line that starts with “BUS”.

BR Fall 2001 10

Pattern Matching
while (<INPUT>) {

if ($_ =~/^BUS(.*)/) {
last;

}
}

Last line read is in “$_ “
variable

‘=~’ is pattern match operator.
Search string is bracketed by ‘/’ .

The ‘^’ special character indicates match should be
at start of string.

The ‘(.*)’ is wildcard that says match any number of
characters after this.

‘last’ causes a loop exit

BR Fall 2001 11

Another Way
while (<INPUT>) {

chop;
@words = split;
if ($word[0] eq "BUS") {

last;
}

}

Split each line into words, look for a line whose first word is
equal to ‘BUS’. ‘split’ with no arguments splits the string
stored in $_ on whitespace.

Note the use of the ‘eq’ operator for string comparison.

BR Fall 2001 12

Parsing Bus Data

Would like to extract fields from each bus line. We cannot just
use the ‘split’ function because the name field may contain
spaces in it, which would cause our word counts to be different
for each line.

However, we know the starting, ending columns for each field.

The ‘substr’ function can be used to extract a substring from a
string given a starting offset in the string, and a length:

$new_string = substr($target_string, $offset, $length)

If $length is not specified, then extract all characters from offset
until the end of the string.

3

BR Fall 2001 13

Parsing Bus Data (cont)
bus data
while (<INPUT>) {

chop;
$this_line = $_;
if ($this_line =~/^-999(.*)/) {

last;
}
$bus_number = substr($this_line,0,4);
$bus_name = substr($this_line,4,14);
the rest of the line is numbers, so can split it
$line_rest = substr($this_line,17);
@words = split(' ',$line_rest);
$kv = $words[9];
print "$bus_number $bus_name Base_KV = $kv \n";

}

Exit if at end of bus data

Get bus#

Get bus name

Get rest of line

Split rest of line and get BaseKV value for bus
BR Fall 2001 14

Find BRANCH DATA
find branch data

while (<INPUT>) {
if ($_ =~/^BRANCH(.*)/) {
last;

}
}

branch data

while (<INPUT>) {
do something with branch data
###
}

BR Fall 2001 15

Summary

• One of the most common Perl applications is to
parse ASCII data files

• Perl has powerful features for parsing ASCII files
– split function
– substr function
– pattern matching

