Binary File Manipulation with Perl

» The purpose of this lecture is to discuss the
difference between binary and ASCII files, and
examine binary file manipulation with Perl

» Last week we looked at ASCII files

— ASCII files contain data in ‘human-readable’ or character
format

— An ASCII file is divided into lines, where the end of each
line is marked by a new-line character

— Each byte (8-bit) value in an ASCII file is an ASCII value
used to represent a character, digit, punctuation symbol or
non-printable characters such as a new lines, carriage
returns, form feeds, etc.
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Pros/Cons of ASCII Files

* Pro: Human-readable — you can examine/modify
file contents with an ordinary text editor
— Errors/compatibility problems with files are easy to
identify
» Con: Space inefficient
— To store the value -103.98349 in an ASCII format takes
10 characters, or 10 bytes. To store this same value as a

binary number in IEEE single-precision floating point
format takes only 4 bytes (32 bits).
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Binary Files

* Binary Files store items in binary form
— ASCII File: -3490 stored as 5 bytes: 2Dh (‘-"), 33h (‘3”),
34h (“47), 39h (*9°), 30h (‘0%)
— Binary file: -3490 (F25Eh) stored as a 16 bit integer, little
endian format is: 5E, F2
* When reading/writing values in a binary file, need to
know:
— Precision — how many bits do we use for this value? 8 bits?
16 bits? 32 bits? 64 bits?

— Byte order — if a value has multiple bytes,do we arrange the
bytes least significant to most significant byte (little endian)
or most significant to least significant (big endian)
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Viewing Binary Files

* To examine a binary file, need a special program
that will dump the file contents in some sort of
ASCII format

— Most binary file viewers will dump the file in ASCII
Hex (base 16) format with the ASCII representation of
each byte given as well

* Under Unix, the ‘od’ (octal dump) utility can be
used to display the contents of a binary file

— “od—txl —c filename” will display bytes in hex format,
and also give the ASCII equivalent of each byte
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Sample Binary Files

* The zip archive for this lab contains some sample
binary files in the following format:

byte 0: format number that determines file format
bytes 1,2: # of records (16-bit unsigned number , little endian)
bytes: 3 to end -- records

File formats:

format 0: byte data (1 record = 1 byte)

format 1: 16-bit unsigned integers, little endian (1 record = 2 bytes)
format 2: 16-bit unsigned integers, big endian (1 record = 2 bytes)
format 3: 32-bit signed integers, little endian (1 record = 4 bytes)
format 4: 32-bit signed integers, big endian (1 record = 4 bytes)

Note that total number of bytes in a file is 3 + record_size*#
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fmt0.dat

‘fmt0.dat’ contains format ‘0’ data, or just byte data.

If ‘od’ is used to dump the file we get:

reese@eto: ~/ ece3732/ perl _l ab3> od -t x1 -c fntO0.dat
0000000 67 6f ()64 62 79 65 20 63 72 75 65 6c

\0 026 \\0

0000020 )20 77 6 e\2e 2e

[ 1 byte in ASCIT hex

0016h ASCII character
Byte offeet, records (22 equivalent
in octal records) R Fall 2001 6




A.X.E. - Advanced Hex Editor for Win 32

The zip archive for this lab also contains a free Win32 binary file
editor called A.X.E.

Fle Edt Mavigate Structures Operations View Window Help

AX.E. displaying S EETE]
the contents of 0| ef3zfm| || nfmar
fimt0.dat . K[| S| |

Offset: Bytes: ANSI Text:

00000000
00000004
00000014
0000001E

00160067 6F 6F 64 62 79 65
2063 72 75 65 6C 2077 6F 72
ECE42E2E2E

0 goodbye
cruel wor
ld. ..
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Contents of fmtl.dat

Recall that a file with format_type = 1 has 16-bit unsigned integers
in little endian format:

7 records (0007)
Format type = 1

**fmt1.dat

ANSI Text:

nlujujulu]ulaln} COY2Z0041 0022 ooo ™ & "
00000004 (00 4100EGOFE Looo - i

First record = 000Ch , last record = FB60h ,
which is 12 which is 64352
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A Hex Calculator

Your PC has a nice caculator application under Win32 that can
be used to convert between Hex and Decimal.

Usually under Start — Programs — Accessories

Use the View - Scientific menu choice on the Calculator

application to get the Hex, Decimal format options.
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Contents of fmt4.dat

Recall that a file with format_type = 4 has 32-bit unsigned integers

in big endian format:
6 records (0006h)
Format type =4

=% fmt4.dat
Offset: \| Byted: ANSI Text:
DDooo000 |04 Ddn N0 00 oy FF FFFF| OO0 Oy
0000000A [FEOQ253FDE5000001CE00] p #28 OE

00000014 O00CFFFAEBLCE [u] $ue I

First record = 0000000Ch , Last record = FFFABACFh ,
which is 12 which is 4294621903
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Binary File Manipulation with Perl

» The pack/unpack functions are used to
format/unformat binary records

» “pack” takes a template string which specifies the
order and type of values to pack into a binary record.
The template string is followed by a list of values to
pack into the binary record.
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Template string

The following are some characters that can be used in a template
string (not all special characters are listed, see documentation):

character | Meaning

A signed char value

An unsigned char value

A double-precision float in the native format

A single-precision float in the native format

An unsigned 16-bit integer in big-endian order

An unsigned 32-bit integer in big-endian order

<|lz|s|=|alale

An unsigned 16-bit integer in little-endian order

\Y An unsigned 32-bit integer in little-endian order

A number can follow a special format character to specify

multiple values of the same type.
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Create a format_type = 0 file

(QUTPUT, ">t est f 1t 0 “binmode” used to place
open(OU > ew . .

bi node( QUTPUT) : ﬁledhandle into binary
$fnt_type = O; mode.

$dstring = “CGoodbye Cruel World!'”;

$num records = | ength($dstring);

$tenp = I engt h($dstring);

$buf = pack $tenp, $f nt _type, $num records, $dstri ng;
print OUTPUT $buf;

cl ose (OUTPUT);

Template string ends up being “C
/ / @ 20 bytes of

ASCII data

Unsigned char Unsigned 16-bit
for format type integer, little endian for

# of records
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Create a format_type =2 file

(QUTPUT, ">t est fm 2. d “binmode” used to place
open( QU ,">tes /I/)/ . .

bi node( QUTPUT) : ﬁledhandle into binary
$fnt _type = 2; mode.

$numrecords = 3;

Stemp = (Qun3™
$buf = pagk $tenp, $f nt _type, $num r ecor ds, 345, 24, 10265;
print OUIPUT $buf; W

Data for file

Template string is “C@\> three 16-bit unsigned
integers packed in

Unsigned char  Unsigned 16-bit ~ big-endian order
for format type integer, little endian for

# of records
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Reading a binary file

* Need to use read and unpack functions to process
the contents of a binary file

* “read (filehandle, scalar, length, offset) “ reads
length bytes from filehandle and stores the result
into scalar . The offset, if specified, says where to
start putting the bytes into scalar.
— Successive reads to a file pick up where the last read

finished

o “wunpack (template, expr) *“ unpacks the bytes in
expr according to the specified femplate and returns
a list that contains the unpacked data values.
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Read a format_type = 2 File

Unsigned char
open( | NPUT, “testfnt2. dat") for format type
bi nnmode( | NPUT) ;
read(1 NPUT, $fnt, 1) ; Unsigned 16-bit

read(| NPUT, $rlen, 2);
$fnt _type = unpack("C', $f ;
$num records = unpack("v", $rlen);

integer, little endian for
# of records

if ($fmt_type == 2) {
for ($i=0;$i <$num records; $i ++){
read( | NPUT, $buf, 2);

$d = unpack(y n", $bhuf);
pri M ($d)\n", $d);
} \

16-bit unsigned \Btﬁgtiout the value in decimal
integers packed in and hex representations.
big-endian order
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Standard Binary file types

* There are many standard binary file types defined
for different applications
* Many types are defined for multi-media data
(audio, graphics, complex documents, etc) because
the large amount of data required means that ASCII
storage of this data would be totally impractical
— .bmp, .gif, jpeg, etc are all graphic binary file types
— .wav, .au, .mp3 etc are all audio binary file types
— .doc, .pdf are document binary file types
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.wav File Format

The file ‘WAV_file_format.htm” in the ZIP archive for this lab
defines the .wav file format.

The canonical WAVE format starts with the RIFF header:

O f set Lengt h Contents

0 4 bytes 'RIFF

4 4 bytes <file length - 8>
8 4 bytes ' WAVE'

(The '8' in the second entry is the length of the first two entries.
Le., the second entry is the number of bytes that follow in the
file.)
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.wav File Format (cont)

Next, the fmt chunk describes the sample format:

Offset Length Contents
12 4 bytes 'fmt
16 4 bytes 0x00000010 // Length of the fmt data (16 bytes)
20 2 bytes 0x0001 // Format tag: 1 = PCM
22 2 bytes <channels> // Channels: 1 = mono, 2 = stereo
24 4 bytes <sample rate> // Samples per second:

e.g., 44100
28 4 bytes <bytes/second> // sample rate * block align
32 2 bytes <block align>// channels * bits/sample / 8
34 2 bytes <bits/sample>// 8 or 16
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.wav File Format (cont)

Finally, the data chunk contains the sample data:

Offset Length Contents

36 4 bytes ‘data’

40 4 bytes <length of the data block>
44 bytes <sample data>

The sample data must end on an even byte boundary. All numeric
data fields are in the Intel format of low-high byte ordering. 8-bit
samples are stored as unsigned bytes, ranging from 0 to 255. 16-bit
samples are stored as 2's-complement signed integers, ranging
from -32768 to 32767.

BR Fall 2001 20

Examining .wav Files

You can examine the properties of a .wav file in Explorer by
selecting the file with a left-click, then right-clicking to bring up
the file menu — select ‘Properties’ to bring up the properties
window for this file. Left-clicking on the ‘summary’ tab will
display the formatting details of the particular .wav you have
selected.
Tohno.may
<] 50UND136.1

E\wav fle_fon  General | Secuity Summaw|
(Caway_File_fon

Propert: | alue
13 Audio
) B FCM
0w .. 44,100 Kbfsecond
L[] Samplerate  22.50kHz
+[ Audio sampl... 16 bit
L[] Channels 1 (Mana)
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Summary

* Perl can process binary files as well as ASCII files

+ The pack/unpack functions are used for binary file
manipulation

* Binary files are used by many applications instead
of ASCII files to achieve more efficient data
storage.
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