Binary File Manipulation with Perl

» The purpose of this lecture is to discuss the
difference between binary and ASCII files, and
examine binary file manipulation with Perl

» Last week we looked at ASCII files

— ASCII files contain data in ‘human-readable’ or character
format

— An ASCII file is divided into lines, where the end of each
line is marked by a new-line character

— Each byte (8-bit) value in an ASCII file is an ASCII value
used to represent a character, digit, punctuation symbol or
non-printable characters such as a new lines, carriage
returns, form feeds, etc.

BR Fall 2001 1

Pros/Cons of ASCII Files

* Pro: Human-readable — you can examine/modify
file contents with an ordinary text editor
— Errors/compatibility problems with files are easy to
identify
» Con: Space inefficient
— To store the value -103.98349 in an ASCII format takes
10 characters, or 10 bytes. To store this same value as a

binary number in IEEE single-precision floating point
format takes only 4 bytes (32 bits).

BR Fall 2001 2

Binary Files

* Binary Files store items in binary form
— ASCII File: -3490 stored as 5 bytes: 2Dh (‘-"), 33h (‘3”),
34h (“47), 39h (*9°), 30h (‘0%)
— Binary file: -3490 (F25Eh) stored as a 16 bit integer, little
endian format is: 5E, F2
* When reading/writing values in a binary file, need to
know:
— Precision — how many bits do we use for this value? 8 bits?
16 bits? 32 bits? 64 bits?

— Byte order — if a value has multiple bytes,do we arrange the
bytes least significant to most significant byte (little endian)
or most significant to least significant (big endian)

BR Fall 2001 3

Viewing Binary Files

* To examine a binary file, need a special program
that will dump the file contents in some sort of
ASCII format

— Most binary file viewers will dump the file in ASCII
Hex (base 16) format with the ASCII representation of
each byte given as well

* Under Unix, the ‘od’ (octal dump) utility can be
used to display the contents of a binary file

— “od—txl —c filename” will display bytes in hex format,
and also give the ASCII equivalent of each byte

BR Fall 2001 4

Sample Binary Files

* The zip archive for this lab contains some sample
binary files in the following format:

byte 0: format number that determines file format
bytes 1,2: # of records (16-bit unsigned number , little endian)
bytes: 3 to end -- records

File formats:

format 0: byte data (1 record = 1 byte)

format 1: 16-bit unsigned integers, little endian (1 record = 2 bytes)
format 2: 16-bit unsigned integers, big endian (1 record = 2 bytes)
format 3: 32-bit signed integers, little endian (1 record = 4 bytes)
format 4: 32-bit signed integers, big endian (1 record = 4 bytes)

Note that total number of bytes in a file is 3 + record_size*#

of records BR Fall 2001 s

fmt0.dat

‘fmt0.dat’ contains format ‘0’ data, or just byte data.

If ‘od’ is used to dump the file we get:

reese@eto: ~/ ece3732/ perl _l ab3> od -t x1 -c fntO0.dat
0000000 67 6f ()64 62 79 65 20 63 72 75 65 6c

\0 026 \\0

0000020)20 77 6 e\2e 2e

[1 byte in ASCIT hex

0016h ASCII character
Byte offeet, records (22 equivalent
in octal records) R Fall 2001 6

A.X.E. - Advanced Hex Editor for Win 32

The zip archive for this lab also contains a free Win32 binary file
editor called A.X.E.

Fle Edt Mavigate Structures Operations View Window Help

AX.E. displaying S EETE]
the contents of 0| ef3zfm| || nfmar
fimt0.dat . K[| S| |

Offset: Bytes: ANSI Text:

00000000
00000004
00000014
0000001E

00160067 6F 6F 64 62 79 65
2063 72 75 65 6C 2077 6F 72
ECE42E2E2E

0 goodbye
cruel wor
ld. ..

BR Fall 2001 7

Contents of fmtl.dat

Recall that a file with format_type = 1 has 16-bit unsigned integers
in little endian format:

7 records (0007)
Format type = 1

**fmt1.dat

ANSI Text:

nlujujulu]ulaln} COY2Z0041 0022 ooo ™ & "
00000004 (00 4100EGOFE Looo - i

First record = 000Ch , last record = FB60h ,
which is 12 which is 64352

BR Fall 2001 8

A Hex Calculator

Your PC has a nice caculator application under Win32 that can
be used to convert between Hex and Decimal.

Usually under Start — Programs — Accessories

Use the View - Scientific menu choice on the Calculator

application to get the Hex, Decimal format options.
T i F

e T e 00 F B | F Degee © Raden s

L= = o o) e EE |

) el] e

__J ¥ 'I _fJ a|l s 6] | of =
| =l e o

[[| L&l

BR Fall 2001 9

Contents of fmt4.dat

Recall that a file with format_type = 4 has 32-bit unsigned integers

in big endian format:
6 records (0006h)
Format type =4

=% fmt4.dat
Offset: \| Byted: ANSI Text:
DDooo000 |04 Ddn N0 00 oy FF FFFF| OO0 Oy
0000000A [FEOQ253FDE5000001CE00] p #28 OE

00000014 O00CFFFAEBLCE [u] $ue I

First record = 0000000Ch , Last record = FFFABACFh ,
which is 12 which is 4294621903
BR Fall 2001 10

Binary File Manipulation with Perl

» The pack/unpack functions are used to
format/unformat binary records

» “pack” takes a template string which specifies the
order and type of values to pack into a binary record.
The template string is followed by a list of values to
pack into the binary record.

BR Fall 2001 11

Template string

The following are some characters that can be used in a template
string (not all special characters are listed, see documentation):

character | Meaning

A signed char value

An unsigned char value

A double-precision float in the native format

A single-precision float in the native format

An unsigned 16-bit integer in big-endian order

An unsigned 32-bit integer in big-endian order

<|lz|s|=|alale

An unsigned 16-bit integer in little-endian order

\Y An unsigned 32-bit integer in little-endian order

A number can follow a special format character to specify

multiple values of the same type.
BR Fall 2001 12

Create a format_type = 0 file

(QUTPUT, ">t est f 1t 0 “binmode” used to place
open(OU > ew . .

bi node(QUTPUT) : ﬁledhandle into binary
$fnt_type = O; mode.

$dstring = “CGoodbye Cruel World!'”;

$num records = | ength($dstring);

$tenp = I engt h($dstring);

$buf = pack $tenp, $f nt _type, $num records, $dstri ng;
print OUTPUT $buf;

cl ose (OUTPUT);

Template string ends up being “C
/ / @ 20 bytes of

ASCII data

Unsigned char Unsigned 16-bit
for format type integer, little endian for

of records
BR Fall 2001 13

Create a format_type =2 file

(QUTPUT, ">t est fm 2. d “binmode” used to place
open(QU ,">tes /I/)/ . .

bi node(QUTPUT) : ﬁledhandle into binary
$fnt _type = 2; mode.

$numrecords = 3;

Stemp = (Qun3™
$buf = pagk $tenp, $f nt _type, $num r ecor ds, 345, 24, 10265;
print OUIPUT $buf; W

Data for file

Template string is “C@\> three 16-bit unsigned
integers packed in

Unsigned char Unsigned 16-bit ~ big-endian order
for format type integer, little endian for

of records
BR Fall 2001 14

Reading a binary file

* Need to use read and unpack functions to process
the contents of a binary file

* “read (filehandle, scalar, length, offset) “ reads
length bytes from filehandle and stores the result
into scalar . The offset, if specified, says where to
start putting the bytes into scalar.
— Successive reads to a file pick up where the last read

finished

o “wunpack (template, expr) *“ unpacks the bytes in
expr according to the specified femplate and returns
a list that contains the unpacked data values.

BR Fall 2001 15

Read a format_type = 2 File

Unsigned char
open(| NPUT, “testfnt2. dat") for format type
bi nnmode(| NPUT) ;
read(1 NPUT, $fnt, 1) ; Unsigned 16-bit

read(| NPUT, $rlen, 2);
$fnt _type = unpack("C', $f ;
$num records = unpack("v", $rlen);

integer, little endian for
of records

if ($fmt_type == 2) {
for ($i=0;$i <$num records; $i ++){
read(| NPUT, $buf, 2);

$d = unpack(y n", $bhuf);
pri M ($d)\n", $d);
} \

16-bit unsigned \Btﬁgtiout the value in decimal
integers packed in and hex representations.
big-endian order

BR Fall 2001 16

Standard Binary file types

* There are many standard binary file types defined
for different applications
* Many types are defined for multi-media data
(audio, graphics, complex documents, etc) because
the large amount of data required means that ASCII
storage of this data would be totally impractical
— .bmp, .gif, jpeg, etc are all graphic binary file types
— .wav, .au, .mp3 etc are all audio binary file types
— .doc, .pdf are document binary file types

BR Fall 2001 17

.wav File Format

The file ‘WAV_file_format.htm” in the ZIP archive for this lab
defines the .wav file format.

The canonical WAVE format starts with the RIFF header:

O f set Lengt h Contents

0 4 bytes 'RIFF

4 4 bytes <file length - 8>
8 4 bytes ' WAVE'

(The '8' in the second entry is the length of the first two entries.
Le., the second entry is the number of bytes that follow in the
file.)

BR Fall 2001 18

.wav File Format (cont)

Next, the fmt chunk describes the sample format:

Offset Length Contents
12 4 bytes 'fmt
16 4 bytes 0x00000010 // Length of the fmt data (16 bytes)
20 2 bytes 0x0001 // Format tag: 1 = PCM
22 2 bytes <channels> // Channels: 1 = mono, 2 = stereo
24 4 bytes <sample rate> // Samples per second:

e.g., 44100
28 4 bytes <bytes/second> // sample rate * block align
32 2 bytes <block align>// channels * bits/sample / 8
34 2 bytes <bits/sample>// 8 or 16

BR Fall 2001 19

.wav File Format (cont)

Finally, the data chunk contains the sample data:

Offset Length Contents

36 4 bytes ‘data’

40 4 bytes <length of the data block>
44 bytes <sample data>

The sample data must end on an even byte boundary. All numeric
data fields are in the Intel format of low-high byte ordering. 8-bit
samples are stored as unsigned bytes, ranging from 0 to 255. 16-bit
samples are stored as 2's-complement signed integers, ranging
from -32768 to 32767.

BR Fall 2001 20

Examining .wav Files

You can examine the properties of a .wav file in Explorer by
selecting the file with a left-click, then right-clicking to bring up
the file menu — select ‘Properties’ to bring up the properties
window for this file. Left-clicking on the ‘summary’ tab will
display the formatting details of the particular .wav you have
selected.
Tohno.may
<] 50UND136.1

E\wav fle_fon General | Secuity Summaw|
(Caway_File_fon

Propert: | alue
13 Audio
) B FCM
0w .. 44,100 Kbfsecond
L[] Samplerate 22.50kHz
+[Audio sampl... 16 bit
L[] Channels 1 (Mana)

BR Fall 2001 21

Summary

* Perl can process binary files as well as ASCII files

+ The pack/unpack functions are used for binary file
manipulation

* Binary files are used by many applications instead
of ASCII files to achieve more efficient data
storage.

BR Fall 2001 22

