
1

BR Fall 2001 1

Binary File Manipulation with Perl
• The purpose of this lecture is to discuss the

difference between binary and ASCII files, and
examine binary file manipulation with Perl

• Last week we looked at ASCII files
– ASCII files contain data in ‘human-readable’ or character

format
– An ASCII file is divided into lines, where the end of each

line is marked by a new-line character
– Each byte (8-bit) value in an ASCII file is an ASCII value

used to represent a character, digit, punctuation symbol or
non-printable characters such as a new lines, carriage
returns, form feeds, etc.

BR Fall 2001 2

Pros/Cons of ASCII Files

• Pro: Human-readable – you can examine/modify
file contents with an ordinary text editor
– Errors/compatibility problems with files are easy to

identify

• Con: Space inefficient
– To store the value -103.98349 in an ASCII format takes

10 characters, or 10 bytes. To store this same value as a
binary number in IEEE single-precision floating point
format takes only 4 bytes (32 bits).

BR Fall 2001 3

Binary Files

• Binary Files store items in binary form
– ASCII File: -3490 stored as 5 bytes: 2Dh (‘-’), 33h (‘3’),

34h (‘4’), 39h (‘9’), 30h (‘0’)
– Binary file: -3490 (F25Eh) stored as a 16 bit integer, little

endian format is: 5E, F2
• When reading/writing values in a binary file, need to

know:
– Precision – how many bits do we use for this value? 8 bits?

16 bits? 32 bits? 64 bits?
– Byte order – if a value has multiple bytes,do we arrange the

bytes least significant to most significant byte (little endian)
or most significant to least significant (big endian)

BR Fall 2001 4

Viewing Binary Files

• To examine a binary file, need a special program
that will dump the file contents in some sort of
ASCII format
– Most binary file viewers will dump the file in ASCII

Hex (base 16) format with the ASCII representation of
each byte given as well

• Under Unix, the ‘od’ (octal dump) utility can be
used to display the contents of a binary file
– “od –t x1 –c filename” will display bytes in hex format,

and also give the ASCII equivalent of each byte

BR Fall 2001 5

Sample Binary Files
• The zip archive for this lab contains some sample

binary files in the following format:
byte 0: format number that determines file format
bytes 1,2: # of records (16-bit unsigned number , little endian)
bytes: 3 to end -- records

File formats:
format 0: byte data (1 record = 1 byte)
format 1: 16-bit unsigned integers, little endian (1 record = 2 bytes)
format 2: 16-bit unsigned integers, big endian (1 record = 2 bytes)
format 3: 32-bit signed integers, little endian (1 record = 4 bytes)
format 4: 32-bit signed integers, big endian (1 record = 4 bytes)

Note that total number of bytes in a file is 3 + record_size*#
of records

BR Fall 2001 6

fmt0.dat

‘fmt0.dat’ contains format ‘0’ data, or just byte data.

If ‘od’ is used to dump the file we get:

reese@leto:~/ece3732/perl_lab3> od -t x1 -c fmt0.dat

0000000 00 16 00 67 6f 6f 64 62 79 65 20 63 72 75 65 6c

\0 026 \0 g o o d b y e c r u e l

0000020 20 77 6f 72 6c 64 2e 2e 2e

w o r l d . . .

0000031

Byte offset,
in octal

1 byte in ASCII hex

ASCII character
equivalent

Format type

0016h
records (22
records)

2

BR Fall 2001 7

A.X.E. - Advanced Hex Editor for Win 32
The zip archive for this lab also contains a free Win32 binary file
editor called A.X.E.

A.X.E. displaying
the contents of
fmt0.dat .

BR Fall 2001 8

Contents of fmt1.dat
Recall that a file with format_type = 1 has 16-bit unsigned integers
in little endian format:

Format type = 1
7 records (0007)

First record = 000Ch ,
which is 12

last record = FB60h ,
which is 64352

BR Fall 2001 9

A Hex Calculator
Your PC has a nice caculator application under Win32 that can
be used to convert between Hex and Decimal.

Usually under Start→Programs→Accessories

Use the View→Scientific menu choice on the Calculator
application to get the Hex, Decimal format options.

BR Fall 2001 10

Contents of fmt4.dat
Recall that a file with format_type = 4 has 32-bit unsigned integers
in big endian format:

Format type = 4
6 records (0006h)

First record = 0000000Ch ,
which is 12

Last record = FFFABACFh ,
which is 4294621903

BR Fall 2001 11

Binary File Manipulation with Perl

• The pack/unpack functions are used to
format/unformat binary records

• “pack” takes a template string which specifies the
order and type of values to pack into a binary record.
The template string is followed by a list of values to
pack into the binary record.

BR Fall 2001 12

Template string
The following are some characters that can be used in a template
string (not all special characters are listed, see documentation):

An unsigned 32-bit integer in little-endian orderV
An unsigned 16-bit integer in little-endian orderv
An unsigned 32-bit integer in big-endian orderN
An unsigned 16-bit integer in big-endian ordern
A single-precision float in the native formatf
A double-precision float in the native formatd
An unsigned char valueC
A signed char valuec

Meaningcharacter

A number can follow a special format character to specify
multiple values of the same type.

3

BR Fall 2001 13

Create a format_type = 0 file

open(OUTPUT,">testfmt0.dat")
binmode(OUTPUT);
$fmt_type = 0;
$dstring = “Goodbye Cruel World!”;
$num_records = length($dstring);
$temp = "Cva". length($dstring);
$buf = pack $temp,$fmt_type,$num_records,$dstring;
print OUTPUT $buf;
close (OUTPUT);

“binmode” used to place
file handle into binary
mode.

Template string ends up being “Cva20”

Unsigned char
for format type

Unsigned 16-bit
integer, little endian for
of records

20 bytes of
ASCII data

BR Fall 2001 14

Create a format_type = 2 file

open(OUTPUT,">testfmt2.dat")
binmode(OUTPUT);
$fmt_type = 2;
$num_records = 3;
$temp = "Cvn3";
$buf = pack $temp,$fmt_type,$num_records,345,24,10265;
print OUTPUT $buf;
close (OUTPUT);

“binmode” used to place
file handle into binary
mode.

Template string is “Cvn3”

Unsigned char
for format type

Unsigned 16-bit
integer, little endian for
of records

three 16-bit unsigned
integers packed in
big-endian order

Data for file

BR Fall 2001 15

Reading a binary file
• Need to use read and unpack functions to process

the contents of a binary file
• “ read (filehandle, scalar, length, offset) “ reads

length bytes from filehandle and stores the result
into scalar . The offset, if specified, says where to
start putting the bytes into scalar.
– Successive reads to a file pick up where the last read

finished
• “ unpack (template, expr) “ unpacks the bytes in

expr according to the specified template and returns
a list that contains the unpacked data values.

BR Fall 2001 16

Read a format_type = 2 File

open(INPUT,"testfmt2.dat")
binmode(INPUT);
read(INPUT,$fmt,1);
read(INPUT,$rlen,2);
$fmt_type = unpack("C",$fmt);
$num_records = unpack("v",$rlen);
if ($fmt_type == 2) {

for ($i=0;$i<$num_records;$i++){
read(INPUT,$buf,2);
$d = unpack("n",$buf);
printf ("%04x ($d)\n",$d);

}

Unsigned char
for format type

Unsigned 16-bit
integer, little endian for
of records

16-bit unsigned
integers packed in
big-endian order

Print out the value in decimal
and hex representations.

BR Fall 2001 17

Standard Binary file types

• There are many standard binary file types defined
for different applications

• Many types are defined for multi-media data
(audio, graphics, complex documents, etc) because
the large amount of data required means that ASCII
storage of this data would be totally impractical
– .bmp, .gif, .jpeg, etc are all graphic binary file types
– .wav, .au, .mp3 etc are all audio binary file types
– .doc, .pdf are document binary file types

BR Fall 2001 18

.wav File Format

The file ‘WAV_file_format.htm” in the ZIP archive for this lab
defines the .wav file format.

The canonical WAVE format starts with the RIFF header:

Offset Length Contents
0 4 bytes 'RIFF'
4 4 bytes <file length - 8>
8 4 bytes 'WAVE‘

(The '8' in the second entry is the length of the first two entries.
I.e., the second entry is the number of bytes that follow in the
file.)

4

BR Fall 2001 19

.wav File Format (cont)
Next, the fmt chunk describes the sample format:
Offset Length Contents

12 4 bytes 'fmt ‘
16 4 bytes 0x00000010 // Length of the fmt data (16 bytes)
20 2 bytes 0x0001 // Format tag: 1 = PCM
22 2 bytes <channels> // Channels: 1 = mono, 2 = stereo
24 4 bytes <sample rate> // Samples per second:

e.g., 44100
28 4 bytes <bytes/second> // sample rate * block align
32 2 bytes <block align> // channels * bits/sample / 8
34 2 bytes <bits/sample> // 8 or 16

BR Fall 2001 20

.wav File Format (cont)
Finally, the data chunk contains the sample data:
Offset Length Contents

36 4 bytes 'data'
40 4 bytes <length of the data block>
44 bytes <sample data>

The sample data must end on an even byte boundary. All numeric
data fields are in the Intel format of low-high byte ordering. 8-bit
samples are stored as unsigned bytes, ranging from 0 to 255. 16-bit
samples are stored as 2's-complement signed integers, ranging
from -32768 to 32767.

BR Fall 2001 21

Examining .wav Files
You can examine the properties of a .wav file in Explorer by
selecting the file with a left-click, then right-clicking to bring up
the file menu – select ‘Properties’ to bring up the properties
window for this file. Left-clicking on the ‘summary’ tab will
display the formatting details of the particular .wav you have
selected.

BR Fall 2001 22

Summary

• Perl can process binary files as well as ASCII files
• The pack/unpack functions are used for binary file

manipulation
• Binary files are used by many applications instead

of ASCII files to achieve more efficient data
storage.

