
1

BR Fall 2001 1

Programming – What does an Engineer need?
• Occasionally, an Engineer will have to write a program!

– Not all problems can be solved by spreadsheets
• What types of problems might require programming?

– Generate complex data streams as input to another problem
– Parse/collect information out of large data files
– Write a program that runs other programs in a regression test
– Convert data files from one format to another

• Many programs are throw away code – use once to
complete a task, then forget about it.

• Usually an Engineer is under time pressure
– Need to become very familiar with a ‘favorite’ programming

language, and use it enough to become time efficient.

BR Fall 2001 2

Some Assumptions
• Programming is not the main task in your

engineering workday
• Most programs you write are small, throw away

programs
– less than 100 lines
– Use a program one or twice, then forget about it

• Computer environment is either Unix-based or
Windows based

• Many work environments use both Windows and
Unix
– Windows for productivity tools (Spreadsheets, Word

processing, Powerpoint)
– UNIX workstations/servers for compute intensive jobs

BR Fall 2001 3

Desirable Features of a Programming
Language for ‘throw-away’ code

• Powerful – get a lot done with a little code
• Flexible – be able to do many different types of tasks

– GUIs, string processing, program control, number crunching,
etc.

• Well documented
• Large user base so external libraries, examples readily

available
• Portable – be able to run on different systems

– carry your favorite code with you when you change jobs

• Readily available (“free” is the best!)
BR Fall 2001 4

Compiled Programming Languages

• C, C++, Fortran are traditional compiled languages
• Pros

– High performance code
– Portable between systems
– Free C, C++, Fortran compilers from the Free Software Foundation

• Cons
– Usually have to write a lot of code to get even simple tasks done
– Non-standard extension libraries which means you have to move

your favorite library from system to system
– Must compile source code first on target system before execution.
– GUI interfaces are Operating System dependent
– Support for ‘scripting’ (i.e, controlled execution of other programs)

is minimal and Operating System dependent
• Best for large, complex tasks -- but may not be best choice

for simple tasks (i.e, < 100 lines of code)

BR Fall 2001 5

UNIX Shell Scripting Languages

• All UNIX shells (csh, bash, ksh, etc) support a
scripting language

• Pros
– Builtin to shell, always available for use
– Ideal for scripting duties (control of other programs)

• Cons
– Fairly primitive features, no powerful operators or data

handling features
– Very slow – at least 100x slower than compiled code
– No GUI capabilities
– Only useful for Unix applications

BR Fall 2001 6

Visual Basic
• Visual Basic is the most common scripting/tool extension

language on Windows platforms
• Pros

– Integrated with Windows productivity tools (spreadsheets, etc) – can be
used to extend their base capabilities

– Very nice GUI building capabilities
– Complex data types, powerful library functions
– Has scripting capabilities
– Decent performance (about 10x less than compiled C/C++)

• Cons
– only works under Windows OS
– development environment costs $$$

• Might be the best choice for throw-away code if you never
touch a Unix system

2

BR Fall 2001 7

Java
• Portable object-oriented programming language
• Pros

– Powerful data structures, functions
– Portable between Unix/Windows
– Free development environment
– Powerful GUI building
– Useful for Web page enhancement
– Decent performance (about 10x less than compiled C/C++)

• Cons
– Limited scripting, string processing
– Object-oriented programming model is possible overkill for simple

throw-away programs

BR Fall 2001 8

Perl
• Scripting language that combines the best of Unix shell

languages plus powerful string handling and builtin functions
• Pros

– Powerful data structures, functions
– Portable between Unix/Windows
– Free development environment
– Decent performance (about 10x less than compiled C/C++)
– Many public libraries available for tasks such as HTML processing and

data base access
– Extremely large user base – the scripting language of choice under Unix

• Cons
– No GUI building capabilities
– Code may be unreadable after you write it!

• In my opinion, best choice for throw away code development
under Unix environment, and perhaps a combined
Windows/Unix environment.

BR Fall 2001 9

Others
• Tcl/Tk

– Portable scripting (TCL) + GUI development (TK)
environment

– A better choice than Perl if you need both sophisticated
scripting and GUI development in the same programming
language

– Free implementations for both Windows and Unix
• Python

– Best described as an object oriented scripting language
– Has powerful GUI building features
– Free implementations for both Windows and Unix
– Better choice than Perl if you need sophisticated scripting

+ GUI development, and you like the object-oriented
programming model

BR Fall 2001 10

Where to learn more

• http://www.activestate.com
– Free implementations of Perl, TCL/TK, Python for Win32

• Java – http://java.sun.com
• Visual Basic

– Limited form of VB comes with Excel
– Start Excel, go to Tools→Macro →Visual Basic Editor
– Access help function under Visual Basic Editor
– Full version requires purchase of Visual Basic Studio

(http://msdn.microsoft.com/vbasic/default.asp)

• UWIN comes with Gnu compilers for C, C++, Fortran

BR Fall 2001 11

Will look at Perl in ECE 3732
• Why?

– Good example of a scripting language
– Portable between Windows/Unix
– Dr. Reese’s favorite language for throw-away code

• Will you ever use Perl again?
– Maybe, Maybe not – depends on career path, job function, and if you

see Perl as being useful for throw away tasks

• Will you ever have to write a program again after ECE 3732?
– If you are an engineer, you WILL have to write a program occasionally
– What language you use will often be entirely your choice – you will

have some task to perform and writing a program will help you do that
task more efficiently.

– Pick a language for throw away programming tasks, and use it enough
to become time efficient!!!!

BR Fall 2001 12

Perl Distributions
• You have two Perl distributions on your CDROM
• UWIN Perl

– Installation file is
Uwin/UWIN Dist/uwin_perl.win32.i386.exe

– After install, run from ksh window, executable is
/usr/bin/perl

• ActiveState Perl
– Installation file is

Uwin/actperl/ActivePerl-5.6.1.628-MSWin32-x86-multi-thread.msi
– After install, run from MSDOS prompt, binary will be in

C:\Perl\bin\Perl.exe
• Install both on your systems, Active Perl primarily

for documentation reasons

3

BR Fall 2001 13

Perl Documentation
• Active Perl installation has best documentation

– C:\Perl\html\index.html
• General Perl sites

– http://www.perl.com , http://www.perl.org,
http://www.activeperl.com

• Definitive textbook for Perl
Programming Perl 3rd edition, L. Wall, T.
Christiansen, R. Schwarz
Published by O’Reilly, $35 on Amazon.com

• Online Perl tutorials
– http://www.comp.leeds.ac.uk/Perl/start.html

(all of these initial notes are copied from the above tutorial)

BR Fall 2001 14

A Perl Script
The file below is a perl script that prints out “Hello World”.

File: hworld.pl

print “Hello World!\n”;

To execute this script (example shown from ksh)

$ perl hworld.pl
Hello World!
$

Can also use command line arguments such as:
$ perl –w hworld.pl

The –w argument is nice, provides some warnings about
common mistakes in Perl.

Pass script name as
argument to perl

BR Fall 2001 15

Making hworld.pl executable
Can make the hworld.pl script directly executable by adding the
following line:

#!/usr/bin/perl

print “Hello World!\n”;

Must also give file execute permission:

$ chmod +x hworld.pl

Now can directly execute the file:

$ hworld.pl
Hello World!
$

First line is pathname to
perl executable

BR Fall 2001 16

Scalar Variables
The most basic kind of variable in Perl is the scalar variable. Scalar variables hold
both strings and numbers, and are remarkable in that strings and numbers are
completely interchangable.
For example, the statement

$priority = 9;

sets the scalar variable $priority to 9, but you can also assign a string to exactly the
same variable:

$priority = 'high';

Perl also accepts numbers as strings, like this:

$priority = '9'; $default = '0009';

and can still cope with arithmetic and other operations quite happily. In general
variable names consists of numbers, letters and underscores, but they should not
start with a number and the variable $_ is special, as we'll see later. Also, Perl is
case sensitive, so $a and $A are different.

BR Fall 2001 17

Operators
Perl uses all the usual C arithmetic operators:

$a = 1 + 2; # Add 1 and 2 and store in $a
$a = 3 - 4; # Subtract 4 from 3 and store in $a
$a = 5 * 6; # Multiply 5 and 6
$a = 7 / 8; # Divide 7 by 8 to give 0.875
$a = 9 ** 10; # Nine to the power of 10
$a = 5 % 2; # Remainder of 5 divided by 2
++$a; # Increment $a and then return it
$a++; # Return $a and then increment it
--$a; # Decrement $a and then return it
$a--; #Return $a and then decrement it

and for strings Perl has the following among others:

$a = $b . $c; # Concatenate $b and $c
$a = $b x $c; # $b repeated $c times

BR Fall 2001 18

Assigning Perl Values

To assign values Perl includes

$a = $b; # Assign $b to $a
$a += $b; # Add $b to $a
$a -= $b; # Subtract $b from $a
$a .= $b; # Append $b onto $a ($a, $b contain strings)

Note that when Perl assigns a value with $a = $b it makes a copy
of $b and then assigns that to $a. Therefore the next time you
change $b it will not alter $a.

Other operators can be found on the perlop manual page.

In the ActiveWin html documentation, look under “Core Perl
Docs”, and look at perlop

4

BR Fall 2001 19

Interpolation of Variable Names
The following code prints apples and pears using concatenation (note the use of
the ‘.’ (period) as the string concatenation operator).

$a = 'apples';
$b = 'pears';
print $a . ' and ' . $b;

It would be nicer to include only one string in the final print statement, but the line

print '$a and $b';

prints literally $a and $b which isn't very helpful. Instead we can use double quotes
in place of the single quotes:

print "$a and $b";

The double quotes force interpolation of any codes, including interpreting
variables. Other codes that are interpolated include special characters such as
newline and tab. The code \n is a newline and \t is a tab.

BR Fall 2001 20

Array Variables
A slightly more interesting kind of variable is the array variable which is a list of
scalars (ie numbers and strings). Array variables have the same format as scalar
variables except that they are prefixed by an @ symbol. The statement

@food = ("apples", "pears", "eels");
@music = ("whistle", "flute");

assigns a three element list to the array variable @food and a two element list to
the array variable @music.

The array is accessed by using indices starting from 0, and square brackets are
used to specify the index. The expression

$food[2]

returns eels. Notice that the @ has changed to a $ because eels is a scalar.

BR Fall 2001 21

Array Assignments
As in all of Perl, the same expression in a different context can produce a
different result. The first assignment below explodes the @music variable so
that it is equivalent to the second assignment.
@moremusic = ("organ", @music, "harp");
@moremusic = ("organ", "whistle", "flute", "harp");

This should suggest a way of adding elements to an array. A neater way of
adding elements is to use the statement

push(@food, "eggs");

which pushes eggs onto the end of the array @food. To push two or more items
onto the array use one of the following forms:

push(@food, "eggs", "lard");
push(@food, ("eggs", "lard"));
push(@food, @morefood);

The push function returns the length of the new list.

BR Fall 2001 22

More List Manipulation
@food = ("eels", "lard", "bread");

It is possible to assign an array to a scalar variable. Examples are:

$f = @food; # $f = length of @food, here = 3.
$g = $#food; # $g = last index of @food, here = 2

The assignment:
$f = “@food”;

turns the value of $f into a string that are the members of @food with a space
between each element.
The assignment below assigns $g the last item in the list @food:

$g = $food[$#food]; # $g = $food[2] = “bread”;

To remove the last item from a list and return it use the pop function. Note that
after this assignment, $g = “bread”, and @food only has 2 elements left.

$g = pop(@food);

BR Fall 2001 23

File Handling
Here is a simple perl program which does the same as the UNIX cat command
on a certain file.
#!/usr/bin/perl
#
Program to open the password file, read it in,
print it, and close it again.

$file = '/etc/passwd'; # Name the file
open(INFO, $file); # Open the file
@lines = <INFO>; # Read it into an array
close(INFO); # Close the file
print @lines; # Print the array

The open function opens a file for input (i.e. for reading). The first parameter is
the filehandle which allows Perl to refer to the file in future. The second
parameter is an expression denoting the filename. A filehandle name can be any
valid Perl symbol name.

The close function tells Perl to finish with that file.
BR Fall 2001 24

More File Handling
The open statement can also specify a file for output and for appending as well
as for input. To do this, prefix the filename with a > for output and a >> for
appending:
open(INFO, $file); # Open for input
open(INFO, ">$file"); # Open for output
open(INFO, ">>$file"); # Open for appending
open(INFO, "<$file"); # Also open for input

To print a string to the file with the INFO filehandle use:
print INFO "This line goes to the file.\n";

open(INFO, '-'); # Open standard input
open(INFO, '>-'); # Open standard output

To open the standard input (usually the keyboard) and standard output (usually
the screen) respectively do:

5

BR Fall 2001 25

foreach Control Structure

To go through each line of an array or other list-like structure (such as lines in a
file) Perl uses the foreach structure. This has the form:

foreach $morsel (@food) # Visit each item in turn
and call it $morsel

{
print "$morsel\n"; # Print the item
print "Yum yum\n"; # That was nice

}

The actions to be performed each time are enclosed in a block of
curly braces. The first time through the block $morsel is assigned
the value of the first item in the array @food. Next time it is
assigned the value of the second item, and so until the end. If
@food is empty to start with then the block of statements is never
executed.

BR Fall 2001 26

Testing
The next few structures rely on a test being true or false. In Perl any non-zero
number and non-empty string is counted as true. The number zero, zero by itself
in a string, and the empty string are counted as false. Here are some tests on
numbers and strings.

$a == $b # Is $a numerically equal to $b?
Beware: Don't use the = operator.

$a != $b # Is $a numerically unequal to $b?
$a eq $b # Is $a string-equal to $b?
$a ne $b # Is $a string-unequal to $b?

You can also use logical and, or and not:

($a && $b) # Is $a and $b true?
($a || $b) # Is either $a or $b true?
!($a) # is $a false?

BR Fall 2001 27

for Control Structure
Perl has a for structure that mimics that of C. It has the form

for (initialise; test; inc)
{

first_action;
second_action;
etc

}

First of all the statement initialise is executed. Then while test is true the block
of actions is executed. After each time the block is executed inc takes place.
Here is an example for loop to print out the numbers 0 to 9.
for ($i = 0; $i < 10; $i++) # Start with $i = 0

Do it while $i < 10
Increment $i before repeating

{
print "$i\n";

}

BR Fall 2001 28

while
Here is a program that reads some input from the keyboard and won't continue
until it gets the correct password

#!/usr/bin/perl
print "Password? "; # Ask for input
$a = <STDIN>; # Get input
chop $a; # Remove the newline at end
while ($a ne "fred") # While input is wrong...
{

print "sorry. Again? "; # Ask again
$a = <STDIN>; # Get input again
chop $a; # Chop off newline again

}

When the password is entered $a is given that value including the newline
character at the end. The chop function removes the last character of a string
which in this case is the newline. The “ne” function stands for “not equal” and
is a string comparison function (“eq” is the string equality test).

BR Fall 2001 29

do - until

Here is a version of the previous program that uses a do – until control structure:

#!/usr/local/bin/perl
do
{

"Password? "; # Ask for input
$a = <STDIN>; # Get input chop
chop $a; # Chop off newline

}
while ($a ne "fred") # Redo while wrong input

BR Fall 2001 30

if, elsif statements
Of course Perl also allows if/then/else statements. These are of the following
form:
if ($a) {

print "The string is not empty\n";
} else {

print "The string is empty\n";
}

if (!$a){ # The ! is the not operator
print "The string is empty\n";

} elsif (length($a) == 1) { # If above fails, try this
print "The string has one character\n";

} elsif (length($a) == 2) { # If that fails, try this
print "The string has two characters\n";

} else { # Now, everything has failed
print "The string has lots of characters\n";

}

elsif is a way of chaining multiple if-else statements (note the spelling on elsif):

6

BR Fall 2001 31

Regular Expressions
A regular expression is contained in slashes, and matching occurs with the =~
operator. The following expression is true if the string the appears in variable
$sentence.
$sentence =~ /the/

The RE is case sensitive, so if

$sentence = "The quick brown fox";

then the above match will be false. The operator !~ is used for spotting a non-
match. In the above example

$sentence !~ /the/

is true because the string the does not appear in $sentence.

BR Fall 2001 32

The $_ special variable
We could use a conditional as
if ($sentence =~ /under/) {

print “Sentence has ‘under’ in it\n";
}

which would print out a message if we had either of the following
$sentence = "Up and under";
$sentence = "Best winkles in Sunderland";

But it's often much easier if we assign the sentence to the special variable $_
which is of course a scalar. If we do this then we can avoid using the match and
non-match operators and the above can be written simply as
$_ = $sentence;
if (/under/) {

print “Sentence has ‘under’ in it\n";
}

Many Perl functions return values in $_, so explicit assignment to $_ is usually
unnecessary.

BR Fall 2001 33

More on REs
In an RE there are plenty of special characters, and it is these that both give
them their power and make them appear very complicated. It's best to build up
your use of REs slowly; their creation can be something of an art form.

Here are some special RE characters and their meaning

. # Any single character except a newline
^ # The beginning of the line or string
$ # The end of the line or string
* # Zero or more of the last character
+ # One or more of the last character
? # Zero or one of the last character

These special characters can be embedded in REs to add power to the
search.

BR Fall 2001 34

Example REs
here are some example matches – there is a lot more to REs but we will stop here.
/.e/ # t followed by anthing followed by e

This will match the
tre
tle
but not te
tale

/^f/ # f at the beginning of a line
/^ftp/ # ftp at the beginning of a line
/e$/ # e at the end of a line
/tle$/ # tle at the end of a line
/und*/ # un followed by zero or more d characters

This will match un
und
undd
unddd (etc)

/.*/ # Any string without a newline. This is because
the . matches anything except a newline and
the * means zero or more of these.

/^$/ # A line with nothing in it.

BR Fall 2001 35

Substitution
To replace an occurrence of london by London in the string $sentence we use the
expression
$sentence =~ s/london/London/

and to do the same thing with the $_ variable just

s/london/London/

This example only replaces the first occurrence of the string, and it may be that
there will be more than one such string we want to replace. To make a global
substitution the last slash is followed by a g as follows (substitution occurs in the
$_ variable):

s/london/London/g

The i option can used to ignore case:
s/london/London/gi

BR Fall 2001 36

Translation
The tr function allows character-by-character translation. The following
expression replaces each a with e, each b with d, and each c with f in the variable
$sentence. The expression returns the number of substitutions made.

$sentence =~ tr/abc/edf/

The following statement converts $_ to upper case.

tr/a-z/A-Z/;

Because the translated result returns in $_, can have multiple tr statements follow
one another.
tr/;//g;
tr/://g;
tr/#//g;

The above translations replace ‘;’, ‘:’, ‘#’ with the null character, removing them
from the string stored in $_.

7

BR Fall 2001 37

split Function
A very useful function in Perl is split, which splits up a string and places it into an
array. The function uses a regular expression and as usual works on the $_
variable unless otherwise specified.

The split function is used like this:

$info = "Caine:Michael:Actor:14, Leafy Drive";
@personnel = split(/:/, $info);

which has the same overall effect as

@personnel = ("Caine", "Michael", "Actor", "14, Leafy Drive");

If we have the information stored in the $_ variable then we can just use this
instead

@personnel = split(/:/);

BR Fall 2001 38

More on split

A word can be split into characters, a sentence split into words and a paragraph
split into sentences:

@chars = split(//, $word);
@words = split(/ /, $sentence);
@sentences = split(/\./, $paragraph);

Check the length of the returned array to see the string was actually split:

@words = split(/:/, “hello there”);

if (@words == 1) {
print “String did not contain a ‘:’\n”;

} else {
$i = @words;
print “String was split into $i words.\n”;

}

BR Fall 2001 39

Associative Arrays
Ordinary list arrays allow us to access their element by number. The first element
of array @food is $food[0]. The second element is $food[1], and so on. But Perl
also allows us to create arrays which are accessed by string. These are called
associative arrays.

To define an associative array we use the usual parenthesis notation, but the array
itself is prefixed by a % sign. Suppose we want to create an array of people and
their ages. It would look like this:

%ages = ("Michael Caine", 39,
"Dirty Den", 34,
"Angie", 27,
"Willy", "21 in dog years",
"The Queen Mother", 108);

Note that entries in associative arrays occur in pairs.

BR Fall 2001 40

Accessing Elements in Associative Arrays

Now we can find the age of people with the following expressions

$ages{"Michael Caine"}; # Returns 39
$ages{"Dirty Den"}; # Returns 34
$ages{"Angie"}; # Returns 27
$ages{"Willy"}; # Returns "21 in dog years"
$ages{"The Queen Mother"}; # Returns 108

An associative array can be converted back into a list array just by assigning
it to a list array variable. A list array can be converted into an associative
array by assigning it to an associative array variable. Ideally the list array
will have an even number of elements:

@info = %ages; # @info is a list array. It
now has 10 elements

$info[5]; # Returns the value 27 from
the list array @info

%moreages = @info; # %moreages is an associative
array. It is the same as %ages

BR Fall 2001 41

Looping over Elements in Associative Arrays
Associative arrays do not have any order to their elements (they are just like
hash tables) but is it possible to access all the elements in turn using the keys
function and the values function:
foreach $person (keys %ages) {

print "I know the age of $person\n";
}

foreach $age (values %ages) {
print "Somebody is $age\n";

}

There is also a function each which returns a two element list of a key and
its value. Every time each is called it returns another key/value pair:

while (($person, $age) = each(%ages)) {
print "$person is $age\n";

}

BR Fall 2001 42

Subroutines
Perl allows the user to define their own functions, called subroutines. They
may be placed anywhere in your program but it's probably best to put them
all at the beginning or all at the end. A subroutine has the form
sub mysubroutine {

print "Not a very interesting routine\n";
print "This does the same thing every time\n";

}

The above subroutine ignores any parameters passed to it. All of the
following will work to call this subroutine. Notice that a subroutine is called
with an & character in front of the name:
&mysubroutine; # Call the subroutine
&mysubroutine($_); # Call it with a parameter
&mysubroutine(1+2, $_); # Call it with two parameters

8

BR Fall 2001 43

Passing Parameters to Subroutines
When a subroutine is called any parameters are passed as a list in the special
@_ list array variable. The following subroutine merely prints out the list that
it was called with. It is followed by a couple of examples of its use.

sub printargs {
print "@_\n";

}

&printargs("perly", "king"); # Example prints "perly king"
&printargs("frog", "and", "toad"); # Prints "frog and toad"

Just like any other list array the individual elements of @_ can be accessed
with the square bracket notation:
sub printfirsttwo {

print "Your first argument was @_[0]\n";
print "and @_[1] was your second\n";

}

BR Fall 2001 44

Returning Values from Subroutines

Result of a subroutine is always the last thing evaluated or the value explicitly
passed in the ‘return’ statement. This subroutine returns the maximum of two
input parameters. It is recommended that you always use ‘return’ for
improved code readability:

sub maximum {
if ($_[0] > $_[1]) {

return($_[0]);
} else {

return($_[1]);
}

}

$biggest = &maximum (37,24); # $biggest gets the value 37

BR Fall 2001 45

Local Variables

Local variables can be declared inside of a subroutine using the my function:

sub inside {
my($a, $b); # Make local variables
($a, $b) = (@_[0], @_[1]); # Assign values
$a =~ s/ //g; # Strip spaces from
$b =~ s/ //g; # local variables
return ($a =~ /$b/ || $b =~ /$a/); # Is $b inside $a

or $a inside $b?
}

&inside("lemon", "dole money"); # returns true

BR Fall 2001 46

Passing Arguments on the Command Line
The perl program uses arguments passed on the command line:
#!/usr/bin/perl
use English;
if (@ARGV < 2) {

print "Usage: $PROGRAM_NAME arg1 arg2 \n";
print "Echos arg1, arg2 to screen \n";
exit(0);

}

print "Argument #1 is $ARGV[0]\n";
print "Argument #2 is $ARGV[1]\n";

Arguments passed on the command line are passed as a list in the special
variable ARGV . The “use English;” statement enables longer, more
informative variable names for Perl special variables. The
$PROGRAM_NAME special variable is the name of the program specified on
the command line (the shorter variable name is $0).

BR Fall 2001 47

Example Runs
Below are some example runs of the program on the previous slide:

$ perl arg.pl
Usage: arg.pl arg1 arg2
Echos arg1, arg2 to screen

$ perl arg.pl Hi!
Usage: arg.pl arg1 arg2
Echos arg1, arg2 to screen

$ perl arg.pl Hi! There!
Argument #1 is Hi!
Argument #2 is There!

zero arguments passed to
program, get usage string

only 1 argument passed, get usage
string

correct number of arguments passed,
program executes normally.

Including argument checking and ‘usage’ messages is good programming
etiquette.

