
 

APPLICATION NOTE 

Mentor Synthesis Group 

LeonardoSpectrum to Precision 
Transition Guide 
May 2003 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
 

Table of Contents 
TABLE OF CONTENTS ............................................................................................................. 2 

INTRODUCTION......................................................................................................................... 3 

INSTALLING PRECISION ........................................................................................................ 3 

PRECISIONS USER INTERFACE............................................................................................ 3 
DESIGN CENTER.........................................................................................................................................................3 
SYNTHESIS OPTIONS ..................................................................................................................................................4 
SETTING CONSTRAINTS ..............................................................................................................................................4 
SCHEMATIC VIEWING.................................................................................................................................................5 
PROJECTS VS SCRIPTS.................................................................................................................................................6 
SETUP TECHNOLOGY ENVIRONMENT .........................................................................................................................6 
READING THE DESIGN ................................................................................................................................................7 
SETTING TIMING CONSTRAINTS .................................................................................................................................7 
OPTIMIZING THE DESIGN............................................................................................................................................8 
GENERATING REPORTS...............................................................................................................................................8 
SAVING RESULTS .......................................................................................................................................................9 

CONVERTING TIMING CONSTRAINTS .............................................................................. 9 
CLOCK CONSTRAINTS ..............................................................................................................................................10 
INPUT CONSTRAINTS ................................................................................................................................................10 
OUTPUT CONSTRAINTS.............................................................................................................................................11 
PATH CONSTRAINTS.................................................................................................................................................11 
APPLYING TIMING CONSTRAINTS TO A DESIGN........................................................................................................12 
CONTROLLING IO MAPPING.....................................................................................................................................12 

FALSE TIMING REGRESSIONS USING PRECISION....................................................... 13 
VENDOR CONSTRAINT FILE GENERATION................................................................................................................13 
CLOCK DOMAINS .....................................................................................................................................................13 
IO REGISTER MAPPING ............................................................................................................................................13 

TIPS AND TRICKS.................................................................................................................... 15 

APPENDIX A – PRECISION NETLIST OBJECT CONSTRAINTS .................................. 16 

APPENDIX B – BLOCK BASED DESIGN SCRIPT EXAMPLE ........................................ 17 

APPENDIX C – TEAM DESIGN SCRIPT EXAMPLE......................................................... 18 

APPENDIX D – INCREMENTAL DESIGN SCRIPT EXAMPLE ...................................... 18 

APPENDIX D – INCREMENTAL DESIGN SCRIPT EXAMPLE ...................................... 19 

APPENDIX E – COMMON ATTRIBUTES USED TO CONTROL OPTIMIZATION .... 20 
PRESERVING HIERARCHY IN A DESIGN......................................................................................................................20 
SPECIFYING FANOUT ................................................................................................................................................20 
CONTROLLING RETIMING OF REGISTERS..................................................................................................................20 
CONTROLLING XILINX BLOCK RAM INFERENCE.....................................................................................................20 
CONTROLLING XILINX BLOCK MULT INFERENCE...................................................................................................20 
CONTROLLING XILINX AND ALTERA IO REGISTER MAPPING ..................................................................................20 
CONTROLLING ALTERA RAM INFERENCE ...............................................................................................................20 
CONTROLLING ALTERA DSP BLOCK INFERENCE.....................................................................................................20 
CONTROLLING TRI-STATE TO MUX CONVERSION ....................................................................................................20 
CONTROLLING ACTEL RAD HARD OPTIMIZATION (ACT1, ACT2, ACT3, 54SX) .........................................................20 
PRESERVING NETS AND LOGIC ..................................................................................................................................20 

Page 2 
 



 
 

Introduction 
Users migrating from LeonardoSpectrum to Precision should find the transition easy and straightforward.  The basic 
command set in Precision is not backwards compatible with LeonardoSpectrum however this command set is simple 
and intuitive.  Advanced netlist attributes used to control optimization have been carried forward into Precision.  
Users should be able to convert even the most complex script file to Precision’s format in a few minutes.  This 
document will help guide users through the process. 

Installing Precision 
Precision 2003a uses a newer version of licensing which isn't compatible the 6.1* versions of licensing that Mentor 
Graphics tools have been released with for years.  You must stop the old mgcld vendor daemon before starting the 
new mgcld vendor daemon. If you have multiple vendor daemons for the same license manager daemon (lmgrd) and 
you don't want to stop and restart lmgrd, you can stop and restart just the mgcld vendor daemon by using the -vendor 
switch on the lmdown and lmreread commands (e.g., -vendor mgcld). For more information about the -vendor 
switch, refer to the FLEXlm End Users Guide available at  

<http://www.macrovision.com/solutions/esd/support/enduser/TOC.htm>  (sections 7.5 and 7.11). 

Precisions User Interface 
Design Center 
Precisions user interface was re-architected to be more intuitive yet still provide the functionality available in 
LeonardoSpectrum.  The main interface is called the “Design Center” and provides complete access to the tools 
functionality.  The “Design Bar” guides users through the steps of the synthesis process similar to 
LeonardoSpectrum’s Flow Tabs. 

 

Design Bar Design Center 

Project Browser Hierarchy Browser 

Figure 1 – Precision Design Center 

Page 3 
 



 
 

Synthesis Options 
Many of the options found in LeonardoSpectrum’s FlowTabs are now available in the “Tools -> Set Options” form 
shown below.  Unnecessary or obsolete options have been removed. 

 
Figure 2 – Precision Options Setup Interface 

Setting Constraints 
The Precision user interface allows constraint setting on a netlist object (like a port) anywhere it can be selected. 
This includes the design hierarchy browser view, schematic viewer, graphical find window, as well as the HDL 
editor and report views. 

 
Figure 3 – Setting Constraint in Precision 

Precision utilizes a context sensitive constraint editor, which tailors itself to the selected netlist object type. A 
different constraint editor form will appear depending on whether the object type is a clock, register, module or net.  
Refer to Appendix-A for a complete list of netlist object constraints that are available with Precision 

Page 4 
 



 
 

Schematic Viewing 
Schematic viewing in Precision is now included in the base product and available to all users.  Users should 
experience a performance improvement of 5x to 10x on large designs.   Symbols have been added to improve 
readability and users can now view the contents of LUTs. 

 
Figure 4 – Precision Schematic Viewer 

Note: The Precision schematic viewer will, by default, display bussed nets and instances as bundled objects.  This 
“bundling” makes for an overall more readable schematic, however can also make debug challenging when trying 
to trace to an individual object within a bundle.  The bundling feature can easily be disabled using the “Tools -> 
Options -> Schematic Viewer” form

Page 5 
 



 
 
Script Conversion 
Converting a LeonardoSpectrum script file to Precision is very straightforward.  Shown below is a quick comparison 
of a basic synthesis script in LeonardoSpectrum and Precision. This section will cover the basics of converting a 
script by hand.  An automatic script converter utility is available through customer support.   

# Setup Technology Environment 
set part 2V80cs144 
set process 6 
set wire_table xcv2-40-6_wc 
load_library xcv2 
 
#Read the Design 
read {traffic.v} 

# Setup Timing Constraints 
set register2register 16.66667 
set input2register 16.66667 
set register2output 16.66667 
set input2output 16.66667 
 
# Optimize the Design 
optimize  
optimize_timing 

# Generate Reports 
report_area 
report_delay  

# Save Results 
auto_write traffic.edf 

LeonardoSpectrum Synthesis Script 
       

 Precision Synthesis Script 
# Setup Technology Environment 
setup_design -manufacturer "Xilinx" -
family "VIRTEX-II" -part "2V40cs144" 
-speed "6" 
 
# Add input files 
add_input_file {traffic.v} 
 
# Setup timing constraints 
setup_design –frequency 62.5 
 
# Complete the optimization process 
compile 
synthesize 
 

Projects vs Scripts 
LeonardoSpectrum was designed to work with script files while the Precision user interface is designed to work with 
projects.  The difference is subtle.  A project file is simply a script file minus the implementation commands, which 
include compile, synthesize and place_and_route.  The Precision user interface can load, restore and manage designs 
when synthesized using projects.  Refer to the documentation for a complete description of projects. 

Setup Technology Environment 
LeonardoSpectrum 
To set the target technology in LeonardoSpectrum users were required to set 3 variables then issue the load_library 
command as shown below: 

set part v50ecs144 
set process 6 
set wire_table xcve50-6_avg 
load_library xcv2 

Precision 
In Precision, technology setup has been consolidated into a single command.  Users no longer need to specify the 
wire_table, which will be automatically derived from the part information. 

setup_design -manuf "Xilinx" -family "VIRTEX-II" -part "2V40cs144" -speed "6" 

Note: Precision will load the library during the design synthesis.  The setup_design command is (as you would 
expect) simply a setup command. 

Page 6 
 



 
 

Reading the Design 
LeonardoSpectrum 
LeonardoSpectrum provided 2 ways to read designs, the “read” command or the “analyze / elaborate” command 
pair.   When the read command was issued the actual read was performed.  Users were not required to define the 
complete file order, but the top-level module or entity had to be placed at the bottom of the file list and VHDL 
packages at the top. 

#Read the Design 
read { my_pkg.vhd a.vhd b.vhd c.vhd top.vhd } 

Precision 
Precision has 2 new commands for reading designs called “add_input_file” and “compile”.  This command defines 
the file location and properties such as format or work library.  The compile command has no options.  The 
equivalent Precision command set is as follows: 

# Read the Design 
add_input_file { my_pkg.vhd a.vhd b.vhd c.vhd top.vhd} 
compile 

Command Switch Description 
-format Specifies the file type for file names that don’t have the proper extension. Valid values are 

vhdl | verilog | edif | syn | lib | tcl | xnf | xdb | sdf. If this option is not used and a valid 
extension exists, then the file type will be automatically detected. 

-work Specifies the name of the work library for compiling the content of the file. If not 
specified, then the work library name work is assumed. 

-search_path Specifies additional directories that are pre-pended to the global search path that is 
specified in the setup_design command. 

-exclude Allows non RTL files to be added to the project.  This switch will tell Precision to ignore 
the file for synthesis but to copy it into the place and route directory.  Great for vendor 
constraint files and vendor pre-compiled IP blocks 

Table 1 – add_input_file command switch summary 

Notes: 
• A separate “add_input_file” command must be used for files with different formats.   
• RTL files do not need to appear in any particular order in the input file list.  Precision will automatically 

detect the top-level entity / module.  There are 2 exceptions: first, all VHDL packages must appear at the top of 
the file list and second, designs with multiple-tops must have the desired top-level file appear at the bottom 

Setting Timing Constraints 
This section will only cover the global frequency method of constraining designs.  Port based timing constraints will 
be covered in a later section. 

LeonardoSpectrum 
Four separate variables are used to define global frequency in LeonardoSpectrum.  Port-based timing constraints 
will override the global frequency values.  These variables are: 

set register2register 16 
set input2register 16 
set register2output 16 
set input2output 16 

Precision 
Precision no longer supports the concept of a global variable to define timing requirements.  Only port constraints 
will be considered during timing analysis, which eliminates the ambiguity of LeonardoSpectrum’s dual constraining 
paradigm.  Users can still define a global frequency value using the “setup_design” command.  This command will 
instruct Precision to automatically generate port constraints on the design.   

Setup_design –frequency 62.5 

Once synthesis completes a file called “Constraints Report” will appear in the output file list.  This is an actual 
constraint file that can be added to the input file list and used for subsequent runs.   

Page 7 
 



 
 
Optimizing the Design 
Precision’s optimization process is controlled by constraints, not command switches as in LeonardoSpectrum.  For 
example multi-pass optimization in LeonardoSpectrum was enabled through the “-effort standard” switch while 
additional optimization in Precision is automatically performed on blocks not meeting timing constraints. 

LeonardoSpectrum 
LeonardoSpectrum provides two commands for performing optimization, “optimize” and “optimize_timing”.  Each 
of these commands includes a set of switches to control how optimization is performed.  Typical usage is as follows 

Optimize –ta xcv2 –hier auto –effort standard –chip 
Optimize_timing 

Precision 
Precision’s optimizations are constraint driven rather that switch driven.  Timing constraints determine when and 
where multi-pass optimization is performed on the design.  Constraints applied directly to modules determine which 
hierarchy modifications will be performed, and the setup_design command must be used to control IO insertion.   

To optimize a design with Precision, use “synthesze”.  This command has no switches and must be executed after 
the “compile” command. 

Synthesize 

To optimize a design without inserting IO buffers, the following command should be issued prior to the synthesize 
command. 

Setup_design –addio=false 

Precision includes new technology to automatically move logic across hierarchy boundaries when performance 
improvements can be realized thus reducing, if not eliminating, the need to flatten a netlist.   Users can override this 
optimization by assigning a “hierarchy” attribute to an instance with a value of “preserve” or “flatten”.   

set_attribute -name hierarchy -value flatten -instance I1 

Notes: 
• To optimize a design for area, leave the design unconstrained.  
• To minimize run times apply a relaxed constraint to the design such as 1 Mhz. 

Generating Reports 
When using LeonardoSpectrum, separate commands must be issued to generate area and timing reports.  Precision 
has consolidated these report generation commands into the “synthesize” command.  Upon completion of  
“synthesize” an area report file and a delay report file are generated automatically and placed into the 
implementation folder.   

Users who wish to run these commands interactively will find they are still available with some modifications.  The 
report_area command is identical in both tools.  Report_delay has been obsoleted and replaced by report_timing. 

LeonardoSpectrum 

Report_delay –to | -from | -through | -num_paths | -show_schematic 

Precision 
Report_timing –to | -from | -through | -num_paths | -show_schematic 

Notes: Precision’s “report_timing” command includes significant functionality enhancements over 
LeonardoSpectrum’s “report_delay”.  Users might want to read the reference manual or type “report_timing –
help” from the command line to see the new options. 

Page 8 
 



 
 

Saving Results 
Precision’s “synthesize” command also generates the final netlist and constraint file for place and route.  This 
eliminates the need for the “write” and “auto_write” commands found in LeonardoSpectrum.  Precision saves an 
.xdb and .edf netlist file after each synthesis run.  The command “auto_write” is still supported to allow the 
interactive generation of additional netlist formats 

Precision provides users complete control over the naming and location of output files.  This is accomplished 
through the “setup_design” and “set_working_dir” commands.  To specify the location and name of an output file 
use the following commands: 

Set_working_dir c:/designs/uart 
Setup_design –impl uart_imp_1 
Setup_design –basename my_design 

This will place the output EDIF file into c:/designs/uart/uart_imp_1/my_design.edf 

Note: Precision uses TCL for a scripting language.  TCL requires the use of forward slashes “/” to specify directory 
structures, even on Windows OS. 

Converting Timing Constraints 
Precision supports the Synopsys Design Constraints (SDC) format for defining timing constraints.  This is an 
industry standard constraint format that is not backwards compatible with LeonardoSpectrum.  Precision includes a 
new, highly advanced timing analysis engine that requires the following additional information to be specified in the 
constraints: 

1. Clocks must be defined as synchronous or asynchronous to other clocks 
2. IO constraints require a reference clock to be specified 

 Precision Constraint File LeonardoSpectrum Constraint File 
# Clock Constraints 
create_clock clk –period 10 –domain main 
 
# Input Constraints 
set_input_delay 2 data_en –clock clk 
set_input_delay 3 data_in* -clock clk 
 
# Output Constraints 
set_output_delay 3 data_stb –clock clk 
set_output_delay 8 data_out* -clock clk 
 

# Clock Constraints 
Set_clock –port –name clk –clock_cycle 10
 
# Input Constraints 
arrival_time 2 data_en 
arrival_time 3 data_in* 
 
#Output Constraints 
required time 7 data_stb 
required_time 2 data_out* 

Page 9 
 



 
 

Clock Constraints 
LeonardoSpectrum 
LeonardoSpectrum uses 3 commands to fully specify a clock.  These commands are: 

set_clock -port -name .work.traffic.INTERFACE.clock -clock_cycle "10.000000" 
set_clock -port -name .work.traffic.INTERFACE.clock -pulse_width "5.000000" 
set_clock -port -name .work.traffic.INTERFACE.clock -clock_offset "2.00" 

Precision 
In Precision a single command, “create_clock” can be used to fully specify the clock as shown below: 

create_clock { clk } -domain Domain0 -period 10 -waveform { 2 7 } 
Notes: 
a. The “-waveform” switch sets the rise and fall edges of the clock signal over an entire clock period. There must 

be a non-zero even number of edges and they are assumed to be alternating rise and fall. The first value in the 
list is a rising transition, typically the first rising transition after time zero. 

b. Precision now requires users to specify a “clock domain”.  Clocks assigned to the same domain are considered 
synchronous and clock assigned to different domains are considered asynchronous. 

Reference Clock

 Clock
First Waveform Edge

Period

Second Waveform Edge

 
Figure 5 – Create_clock command Waveform 

Input Constraints 
LeonardoSpectrum 
LeonardoSpectrum references input constraints to “time zero” which means that constraints and clocks all reference 
the same point in time.  For this reason timing constraints only require a port name and delay value.   

Arrival_time 4 read_en 

Precision 
The main difference in Precision is that timing constraints are now relative to a clock edge, not “time zero”.  This 
allows users to specify unique constraints on ports in designs with multiple clocks.   

set_input_delay 4 read_en -clock clk 

Clock

Input Data

Clock Period

Input Delay

Valid Data

 

Figure 6 – set_input_delay waveform 

Page 10 
 



 
 

Output Constraints 
LeonardoSpectrum 
Similar to the “arrival_time” constraint, LeonardoSpectrums output constraints are relative to “time zero” not a 
specific clock.  The output constraint called “required_time” is an absolute time constraint on an output block of 
logic. 

Required_time 7 data_out_strobe 

Precision 
There are two distinct differences between the output constraints of Precision and LeonardoSpectrum.   

1. The output constraints, “set_output_delay”, must be set relative to a clock edge.   

2. The set_output_delay value is the opposite of  “required_time”.  What this means is that if the user wanted to 
limit the clock to out delay of an output path to 7ns and the clock period were 10 ns, the “required_time” value 
would be 7; the “set_output_delay” value would be [clock period – output delay limit] or 3. 

Set_output_delay 3 data_out_strobe –clock clk 

Reference Clock

Output Data

Clock Period

Output Delay

Valid Data

 

Figure 7 – set_output_delay waveform 

Notes: Set_input_delay and set_output_delay commands require that a constraint be relative to a clock edge.  The 
default is “-rise”.  Users wishing to constrain a port to a falling clock edge must explicitly set the “-fall” switch on 
these commands.   

Path Constraints 
LeonardoSpectrum 
LeonardoSpectrum supports one path constraint called “set_multcycle_path” which is used to set both multi-cycle 
paths and  false paths (by assigning a large number of cycles to the path).   

set_multicycle_path -to {.work.traffic.INTERFACE.reg_state(0) } -value 2 
set_multicycle_path  -from {.work.traffic.INTERFACE.sensor1 } -value 10000 

Precision 
There are 3 distinct differences that must be considered when applying path-based constraints using Precision.   

1. Two path constraints exist, set_multicycle_path and set_false_path.  Users no longer have to work around false 
paths with the set_multicycle_path command.   

2. Path constraints are applied to a pin of an instance.  LeonardoSpectrum would allow users to specify only the 
register name but not the pin. 

3. The way that internal objects are referenced has changed.  LeonardoSpectrum used an EDIF 
lib.cell.view.instance nomenclature where Precision allows a simple “/” to separate objects. 

 
set_multicycle_path 2 -to { reg_state(0)/in } 
set_false_path -from { sensor1 } 

Page 11 
 



 
 

Applying Timing Constraints to a Design 
After completing the conversion of the constraint file, there are 2 different ways to apply the constraints to a design.   

Applying constraints from a separate file 
To apply timing constraints, contained in a separate file, use the “add_input_file” command to add the constraint file 
as an input file.  This command needs to appear prior to the “compile” and  “synthesize” commands. 

Add_input_file {traffic.v} 
Add_input_file {traffic.sdc} 
compile 
synthesize 

Note: Precision will assume that a file with an .sdc suffix is a constraint file 

Applying constraints from the main script file 
Port constraint commands can also be placed directly into the main synthesis script.  When using this method 
constraint commands must be placed in the file after the compile command 

Add_input_file {traffic.v} 
Compile 
Create_clock clk –period 10 –domain main 
synthesize 

Controlling IO Mapping 
One significant difference between Precision and LeonardoSpectrum that users need to be aware of involves the 
implementation of IO’s.  Precision does the following IO operations automatically based on a timing driven 
algorithm. 

• IO Register Mapping 
• IO Driver Resizing 
• IO constraint relaxation 

IO Register Mapping 
Precision will automatically assign registers to the IO pads when the internal reg-to-reg slack is positive.  When no 
timing constraints are applied, then all possible registers will be assigned to the IO pad.  Users can force registers 
into the IO pad by assigning an attribute to a port as follows 

Set_attribute –name OUTFF –value TRUE –port done_stb   # Force out flops into IO 
Set_attribute –name INFF –value TRUE –port read_mode    # Force in flops into IO 
Set_attribute –name TRIFF –value TRUE –port load_en    # Force tri en flops into IO 

IO Driver Sizing 
Precisions will automatically “upsize” an output driver if the clock-to-out timing is not being met.  Doing so can 
improve timing significantly.  Users can force the use of a particular buffer using the “IOSTANDARD” attribute as 
shown below. 

set_attribute -name IOSTANDARD -value SSTL3_II_DCI -port sensor1 

IO Constraint Relaxation 
If the clock to out timing is not being met then Precision will automatically “relax” the IO timing constraint.  This is 
done to allow a design to go through place and route without errors.  When Precision performs this operation the 
actual constraints on the database will change and be recorded in the “constraints report” file.  The users original 
constraint file will not be modified.  The functionality is only supported for Xilinx and can be disabled using the 
following command: 

setup_place_and_route -flow {ISE 5.2} -command {Generate Vendor Constraint File} -
enable_auto_offset_relaxation 0 

 

 

Page 12 
 



 
 

False Timing Regressions using Precision 
Undoubtedly many LeonardoSpectrum customers may run existing designs through Precision and compare results.  
When doing this it is important to note that there are several reasons why results may appear worse when in fact they 
are the same or better.  Most of these are a result of Precision’s more accurate timing analysis and vendor constraint 
file generation system.  This section will discuss the most common reasons for “false regressions”. 

Vendor Constraint File Generation 
The most common reason for getting a false regression involves automatically generated vendor constraint files – 
especially the Xilinx UCF constraint file.  This problem is exasperated when constraining a design using global 
frequencies.  Precision’s constraint file generation is comprehensive and accurate while LeonardoSpectrum 
generates a set of oversimplified global constraints.  The following timing conditions go undetected when using an 
automatically generated LeonardoSpectrum constraint file but are detected using Precision generated constraint file. 

• Combinatorial input to output paths 
• Internal clock dividers using registers 
• Timing violations resulting from input-to-reg or reg-to-output paths 
• Output port timing relative to a phase shifted DCM internal clock 
• Timing paths between multiple clocks that are synchronous  
• Multiplied or divided clocks through DCMs 

Solution 
When comparing LeonardoSpectrum results to Precision results, the vendor constraint file for the 
LeonardoSpectrum netlist should be regenerated through Precision.  You can read the EDIF netlist generated by 
LeonardoSpectrum into Precision, reapply constraints in the Precision environment, and regenerate the vendor 
constraint file.  An example script is provided below: 
# Setup the target technology 
setup_design -manufacturer Xilinx -family VIRTEX-II -part 2V1500ff896 -speed 5 
 
# Add the LeonardoSpectrum EDIF netlist 
set_working_dir . 
add_input_file Pscr_leo.edf 
 
# Reconstrain the design using a global frequency (or use SDC constraints) 
setup_design -frequency=150 
 
# Disable "auto-relaxation" of IO Vendor constraints 
setup_place_and_route -enable_auto_offset_relaxation 0 
 
# Read the LeonardoSpectrum design into Precision 
compile 
 
# Reconstrain design using SDF constraints (Do this or use the global frequency) 
create_clock clk –period 7.5 –domain ClockDomain1 
 
Generate a Precision UCF file for the LeonardoSpectrum netlist 
place_and_route {gen_vcf} 
 
# Perform integrated place and route 
place_and_route 

Clock Domains 
If your design has multiple clocks, then pay close attention to clock domains.  LeonardoSpectrum does not support 
multiple asynchronous clocks and its support for synchronous clocks is limited.  If clocks are specified as 
synchronous, then Precision will expand the clock waveforms out as many cycles as necessary to find the minimum 
delay between clock edges.  If there is combinatorial logic that crosses these synchronous clock domains then 
Precision will detect this as a critical path and report on it.  Also, Precision’s UCF file generation will instruct Xilinx 
ISE to do the same.  LeonardoSpectrum will not detect these paths. 

IO Register Mapping 
When a register is mapped into the IO the chip “on / off” timing is improved but the “max frequency”, as reported 
by Xilinx, can worsen.  The “max frequency” value reported in the Xilinx Trace timing report only reflects the 

Page 13 
 



 
 
maximum reg-to-reg timing and does not take into account the chip IO timing.  Pulling a register into the IO will 
increase the route delays on reg-to-reg paths and may lower this “max frequency” value. 

LeonardoSpectrum by default will not map registers into either the Xilinx IOB or the Altera complex IO cells.  
Precision will do this automatically based on a timing driven algorithm.  When LeonardoSpectrum is instructed to 
map registers into the IO, only top-level registers will be mapped but registers, buried in hierarchy, will not be 
mapped.  To make matters even more complicated Xilinx ISE will map some registers into the IOB when the “-
timing” switch is used with the “map” program.   

Solution 
There are two approaches to consider; first, observe the critical path and look for this condition.  Placing mappable 
registers into the IO pad cell is considered the desired behavior, even at the expense of “max frequency”, which is 
why Precision and Xilinx now do this automatically.  The second approach would be to disable IO pad cell mapping 
in all tools to get a more accurate comparison.  This can be done as follows: 
 
# In Precision 
set_attribute –name INFF –value FALSE –port [all_inputs] 
set_attribute –name OUTFF –value FALSE –port [all_outputs] 
set_attbibute –name TRIFF –value FALSE –port [all_inouts] 
 
# In LeonardoSpectrum 
set virtex_map_iob_registers FALSE # For Xilinx 
set altera_map_complex_ios FALSE # For Altera 
 
# In Xilinx 
map <don’t set –timing switch> 

Page 14 
 



 
 

Tips and Tricks 
1. To bring up the command line double-click on the “Log File” file in the Outputs folder of the project browser or 

issue the pull-down command “view ->Transcript Window” 

2. The easiest way to migrate a design from LeonardoSpectrum to Precision is to use the GUI to create the 
synthesis script and constraint file automatically.  When the synthesis process completes issue the pull-down 
menu command “file -> save project”.  To convert a project file into a script file simply add the command 
“synthesize” at the bottom of the file.  When using a Project file as a script file remove the “go” and 
“setup_design –impl” commands from the project file first.  These two commands are not necessary and may 
cause problems 

3. When using Precision, if a global frequency is specified in the “Setup Design” dialog box a complete constraint 
file will be automatically generated.  This appears as a file called “constraints report” in the output folder.  This 
file can be added as a constraints file and modified to the exact constraints. 

4. When setting constraints, a series of “get” commands are now supported for finding “typed” netlist objects 
(such as a pin or instance).  These commands are an extremely powerful way to constrain a set of internal 
objects such as the CE pin on a bank of internal registers.  Precisions reference manual includes several 
examples.   Below is an example of setting a multi-cycle constraint on the CE pin of a 64 bit internal bus 
set_multicycle_path -to [get_pins I2/reg_clk_cnt*/CE] -value 2 

5. To synthesize for area, leave the design unconstrained 

6. To minimize runtime, enter a relaxed constraint that is easily met (like 1 MHZ) 

7. You can double-click on any command, TCL or Precision, in the transcript window to bring up the manual page 
for that command 

8. You can type the start of a command from the command line then hit the “tab” key to display all commands 
with that prefix.  For example type “report_” <tab>” to display all our reporting commands 

9. When using the schematic viewer ‘trace forward” and “trace backwards” feature, select the pin of a cell rather 
than the entire cell.  This will give better control over growing the schematic fragment 

10. When using the schematic viewer query mode pop-up information box.  If you want to record the information 
simply right-click on the object in the schematic then execute the pop-up command “Copy ‘Query Info to 
Clipboard” 

11. You can re-apply a constraint by modifying the SDC file, then right-clicking on the constraint file and execute 
the pop-up command “apply constraint file”.  You can regenerate the FPGA vendor constraint file by right-
clicking the output folder from the project browser and execute the pop-up command “generate vendor 
constraint file”. 

Page 15 
 



 
 

Appendix A – Precision Netlist Object Constraints 
Netlist Object Constraints Vendor Specific 

Period  
Clock Domain  
Buffer Type  Clock 

Pin Number  
 

Input delay  
Buffer Type  
Pin Number  
False_path  
Multi-Cycle Path  
Max Delay  

Input Port 

Force Input Flop into Input Pad Xilinx, Altera 
 

Output Delay  
Buffer Type  
Pin Number  
False Path  
Multi-Cycle Path  
Max Delay  

Output Port 

Force Output Flop into Output Pad Xilinx, Altera 
 

Fanout  
Preserve Signal  
Preserve Driver  Net 

Assign to LOWSKEW Xilinx 
 

Output Delay  
False Path  
Multi Cycle Path  Input Pin 

Max Delay  
 

Don’t Touch  
Disable Pipeline DFF  
Use DFF Enable  Register 

Max Delay  
 

Preserve Hierarchy  
Flatten Hierarchy  
Don’t_touch  Module 

Max Delay  
 

Use Distributed RAM Xilinx 
RAM Block Type  Altera RAM 
Max Delay  

 
Use Dedicated Multiplier Xilinx, Altera Multiplier Max Delay  

 
Tri-State Buffer Preserve Tri State  
 

Page 16 
 



 
 

Appendix B – Block Based Design Script Example 
## Design Setups 
set_working_dir C:/Precision/Demos/block_design 
setup_design -manufacturer Xilinx -family VIRTEX-II -part 2V40cs144 -speed 6 
setup_design -addio=false 
setup_design -vendor_constraint_file=false 
setup_design -frequency=100 
  
setup_design -impl top_impl_1 
 
# The following “file delete” command is using tcl to delete an internal project file,  
# which is causing issues when running the block based design flow in this manner.   
# The file must be deleted after the “setup_design –impl” command is issued. This is only  
# necessary because we are using project implementation directories but not using projects.   
# This is a temporary issue and should be fixed in the 2003b software release 
 
file delete [glob top_impl_1/*.psi] 
 
# Optimize block A 
add_input_file hdl/block_a.vhdl 
compile 
synthesize 
 
# Optimize block B 
remove_input_file hdl/block_a.vhdl 
add_input_file hdl/block_b.vhdl 
compile 
synthesize 
 
# Optimize block C 
remove_input_file hdl/block_b.vhdl 
add_input_file hdl/block_c.vhdl 
compile 
synthesize 
 
# Optimize Top 
setup_design -addio=true 
setup_design -vendor_constraint_file=false 
 
remove_input_file hdl/block_g.vhdl 
add_input_file { 
top_impl_1/block_a.xdb 
top_impl_1/block_b.xdb 
top_impl_1/block_c.xdb} 
add_input_file hdl/top.vhdl 
 
compile 
 
# Set dont touch properties on previously optimized blocks 
set_attribute -name DONT_TOUCH -value "TRUE" -instance U1 
set_attribute -name DONT_TOUCH -value "TRUE" -instance U2 
set_attribute -name DONT_TOUCH -value "TRUE" -instance U3 
 
# Perform final synthesis  
synthesize 
 
# Perform place and route 
place_and_route 

Page 17 
 



 
 

Appendix C – Team Design Script Example 
The following script example shows how individual designers may use separate scripts for blocks.  A final “top” 
script does design assembly and final optimizations  

# Block A Synthesis Script 
set_working_dir C:/Precision/Demos/team_design/block_a 
setup_design -manufacturer Xilinx -family VIRTEX-II -part 2V40cs144 -speed 6 
setup_design -addio=false 
setup_design -vendor_constraint_file=false 
setup_design -frequency=100 
setup_design -impl block_a_impl_1 
add_input_file hdl/block_a.vhdl 
compile 
synthesize 

# Block B Synthesis Script 
set_working_dir C:/Precision/Demos/team_design/block_b 
setup_design -manufacturer Xilinx -family VIRTEX-II -part 2V40cs144 -speed 6 
setup_design -addio=false 
setup_design -vendor_constraint_file=false 
setup_design -frequency=100 
setup_design -impl block_b_impl_1 
add_input_file hdl/block_b.vhdl 
compile 
synthesize 

# Block C Synthesis Script 
set_working_dir C:/Precision/Demos/team_design/block_c 
setup_design -manufacturer Xilinx -family VIRTEX-II -part 2V40cs144 -speed 6 
setup_design -addio=false 
setup_design -vendor_constraint_file=false 
setup_design -frequency=100 
setup_design -impl block_c_impl_1 
add_input_file hdl/block_c.vhdl 
compile 
synthesize 

# Top Level Design Assembly and Optimize Script 
set_working_dir C:/Precision/Demos/team_design/top 
setup_design -manufacturer Xilinx -family VIRTEX-II -part 2V40cs144 -speed 6 
setup_design -addio=true 
setup_design -vendor_constraint_file=true 
setup_design -frequency=100 
setup_design -impl top_impl_1 
 
add_input_file ../block_a/block_a_impl_1/block_a.xdb 
add_input_file ../block_b/block_b_impl_1/block_b.xdb 
add_input_file ../block_c/block_c_impl_1/block_c.xdb 
add_input_file hdl/top.vhdl 
 
compile 
 
# Set dont touch properties on previously optimized blocks 
set_attribute -name DONT_TOUCH -value "TRUE" -instance U1 
set_attribute -name DONT_TOUCH -value "TRUE" -instance U2 
set_attribute -name DONT_TOUCH -value "TRUE" -instance U3 
 
# Perform final synthesis  
synthesize 
 
# Perform place and route 
place_and_route 

Page 18 
 



 
 

Appendix D – Incremental Design Script Example 
The following script shows how the team design script example in Appendix C can be extended to provide an 
incremental design flow on a block basis 
 
 
 
 
 
 
 
 

# Re-synthesis Block C with functional change – put into implementation #2 folder 
set_working_dir C:/Precision/Demos/team_design/block_c 
setup_design -manufacturer Xilinx -family VIRTEX-II -part 2V40cs144 -speed 6 
setup_design -addio=false 
setup_design -vendor_constraint_file=false 
setup_design -frequency=100 
setup_design -impl block_c_impl_2 
add_input_file hdl/block_c.vhdl 
compile 
synthesize 
# Assemble the top-level design using the new Block C and existing blocks A and B 
set_working_dir C:/Precision/Demos/team_design/top 
setup_design -manufacturer Xilinx -family VIRTEX-II -part 2V40cs144 -speed 6 
setup_design -addio=true 
setup_design -vendor_constraint_file=true 
setup_design -frequency=100 
setup_design -impl top_impl_1 
 
add_input_file ../block_a/block_a_impl_1/block_a.xdb 
add_input_file ../block_b/block_b_impl_1/block_b.xdb 
add_input_file ../block_c/block_c_impl_2/block_c.xdb 
add_input_file hdl/top.vhdl 
 
compile 
 
# Set dont touch properties optimized blocks 
set_attribute -name DONT_TOUCH -value "TRUE" -instance U1 
set_attribute -name DONT_TOUCH -value "TRUE" -instance U2 
set_attribute -name DONT_TOUCH -value "TRUE" -instance U3 
 
# Perform final synthesis  
synthesize 
 
# Perform place and route 
place_and_route 
Page 19 
 



 
 

Page 20 
 

Appendix E – Common Attributes used to Control Optimization 
Preserving hierarchy in a design 
Set_attribute –name HIERARCHY –value PRESERVE –instance /*  # Globally 
Set_attribute –name HIERARCHY –value PRESERVE –instance U1  # Instance level only 
Set_attribute –name HIERARCHY –value PRESERVE –instance U1/* # Instance and child level 

Specifying Fanout 
Set_attribute –name MAX_FANOUT –value 50 –net /*         # Globally 
Set_attribute –name MAX_FANOUT –value 50 –net U1/*       # On an instance 
Set_attribute –name MAX_FANOUT –value 50 –net U1/load_en     # On a net 

Controlling Retiming of Registers 
Setup_design –retiming=true | false      # Globally 
Set_attribute –name DONT_RETIME –value TRUE –instance U1/*      # On an instance 
Set_attribute –name DONT_RETIME –value TRUE –instance U1/reg_a     # On a register 

Controlling Xilinx Block RAM Inference 
Set_attribute –name BLOCK_RAM –value FALSE –instance U1/*      # On an instance 
Set_attribute –name BLOCK_RAM –value FALSE –instance U1/ram_a        # On a register 

Controlling Xilinx Block MULT Inference 
Set_attribute –name BlOCK_MULT –value FALSE –instance /*  # Globally 
Set_attribute –name BLOCK_MULT –value FALSE –instance U1  # Instance level only 
Set_attribute –name BLOCK_MULT –value FALSE –instance U1/mult_a # On a mult 

Controlling Xilinx and Altera IO Register Mapping 
Set_attribute –name OUTFF –value TRUE –port [all_outputs] # Force all out flops into IO 
Set_attribute –name INFF –value TRUE –port [all_inputs] # Force all in flops into IO 
Set_attribute –name TRIFF –value TRUE –port [all_inouts] # Force all tri en flops into IO 
set_attribute -name OUTFF -value FALSE -port int  # Forces specific port OUT of the IO 

Controlling Altera RAM Inference 
set_attribute -name ram_block_type -value AUTO | M512 | M4K | MegaRam -instance I2.mem 
set_attribute -name ram_block_type -value AUTO | M512 | M4K | MegaRam -instance I2/* 

Controlling Altera DSP Block Inference 
set_attribute -name DEDICATED_MULT -value ON -instance modgen_mult # on an instance 
set_attribute -name DEDICATED_MULT -value ON -instance I2/*  # All mults in block I2 
set_attribute -name DEDICATED_MULT -value ON -instance /*  # Entire design 

Controlling Tri-State to Mux Conversion 
Set_attribute –name PRESERVE_Z –value FALSE –net /*  # Globally 
Set_attribute –name PRESERVE_Z –value FALSE –net U1  # Instance level only 
Set_attribute –name PRESERVE_Z –value FALSE –net U1/net_a # On a net driving a tristate 

Controlling Actel Rad Hard Optimization (act1, act2, act3, 54sx) 
Setup_design –radhardmethod= cc | tmr | tmr_cc | none  # Globally 
Set_attribute –name radhardmethod –value tmr –inst U1  # Instance level only 
Set_attribute –name radhardmethod –value tmr –inst U1/reg_a   # On a register 

Preserving nets and logic 
Set_attribute –name preserve_signal –value TRUE –net U1  # Preserves net name 
Set_attribute –name preserve_driver –value TRUE –net U1/net_a # Preserve redundant logic 


	APPLICATION NOTE
	Mentor Synthesis Group
	Table of Contents
	Introduction
	Installing Precision
	Precisions User Interface
	Design Center
	Synthesis Options
	Setting Constraints
	Schematic Viewing
	Projects vs Scripts
	Setup Technology Environment
	LeonardoSpectrum
	Precision

	Reading the Design
	LeonardoSpectrum
	Precision

	Setting Timing Constraints
	LeonardoSpectrum
	Precision

	Optimizing the Design
	LeonardoSpectrum
	Precision
	
	
	
	
	Setup_design –addio=false






	Generating Reports
	LeonardoSpectrum
	Precision

	Saving Results

	Converting Timing Constraints
	Clock Constraints
	LeonardoSpectrum
	Precision

	Input Constraints
	LeonardoSpectrum
	Precision

	Output Constraints
	LeonardoSpectrum
	Precision

	Path Constraints
	LeonardoSpectrum
	Precision

	Applying Timing Constraints to a Design
	Applying constraints from a separate file
	Applying constraints from the main script file

	Controlling IO Mapping
	IO Register Mapping
	IO Driver Sizing
	IO Constraint Relaxation


	False Timing Regressions using Precision
	Vendor Constraint File Generation
	Solution

	Clock Domains
	IO Register Mapping
	Solution


	Tips and Tricks
	Appendix A – Precision Netlist Object Constraints
	Appendix B – Block Based Design Script Example
	Appendix C – Team Design Script Example
	Appendix D – Incremental Design Script Example
	Appendix E – Common Attributes used to Control Op
	Preserving hierarchy in a design
	Specifying Fanout
	Controlling Retiming of Registers
	Controlling Xilinx Block RAM Inference
	Controlling Xilinx Block MULT Inference
	Controlling Xilinx and Altera IO Register Mapping
	Controlling Altera RAM Inference
	Controlling Altera DSP Block Inference
	Controlling Tri-State to Mux Conversion
	Controlling Actel Rad Hard Optimization (act1, act2, act3, 54sx)
	Preserving nets and logic


