Transitioning to Precision RTL Synthesis

1001010010100010

ann innai

Precision RTL Synthesis Overview

What is Precision Synthesis?

- Precision is a synthesis technology platform from which 3 FPGA synthesis products have been introduced. These products include
 - Precision RTL
 - Intuitive FPGA synthesis providing excellent results and advanced design analysis capabilities
 - Precision Physical
 - Performance oriented FPGA synthesis employing placement based physical optimization techniques
 - Precision C
 - Algorithmic C and C++ synthesis which uses high-level synthesis techniques targeting DSP applications
- All products share a common user interface

The Precision User Interface

- Precision Synthesis provides a highly productive FPGA synthesis environment
- Easy to learn:
 - Intuitive interface drives the synthesis process
 - Dedicated to the task of FPGA synthesis
- Quick results:
 - FPGA optimizations have been automated to provide excellent results the first time

The Precision Design Center

Supports SDC for timing constraints

- Industry expertise is leveraged through the support of Synopsys Design Constraints (SDC) for specifying timing in a design
- Supports full SDC including get and find commands

```
# Clock Constraints
create_clock clk -period 10
# Input Constraints
set_input_delay 2 data_en -clock clk
set_input_delay 3 data_in* -clock clk
# Output Constraints
```

set_output_delay 3 data_stb -clock clk
set output delay 8 data out* -clock clk

Includes "Built-in" Design Flows

- Common FPGA design flows have been "built-in" to Precision to provide "push-button" automation
- Flows include
 - Xilinx PCI Core
 - Altera LogicLock
 - Place and Route

Includes fully interactive static timing analysis

- Incremental timing analysis allows rapid constraint debug iterations
- Nodal timing analysis technology rapidly recalculates timing information

Provides true project management

- Key Benefits
 - Restores previous optimization results for analysis
 - Easily switch between multiple revisions

Fully Integrated into FPGA Advantage®

Complete FPGA design flow including

- HDL Designer Series™
- ModelSim®
- Precision Synthesis
- Delivers FPGA
 - Project management
 - Design creation and reuse
 - Enhanced simulation and synthesis analysis
 - Linkage to FPGA vendor P&R
 - Post P&R gate level verification
 - Design documentation vehicles

This transition program is for LeonardoSpectrum Level 3 customers only. FPGA Advantage customers will be offered a transition in the near future.

Vanao

Synthesize

Differences between Precision RTL Synthesis and LeonardoSpectrum

Improved usability for new users

- Precision employs a single
 interface, called the "Design
 Center" to drive the synthesis
 process
 - Optimizations are automated
 - Many unnecessary settings were eliminated
- LeonardoSpectrum uses a tab based interface to present an extensive set of options to the user
 - Considered intimidating by new users

Precision

LeonardoSpectrum

Timing Closure achieved with fewer iterations

- Precision automatically configures optimization based on timing constraints
- LeonardoSpectrum requires optimization to be configured through user defined command settings

Precision Timing Report

SOURCE CLOCK: name: CLK period: 10.000000 Times are relative to the 1st rising edge DEST CLOCK: name: CLK period: 10.000000 Times are relative to the 1st falling edge	
NAME GATE DELAY ARRIVAL 1 pci0_dec0_modgen_counter_PCNT_reg_q(7)/C FDCPE 0.00 0 pci0_dec0_modgen_counter_PCNT_reg_q(7)/C FDCPE 0.71 0.71 pci0_dec0_modgen_counter_PCNT_reg_q(7)/C FDCPE 0.71 0.71 pci0_dec0_modgen_eq_92_ix22/IO LUT4_L 0.33 1.04 pci0_dec0_modgen_eq_92_ix22/IO LUT4_L 0.37 1.04 pci0_dec0_modgen_eq_92_ix23/S MUXCY_L 0.37 1.40 pci0_dec0_modgen_eq_92_ix27/CI MUXCY_L 0.04 1.44 pci0_dec0_modgen_eq_92_ix37/CI MUXCY_L 0.04 1.44 pci0_dec0_modgen_eq_92_ix31/CI MUXCY_L 0.04 1.44 pci0_dec0_modgen_eq_92_ix31/CI MUXCY_L 0.04 1.44 pci0_dec0_modgen_eq_92_ix31/CI MUXCY_L 0.04 1.48 pci0_dec0_modgen_eq_92_ix35/CI MUXCY 1.09 2.58 io0_ix1299/IO LUT4 0.61 3.19 io0_ix1299/IO LUT4 0.47 3.66 io0_ix1370/IO <td< td=""><td>OIR JpJppupupppppppppppppppppppppppppppppp</td></td<>	OIR JpJppupupppppppppppppppppppppppppppppp
Initial edge separation: 5.00 Source clock delay: - 1.18 Dest clock delay: + 1.18	
Edge separation: 5.00 Setup constraint: - 0.28	
Data required time: 4.72 Data arrival time: - 4 <u>1</u> 3	
Slack: 0.59	

Positive Slack indicates timing has been met

Improved Optimization Technology

• Precision includes the following new optimization technology for improving chip performance

Algorithm	Benefit		
Advanced FSM	Eliminates dead and redundant states		
Register Retiming	Balances negative slack between registers		
Expanded RAM / ROM Inference	Improves area by better utilizing dedicated RAM resources		
Intermodule boundary optimization	Improves performance in critical paths that cross modules		
Timing driven IOB mapping	Maximized IO performace while not sacrifisin max frequency		
Timing driven driver sizing	Maximizes IO chip performance		
Timing driven Tri-state optimization	Improves performance on internal tri-state busses		
Improved High-Level RTL optimizations	Improves performance through high-level logic structures		

Enhanced optimization control for advanced users

- Precision provides more extensive and more precise control over the optimization process
 - Precision allows optimization control to be performed at the netlist object, module or global level
 - LeonardoSpectrum typically limited to coarse, global optimization control

Control Feature	Leo Spec	Precision
RAM Implementation	Х	Х
ROM Implementation	Х	Х
Tri-state to Mux conversion	Х	X *
Fanout	Х	X *
Hierarchy Group	Х	Х
Hierarchy Flatten	Х	Х
Hierarchy Preserve	Х	Х
Multiplier Implementation	Х	X *
IO Register mapping	Х	X *
Preserve Signal	Х	Х
Preserve Driver	Х	Х
Optimize for Area / Delay	Х	Х
Don't Retime		X *
Register clock enable	Х	Х
Add IO Pad	Х	Х
Transform Set / Reset FF's	X	X
FSM Encoding	Х	X *
Rad Hard Method		X *

* Indicates enhanced optimization control

Detects all Critical Paths in Complex Designs

- Precision includes new timing analysis that detects all critical paths in complex designs
 - Supports multiple clocks in both synchronous and asynchronous clock domains
 - Automatically propagates clocks through gates and clock manager cells
- Precision helps insure that critical paths are not undetected due to incomplete or incorrect constraints
 - report missing constraints
 - report clock domain crossing
 - report clock source path
- LeonardoSpectrum is not capable of analyzing designs with complex clocking schemes
 - Limited support for multiple clocks
 - Does not propagate clocks through clock manager cells
 - Does not offer constraint verification reports

Allows Constraints to reflect true designer intent

- Precision fully supports "exception constraints" to allow designers to alter timing analysis to reflect true designer intent
- **"Exception constraints" include:**
 - "false_path"
 - "multicycle_path"
 - "set_max_delay"
- LeonardoSpectrum offers only limited support for multi-cycle path

Precision RTL vs. LeonardoSpectrum

Design Analysis

Analysis Feature	Leo Spec	Precision	Benefit
Interactive timing analysis	Х	Х	Provides "what-if" timing analysis
Multiple clock analysis		Х	Finds true critical paths in complex designs
Asyncronous clock support		Х	Eliminates false paths due to async clocks
multicycle path	partial	Х	Lets users eliminate multi-cycle paths
false path		Х	Lets users eliminate false paths
set_min_delay		Х	Lets users easily override derived constriants
Missing constraint report		Х	Insures that no timing errors go indectecte
Clock domain crossing report		Х	Insures that async clocks are correct
PLL / DCM clock propagation	partial	Х	Eliminates the need to set internal constraints
Internal clock detection	partial	Х	Finds and reports all clocks
Clock propagation through cells		Х	Eliminates the need to set internal constriants
Automatic constraint generation		Х	Ease of use
View critical path	Х	Х	Clearly displays logic on critical path
View multiple critical paths		Х	Understand relationships between multiple paths

Precision's capabilities match or exceed LeonardoSpectrum

Summary

- Precision RTL Synthesis addresses new requirements for today's complex FPGA designs
 - Intuitive operation improves ease of use
 - Accurate analysis helps users understand synthesis results
 - Excellent results achieves timing closure with fewer iterations

The Precision Design Center

