#### **Precision RTL Synthesis Technical Product Overview**

MI.DODIA

Graphor

### **#1 Provider of FPGA Design Solutions**

- Data Management
- Design Creation
  - Graphical, Text, IP
- Verification
  - Simulation
  - Formal
  - HW/SW Co-verification
  - Software Debug
  - Direct System Verification
- Analysis
  - Signal Integrity
  - Timing Analysis
- Synthesis
  - High Level Synthesis (HLS)
  - RTL Synthesis
  - FPGA Optimization
  - Physical Synthesis
- Flows



#### Built upon a decade of experience



20,000 synthesis licenses in use today

Slide 3

#### **The FPGA Design Challenge**

 FPGA designers are being asked to perform increasingly complex designs while maintaining a broad range of design responsibilities





#### **The Precision Synthesis Solution**

Precision solves this challenge by providing a **FPGA** synthesis environment that is intuitive to use, flexible and provides excellent results with a pushbutton flow





### Agenda

- Intuitive Use
- Excellent Results with pushbutton Flow
- Broad design methodology support
- Accurate Analysis to drive performance
- Product Roadmap





### Agenda

#### Intuitive Use

- Excellent Results with pushbutton Flow
- Broad design methodology support
- Accurate Analysis to drive performance
- Product Roadmap





## **Precision Design Center**

- A single interface drives the complete synthesis process
- Includes advanced functionality required for large designs

#### **The Synthesis Design Center**



### **Synthesis Design Bar**

 Precisions Design Bar guides users step-bystep through the synthesis process





Slide 9

#### **Project Management**

The Project Browser manages all synthesis input and output files





Slide 10

#### **Design Hierarchy Browser**

 The Design Hierarchy Browser provides an easy means to view and analyze design results



#### **Flexible Constraint Entry**

- Precisions allows design constraints to set throughout the user interface
- Even complex constraint files can be quickly created



Company Confidential, 2003 Mentor Graphics Corp.

#### **Constraints based on Industry Standards**

 Industry expertise is leveraged through the support of Synopsys
 Design Constraints (SDC) for specifying timing in a design

# Clock Constraints
create\_clock clk -period 10 -domain main

# Input Constraints
set\_input\_delay 2 data\_en -clock clk
set\_input\_delay 3 data\_in\* -clock clk

# Output Constraints
set\_output\_delay 3 data\_stb -clock clk
set\_output\_delay 8 data\_out\* -clock clk





#### **Intuitive Synthesis Scripts**

#### Users only need to learn 4 synthesis commands

The **"setup\_design"** command is used to configure details about how synthesis is performed

The **"add\_input\_file"** command adds all input files including constraint, RTL, SDF, EDIF.

The **"compile"** command will read the RTL files into memory

The **"synthesize"** command will perform optimization and generate all netlists and report files

#### **Precision Script File**

# Setup Technology Environment
setup\_design -manufacturer "Xilinx"
setup\_design -family "VIRTEX-II"
setup\_design -part "2V40cs144"
setup\_design -speed "6"

```
# Add input files
add input file {traffic.v}
```

```
# Setup timing constraints
setup_design -frequency 62.5
```

# Complete the optimization process
compile
synthesize

#### **Pushbutton Place and Route Integration**

- Perform place and route with a single mouse click
- Precision creates vendor constraint files

i el mi

| A                                             | 4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |
|-----------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Design                                        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |
| Design Analysis                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                                                                                                                |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |
| Quartus PnR                                   | 1 | 5 m A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Provelan Marco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                                                                                                                                |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |
| Run Quartus<br>Run Quartus<br>Run Quartus GUI |   | Comparison Report     Comparison Report | Chip name: [12]     C |                                                                                                          |                                                                                                                                                                |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |
|                                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fanin (3)<br>CN1_decodet_n<br>CL9_cout[3] (mul<br>L9_cout[1] (mul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Cito To</li> <li>ode(2)(2) (mult in</li> <li>tinstRipm_mult)</li> <li>tinstRipm_mult</li> </ul> | Equation<br>+ U_2_cost[2] (multionfil<br>+ CARRY[V1]_docod<br>& (L5_cost[3] #1L5_<br>- N1_docode_node(2)<br>& L0_cost[1]:<br>+ gi L9_cost[2] (multionfil)<br>+ | : (2)<br>lpm_multipm_mul*<br>isc_node(2)[2]<br>cou(1)] #1<br>[2] & L6_sou(3)<br>[pm_multipm_mul*] | Go To><br>GL3_cout(4)(<br>GL3_cout(4))<br>GL3_cout(3)(<br>GL9_cout(3)(<br>GL9_cout(3)(<br>GL9_cout(3)(<br>GL9_cout(3)(<br>GL9_cout(3)(<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(4)(<br>GL9_cout(4))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout(3))<br>GL9_cout(3)(<br>GL9_cout(3))<br>GL9_cout | FanOut [4]<br>secind3acouminst_1]pr<br>(accind3beaul[4])<br>subind5bpm_mublpm_mu<br>nubind5bpm_mublpm_m |



# araphics

#### Agenda

#### Intuitive Use

- Excellent Results with pushbutton Flow
- Broad design methodology support
- Accurate Analysis to drive performance
- Product Roadmap





### **High-Level Extraction**



 Precision obtains excellent results by identifying and extracting high level design elements.



Slide 17

#### **Architecture Signature Extraction**

- Precisions ASE algorithms automatically map RTL structures to FPGA architectures
- Designers do not need to know the details of an FPGA device



# **Leading FSM Optimization**

#### Extensive Recognition

- Precision detects FSMs from enumerated types, constants, pragmas and 'defines
- Industry Leading Analysis
  - Precision detects unreachable, equivalent and terminal states
- Advanced Optimization
  - Precision is the only synthesis tool that automatically removes unreachable states and merge equivalent states



#### **Constraint Based Optimization**

- Optimization is configured based on the design and user defined timing constraints
- Users need to know the requirements of their designs, not their synthesis tool or device architectures



#### **Boundaryless Optimization**

- Automatically moves logic across operators, registers and module boundaries when necessary to meet timing constraints.
- Precisions "Boundaryless Optimization" technology overcomes traditional barriers to high-performance implementations without user intervention



#### **Register Retiming**

#### Agenda

- Intuitive Use
- Excellent Results with pushbutton Flow
- Broad design methodology support
- Accurate Analysis to drive performance
- Product Roadmap





## Flexible Design Methodology Support

 Precision supports for both top-down and block-based design methodologies allowing designers to work in the flow they feel most comfortable





### **Automated Design Flows**

- Precision makes complex
   FPGA design flows easy to use
  - Contains built-in automation for important design flows such as the Xilinx PCI core

#### Xilinx PCI Core





## **Synthesis Options**



# **The Precision Synthesis Solution**

#### Intuitive Use

- Excellent Results with pushbutton Flow
- Broad design methodology support
- Accurate Analysis to drive performance
- Product Roadmap





#### **Design Analysis Improves Synthesis Inputs**

- Synthesis results are directly effected by input RTL and constraint files
- Design Analysis enables a designer to make improvement to these inputs





### **Precision Design Analysis**



 Precisions "Analyze" Design Bar provides quick access to a rich set of design analysis features

### **Built-in Schematic Viewing**



- Precisions integrated schematic viewer provides a clear visualization of the synthesis process.
  - High-level RTL schematics help a designer determine the impact of coding
  - Technology schematics show where and how device specific resources such as RAM and ROM are utilized.



- Filter on any selected net or instance
- **Trace forward or back from any selected net or instance**
- Incrementally grow filtered schematic with a double-click

# **Accurate Timing Analysis**



- Precision 's PreciseTime<sup>TM</sup> timing analysis finds the true critical paths in even the most complicated designs and clocking schemes.
- Based on timing engine from Mentor Graphics Velocity product
  - ASIC golden signoff timing analysis

### **Interactive Timing Path Reports**

- Precision supports fully interactive timing analysis
- Multiple reports can be generated on any specified paths without rerunning optimization

| 🛐 timing_report.rpt (Modified)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Critical path #1, (path slack = 3.27):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>A</b> |
| SOURCE CLOCK: name: clk period: 10.0000<br>Times are relative to the 1st risi<br>DEST CLOCK: name: clk period: 10.0000<br>Times are relative to the 2nd risi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00<br>ng edge<br>00<br>ng edge                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| NAME         GATE           11_10_reg_current_state(3)/C         FDC           11_10_reg_current_state(3)/Q         FDC           12/ix825/10         LUT3           12/ix825/0         LUT3           12/ix807/12         LUT3           12/ix807/12         LUT3           12/ix807/12         LUT3           12/ix807/12         LUT3           12/ix807/10         LUT1           12/modgen_dec_7/ix37/10         LUT1           12/modgen_dec_7/ix41/S         MUXCY_L           12/modgen_dec_7/ix41/S         MUXCY_L           12/modgen_dec_7/ix125/L0         MUXCY_L           12/modgen_dec_7/ix125/L0         MUXCY_L           12/modgen_gt_8/ix98/10         LUT2_L           12/modgen_gt_8/ix100/S         MUXCY_L           12/modgen_gt_8/ix100/S         MUXCY_L           12/modgen_gt_8/ix108/C1         MUXCY           12/modgen_gt_8/ix108/C1 | DELAY<br>0.71<br>0.75<br>0.61<br>0.33<br>0.40<br>0.04<br>1.24<br>0.33<br>0.40<br>0.04<br>0.04<br>0.46<br>0.61 | $\begin{array}{c} \mbox{$\lambda$RRIVAL$ DIR$}\\ 0.00 \ \mbox{$u$p$}\\ 0.71 \ \mbox{$u$p$}\\ 0.71 \ \mbox{$u$p$}\\ 1.46 \ \mbox{$u$p$}\\ 1.46 \ \mbox{$u$p$}\\ 2.07 \ \mbox{$u$p$}\\ 2.07 \ \mbox{$u$p$}\\ 2.40 \ \mbox{$d$n$}\\ 2.80 \ \mbox{$u$p$}\\ 3.36 \ \mbox{$u$p$}\\ 4.60 \ \mbox{$u$p$}\\ 4.60 \ \mbox{$u$p$}\\ 4.93 \ \mbox{$u$p$}\\ 4.93 \ \mbox{$u$p$}\\ 4.93 \ \mbox{$u$p$}\\ 5.38 \ \mbox{$u$p$}\\ 5.38 \ \mbox{$u$p$}\\ 5.38 \ \mbox{$u$p$}\\ 5.83 \ \mbox{$u$p$}\ \mbox{$u$p$}\\ 5.83 \ \mbox{$u$p$}\ $ |          |
| Edge separation:<br>Setup constraint:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.00<br>- 0.28                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Data required time:<br>Data arrival time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.72<br>- 6.45                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Slack:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.27                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ١.       |

Report\_timing -to I2.reg\_clk\_cnt(0).D -num\_paths 3 -show\_schem

### **Timing Reports from the Schematic**

- Designers can initiate timing reports from any selected netlist instance or port in the user interface
- Precision allows designers to explore the design from many angles



#### **Critical Path Viewing**

Precision allows designers to easily analyze their most critical logic by creating filtered schematics of timing paths





# **Timing Violations Report**

 Precisions Timing
 Violations report quickly identifies which specific timing constraints are not meeting timing

|   | uart_viola                                                                 | tions.rep |            |                                           |                    |           |       |   |
|---|----------------------------------------------------------------------------|-----------|------------|-------------------------------------------|--------------------|-----------|-------|---|
|   | Clock<br>Name                                                              | Clock     | Constrain  | nt Violations<br>Constrained<br>Frequency | Estimat<br>Frequen | ed<br>.cy | Slack | A |
|   |                                                                            |           | clkx16     | 500.00 MHz                                | 444.64             | MHz       | -0.25 | - |
|   | Port<br>Name                                                               | Input     | Constrain  | nt Violations<br>Input<br>Constraint      | Clock              |           | Slack |   |
|   | All input constraints were met; no violations                              |           |            |                                           |                    |           |       |   |
|   | Output Constraint Violations<br>Port Output<br>Name Constraint Clock Slack |           |            |                                           |                    |           |       |   |
|   | All c                                                                      | output (  | constraint | :s were met; )                            | no violat          | ions      |       |   |
|   |                                                                            |           |            |                                           |                    |           |       | ~ |
| • |                                                                            |           |            |                                           |                    |           |       |   |



# **Constraints Analysis**



Precision eliminates unnecessary schedule risk by performing a complete constraint analysis prior to synthesis to insure that designs are fully and accurately constrained



#### **Clock Domain Analysis**

- Key analysis feature that identifies timing paths between clocks of different domains
- Allows users to verify that clock domains are truly isolated or that inter-domains paths are designed with metastable tolerant design techniques



> Report\_timing -clock\_domain\_crossing



### Agenda

- Intuitive Use
- Excellent Results with pushbutton Flow
- Broad design methodology support
- Accurate Analysis to drive performance
- Product Roadmap





#### **The Precision Synthesis Platform**

Precision is a synthesis technology platform designed to address the entire synthesis problem





Slide 39