HiRel FPGAs

Features

- Highly Predictable Performance with 100 Percent Automatic Placement and Routing
- Device Sizes from 1200 to 20,000 gates
- Up to 6, Fast, Low-Skew Clock Networks
- Up to 202 User-Programmable I/O Pins
- More Than 500 Macro Functions
- Up to 1276 Dedicated Flip-Flops
- I/O Drive to 10 mA
- Devices Available to DSCC SMD
- CQFP and CPGA Packaging
- Nonvolatile, User Programmable
- Logic Fully Tested Prior to Shipment

ACT 3 Features

- Highest-Performance, Highest-Capacity FPGA Family
- System Performance to 60 MHz over Military Temperature
- Low-Power 0.8-micron CMOS Technology

3200DX

- 100 MHz System Logic Integration
- Highest Speed FPGA SRAM, up to 2.5 Kbits Configurable Dual-Port SRAM
- Fast Wide-Decode Circuitry

1200XL Features

- Pin for Pin Compatible with ACT 2
- System Performance to 50 MHz over Military Temperature
- Low-Power 0.6-micron CMOS Technology

ACT 2 Features

- Best-Value, High-Capacity FPGA Family
- System Performance to 40 MHz over Military Temperature
- Low-Power 1.0-micron CMOS Technology

ACT 1 Features

- Lowest-Cost FPGA Family
- System Performance to 20 MHz over Military Temperature
- Low-Power 1.0-micron CMOS Technology

Product Family Profile

Device	ACT 3			3200DX		$\begin{gathered} \text { 1200XL } \\ \text { A1280XL } \end{gathered}$
	A1425A	A1460A	A14100A	A32100DX	A32200DX	
Capacity Logic Gates SRAM Bits	$\begin{array}{r} 2,500 \\ \text { NA } \end{array}$	$\begin{array}{r} 6,000 \\ \text { NA } \end{array}$	$\begin{array}{r} 10,000 \\ \text { NA } \end{array}$	$\begin{array}{r} 10,000 \\ 2,048 \end{array}$	$\begin{array}{r} 20,000 \\ 2,560 \end{array}$	8,000
Logic Modules S-Modules C-Modules Decode	$\begin{aligned} & 310 \\ & 160 \\ & 150 \\ & \text { NA } \end{aligned}$	$\begin{array}{r} 848 \\ 432 \\ 416 \\ \text { NA } \end{array}$	$\begin{array}{r} 1377 \\ 697 \\ 680 \\ \text { NA } \end{array}$	$\begin{array}{r} 1362 \\ 700 \\ 662 \\ 20 \end{array}$	$\begin{array}{r} 2414 \\ 1230 \\ 1184 \\ 24 \end{array}$	$\begin{array}{r} \hline 1,232 \\ 624 \\ 608 \\ \text { NA } \end{array}$
Flip-Flops (maximum)	435	976	1493	738	1276	998
User I/Os (maximum)	100	168	228	152	202	140
$\begin{aligned} & \text { Packages }{ }^{1} \text { (by pin count) } \\ & \text { CPGA } \\ & \text { CQFP } \end{aligned}$	$\begin{aligned} & 133 \\ & 132 \end{aligned}$	$\begin{aligned} & 207 \\ & 196 \end{aligned}$	$\begin{aligned} & 257 \\ & 256 \end{aligned}$	84	208, 256	$\begin{aligned} & 176 \\ & 172 \end{aligned}$
Performance System Speed (maximum)	60 MHz	60 MHz	60 MHz	55 MHz	55 MHz	50 MHz

Note:

1. SeeProduct Plan on page 6 for package availability.

Product Family Profile

Device \quad Family	ACT 2		ACT 1	
	A1240A	A1280A	A1010B	A1020B
Capacity				
Logic Gates	4,000	8,000	1,200	2,000
SRAM Bits	NA	NA	NA	NA
Logic Modules	684	1232	295	547
S-Modules	348	624	-	-
C-Modules	336	608	295	547
Decode	NA	NA	NA	NA
Flip-Flops (maximum)	568	998	147	273
User I/Os (maximum)	104	140	57	69
Packages ${ }^{1}$ (by pin count)				
CPGA	132	176	84	84
CQFP	-	172	-	84
Performance				
System Speed (maximum)	40 MHz	40 MHz	20 MHz	20 MHz

Note:

1. SeeProduct Plan on page6 for package availability.

High-Reliability, Low-Risk Solution

Actel builds the most reliable field programmable gate arrays (FPGAs) in the industry, with overall antifuse reliability ratings of less than 10 Failures-In-Time (FITs), corresponding to a useful life of more than 40 years. Actel FPGAs have been production proven, with more than five million devices shipped and more than one trillion antifuses manufactured. Actel devices are fully tested prior to shipment, with an outgoing defect level of only 122 ppm . (Further reliability data is available in the "Actel Device Reliability Report.")

100 Percent Tested

Device functionality is fully tested before shipment and during device programming. Routing tracks, logic modules, and programming, debug, and test circuits are 100 percent tested before shipment. Antifuse integrity also is tested before shipment. Programming algorithms are tested when a device is programmed using Actel's Activator ${ }^{\circledR} 2$ or Activator $2 S$ programming stations.

Benefits

No Cost Risk-Once you have a Designer/Designer Advantage ${ }^{\text {m/ }}$ System, Actel's CAE software and programming package, you can produce as many chips as you like for just the cost of the device itself, with no NRE charges to eat up your development budget every time you want to try out a new design.

No Time Risk-After entering your design, placement and routing is automatic, and programming the device takes only about 5 to 15 minutes for an average design. You save time in the design entry process by using tools that are familiar to you. The Designer/Designer Advantage System software interfaces with popular CAE packages such as Cadence, Mentor Graphics, OrCAD, and Viewlogic, running on platforms such as HP, Sun, and PC. In addition, synthesis capability is provided with support of synthesis tools from Synopsys, IST, Exemplar, and DATA I/O.
No Reliability Risk-The PLICE ${ }^{\circledR}$ antifuse is a one-time programmable, nonvolatile connection. Since Actel devices are permanently programmed, no downloading from EPROM or SRAM storage is required. Inadvertent erasure is impossible, and there is no need to reload the program after power disruptions. Fabrication using a low-power CMOS process means cooler junction temperatures. Actel's non-PLD architecture delivers lower dynamic operating current. Our reliability tests show a very low failure rate of 66 FITs at $90^{\circ} \mathrm{C}$ junction temperature with no degradation in AC performance. Special stress testing at wafer test eliminates infant mortalities prior to packaging.

No Security Risk-Reverse engineering of programmed Actel devices from optical or electrical data is extremely difficult. Programmed antifuses cannot be identified from a photograph or by using a SEM. The antifuse map cannot be deciphered either electrically or by microprobing. Each
device has a silicon signature that identifies its origins, down to the wafer lot and fabrication facility.
No Testing Risk—Unprogrammed Actel parts are fully tested at the factory. This includes the logic modules, interconnect tracks, and I/Os. AC performance is ensured by special speed path tests, and programming circuitry is verified on test antifuses. During the programming process, an algorithm is run to ensure that all antifuses are correctly programmed. In addition, Actel's Actionprobe ${ }^{\circledR}$ diagnostic tools allow 100 percent observability of all internal nodes to check and debug your design.

Actel FPGA Description

The Actel families of FPGAs offer a variety of packages, speed/performance characteristics, and processing levels for use in all high-reliability and military applications. Devices are implemented in a silicon gate, two-level metal CMOS process, utilizing Actel's PLICE antifuse technology. This unique architecture offers gate array flexibility, high performance, and quick turnaround through user programming. Device utilization is typically 95 percent of available logic modules.
Actel devices also provide system designers with on-chip diagnostic probe/debug capability, allowing the user to observe 100 percent of the nodes within the design, even while the device is operating in-system. All Actel devices include on-chip clock drivers and a hard-wired distribution network.

User-definable I/Os are capable of driving at both TTL and CMOS drive levels. Available packages for the military are the Ceramic Quad Flat Pack (CQFP) and the Ceramic Pin Grid Array (CPGA). See Product Plan on page 6 for details.
All Actel FPGAs are supported by the Actel Designer Series, which offers automatic or user-definable pin assignment, validation of electrical and design rules, automatic placement and routing, timing analysis, user programming, and debug/diagnostic probe capabilities. The Designer Series fully supports schematic capture and backannotated simulation through design kits for Cadence, Mentor Graphics, OrCAD, and Viewlogic. Synthesis is supported with kits for use with synthesis tools from Synopsys, IST, Exemplar, and DATA I/O.
Also available is the ACTmap ${ }^{\text {m" }}$ VHDL optimization and synthesis tool that provides logic synthesis and optimization from PAL language or VHDL description inputs. An FPGA macro generator (ACTgen Macro Builder) is provided, allowing the user easily to create higher-level functions such as counters and adders. Finally, ChipEdit is a graphical/visual design tool that allows the user to modify the automatic place and route results.

ACT 3 Description

The ACT 3 family is the third-generation Actel FPGA family. This family offers the highest-performance and highest-capacity devices, ranging from 2,500 to 10,000 gates, with system performance to 60 MHz over the military temperature range. The devices have four clock distribution networks, including dedicated array and I/O clocks. In addition, the ACT 3 family offers the highest I/O-to-gate ratio available. ACT 3 devices are manufactured using 0.8 micron CMOS technology.

1200XL/3200DX Description

3200DX and 1200XL FPGAs were designed to integrate system logic which is typically implemented in multiple CPLDs, PALs and FPGAs. These devices provide the features and performance required for today's complex, high-speed digital logic systems. The 3200DX family offers the industry's fastest dual-port SRAM for implementing fast FIFOs, LIFOs and temporary data storage.

ACT 2 Description

The ACT 2 family is the second-generation Actel FPGA family. This family offers the best-value, high-capacity devices, ranging from 4,000 to 8,000 gates, with system performance to 40 MHz over the military temperature range. The devices have two routed array clock distribution networks. ACT 2 devices are manufactured using 1.0 micron CMOS technology.

ACT 1 Description

The ACT 1 family is the first Actel FPGA family and the first antifuse-based FPGA. This family offers the lowest-cost logic integration, with devices ranging from 1,200 to 2,000 gates, with system performance to 20 MHz over the military temperature range. The devices have one routed array clock distribution network. ACT 1 devices are manufactured using 1.0 micron CMOS technology.

Military Device Ordering Information

A14100

DESC SMD/Actel Part Number Cross Reference

Actel Part Number (Gold Leads)	DSCC SMD (Gold Leads)	DSCC SMD (Solder Dipped)
A1010B-PG84B	5962-9096403MXC	5962-9096403MXA
A1010B-1PG84B	5962-9096404MXC	5962-9096404MXA
A1020B-PG84B	5962-9096503MUC	5962-9096503MUA
A1020B-1PG84B	5962-9096504MUC	5962-9096504MUA
A1020B-CQ84B	5962-9096503MTC	5962-9096503MTA
A1020B-1CQ84B	5962-9096504MTC	5962-9096504MTA
A1240A-PG132B	5962-9322101MXC	5962-9322101MXA
A1240A-1PG132B	5962-9322102MXC	5962-9322102MXA
A1280A-PG176B	5962-9215601MXC	5962-9215601MXA
A1280A-1PG176B	5962-9215602MXC	5962-9215602MXA
A1280A-CQ172B	5962-9215601MYC	5962-9215601MYA
A1280A-1CQ172B	5962-9215602MYC	5962-9215602MYA
A1425A-PG133B	5962-9552001MXC	5962-9552001MXA
A1425A-1PG133B	5962-9552002MXC	5962-9552002MXA
A1425A-CQ132B	5962-9552001MYC	5962-9552001MYA
A1425A-1CQ132B	5962-9552002MYC	5962-9552002MYA
A1460A-PG207B	5962-9550801MXC	5962-9550801MXA
A1460A-1PG207B	5962-9550802MXC	5962-9550802MXA
A1460A-CQ196B	5962-9550801MYC	5962-9550801MYA
A1460A-1CQ196B	5962-9550802MYC	5962-9550802MYA
A14100A-PG257B	5962-9552101MXC	5962-9552101MXA
A14100A-1PG257B	5962-9552102MXC	5962-9552102MXA
A14100A-CQ256B	5962-9552101MYC	5962-9552101MYA
A14100A-1CQ256B	5962-9552102MYC	5962-9552102MYA
A32100DX-CQ84B	TBD	TBD
A32100DX-1CQ84B	TBD	TBD
A32200DX-CQ208B	TBD	TBD
A32200DX-1CQ208B	TBD	TBD

Product Plan

3200DX Family	Speed Grade		Application			
	Std	-1	C	M	B	E
A32100DX Device						
84-pin Ceramic Quad Flatpack (CQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
A32200DX Device						
208-pin Ceramic Quad Flatpack (CQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
256-pin Ceramic Quad Flatpack (CQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
ACT 3 Family						
A1425A Device						
132-pin Ceramic Quad Flatpack (CQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
133-pin Ceramic Pin Grid Array (CPGA)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
A1460A Device						
196-pin Ceramic Quad Flatpack (CQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
207-pin Ceramic Pin Grid Array (CPGA)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
A14100A Device						
256-pin Ceramic Quad Flatpack (CQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
257-pin Ceramic Pin Grid Array (CPGA)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
1200XL Family						
A1280XL Device						
172-pin Ceramic Quad Flatpack (CQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
176-pin Ceramic Pin Grid Array (CPGA)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
ACT 2 Family						
A1240A Device						
132-pin Ceramic Pin Grid Array (CPGA)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
A1280A Device						
172-pin Ceramic Quad Flatpack (CQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
176-pin Ceramic Pin Grid Array (CPGA)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ACT 1 Family						
A1010B Device						
84-pin Ceramic Pin Grid Array (CPGA)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
A1020B Device						
84-pin Ceramic Quad Flatpack (CQFP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
84-pin Ceramic Pin Grid Array (CPGA)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Applications: $\begin{aligned} & C=\text { Commercial } \\ & M=\text { Military } \\ & B=\text { MIL-STD-883 } \\ & E=\text { Extended Flow } \end{aligned}$ Availability:	$\begin{aligned} & =A \\ & =F \\ & =1 \end{aligned}$		ade:	rox.	ter	anda

3200DX Device Resources

		User I/Os			
FPGA Device Type	Logic Modules	Gate Array Equivalent Gates		CQFP	
A32100DX	1362	10,000	84-pin	208-pin	256-pin
A32200DX	2414	20,000	60	-	-

ACT 3 Device Resources

FPGA Device Type	Logic Modules	Gate Array Equivalent Gates	User I/Os					
			132-pin	CQFP 196-pin	256-pin	133-pin	CPGA 207-pin	257-pin
A1425A	310	2500	100	-	-	100	-	-
A1460A	848	6000	-	168	-	-	168	-
A14100A	1377	10,000	-	-	228	-	-	228

1200XL Device Resources

		User I/Os		
FPGA Device Type	Logic Modules	Gate Array Equivalent Gates	CQFP	CPGA
A1280XL	1232	8000	172-pin	176-pin

ACT 2 Device Resources

FPGA Device Type	Logic Modules	Gate Array Equivalent Gates	User I/Os		
			CQFP 172-pin	CPGA	
				132-pin	176-pin
A1240A	684	4000	-	104	-
A1280A	1232	8000	140	-	140

ACT 1 Device Resources

		User I/Os		
FPGA Device Type	Logic Modules	Gate Array Equivalent Gates	CQFP	CPGA
A1010B	295	1200	84-pin	84-pin
A1020B	547	2000	-	57

Pin Description

CLK Clock (Input)

ACT 1 only. TTL Clock input for global clock distribution network. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

CLKA

Clock A (Input)

ACT 3, 1200XL, and ACT 2 only. TTL Clock input for global clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

CLKB Clock B (Input)

ACT 3, 1200XL, and ACT 2 only. TTL Clock input for global clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

DCLK Diagnostic Clock (Input)

TTL Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

GND
 Ground

LOW supply voltage.

HCLK Dedicated (Hard-wired) Array Clock (Input)

ACT 3 only. TTL Clock input for sequential modules. This input is directly wired to each S-module and offers clock speeds independent of the number of S-modules being driven. This pin can also be used as an I/O.

I/O Input/Output (Input, Output)

I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/O pins are automatically driven LOW.

IOCLK Dedicated (Hard-wired) I/O
 Clock (Input)

ACT 3 only. TTL Clock input for I/O modules. This input is directly wired to each I/O module and offers clock speeds independent of the number of I / O modules being driven. This pin can also be used as an I/O.

IOPCL Dedicated (Hard-wired) I/O
 Preset/Clear (Input)

ACT 3 only. TTL input for I/O preset or clear. This global input is directly wired to the preset and clear inputs of all I/O registers. This pin functions as an I/O when no I/O preset or clear macros are used.

MODE Mode (Input)

The MODE pin controls the use of diagnostic pins (DCLK, PRA, PRB, SDI). When the MODE pin is HIGH, the special functions are active. When the MODE pin is LOW, the pins function as I/Os. When the MODE pin is LOW, the pins function as I/Os. To provide Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the MODE pin can be pulled high when required.

NC No Connection

This pin is not connected to circuitry within the device.

PRA/I/O Probe A (Output)

The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

PRB/I/O Probe B (Output)

The Probe B pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

SDI Serial Data Input (Input)

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

$\mathbf{V}_{\text {cc }} \quad 5 \mathrm{~V}$ Supply Voltage
 HIGH supply voltage.

QCLKA/B,C,D Quadrant Clock (Input/Output)

These four pins are the quadrant clock inputs. When not used as a register control signal, these pins can function as general purpose l/O.

TCK Test Clock

Clock signal to shift the JTAG data into the device. This pin functions as an I/O when the JTAG fuse is not programmed.

TDI
 Test Data In

Serial data input for JTAG instructions and data. Data is shifted in on the rising edge of TCLK. This pin functions as an I/O when the JTAG fuse is not programmed.

TDO

Test Data Out
Serial data output for JTAG instructions and test data. This pin functions as an I/O when the JTAG fuse is not programmed.

TMS

Test Mode Select
Serial data input for JTAG test mode. Data is shifted in on the rising edge of TCLK. This pin functions as an I/O when the JTAG fuse is not programmed.

Actel MIL-STD-883 Product Flow

Step	Screen	833 Method	$\begin{aligned} & \text { 833-Class B } \\ & \text { Requirement } \end{aligned}$
1.0	Internal Visual	2010, Test Condition B	100\%
2.0	Temperature Cycling	1010, Test Condition C	100\%
3.0	Constant Acceleration	2001, Test Condition E (min), Y1, Orientation Only	100\%
4.0	Seal a.Fine b. Gross	1014	$\begin{aligned} & 100 \% \\ & 100 \% \end{aligned}$
5.0	Visual Inspection	2009	100\%
6.0	Pre-burn-in Electrical Parameters	In accordance with Actel applicable device specification	100\%
7.0	Burn-in Test	1015 Condition D 160 hours @ $125^{\circ} \mathrm{C}$ Min.	100\%
8.0	Interim (Post-burn-in) Electrical Parameters	In accordance with Actel applicable device specification	100\%
9.0	Percent Defective Allowable	5\%	All Lots
10.0	Final Electrical Test a. Static Tests (1) $25^{\circ} \mathrm{C}$ (Subgroup 1, Table I, 5005) (2) $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ (Subgroups 2, 3, Table I, 5005) b. Dynamic and Functional Tests (1) $25^{\circ} \mathrm{C}$ (Subgroup 7, Table I, 5005) (2) $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ (Subgroups 8A and 8B, Table I, 5005) c. Switching Tests at $25^{\circ} \mathrm{C}$ (Subgroup 9, Table I, 5005)	In accordance with Actel applicable device specification	100\% 100\% 100\%
11.0	Qualification or Quality Confirmation Inspection Test Sample Selection (Group A and Group B)	5005	All Lots
12.0	External Visual	2009	100\%

Actel Extended Flow ${ }^{1,2}$

Screen	Method	Requirement
1. Wafer Lot Acceptance ${ }^{3}$	5007 with step coverage waiver	All Lots
2. Destructive In-Line Bond Pull ${ }^{4}$	2011, condition D	Sample
3. Internal Visual	2010, condition A	100\%
4. Serialization		100\%
5. Temperature Cycling	1010, condition C	100\%
6. Constant Acceleration	2001, condition E (min), Y_{1} orientation only	100\%
7. Visual Inspection	2009	100\%
8. Particle Impact Noise Detection	2020, condition A	100\%
9. Radiographic	2012	100\%
10. Pre-burn-in Test	In accordance with Actel applicable device specification	100\%
11. Burn-in Test	1015, condition D, 240 hours @ $125^{\circ} \mathrm{C}$ minimum	100\%
12. Interim (Post-burn-in) Electrical Parameters	In accordance with Actel applicable device specification	100\%
13. Reverse Bias Burn-in	1015, condition C, 72 hours @ $150^{\circ} \mathrm{C}$ minimum	100\%
14. Interim (Post-burn-in) Electrical Parameters	In accordance with Actel applicable device specification	100\%
15. Percent Defective Allowable (PDA) Calculation	5\%, 3\% functional parameters @ $25^{\circ} \mathrm{C}$	All Lots
16. Final Electrical Test a. Static Tests (1) $25^{\circ} \mathrm{C}$ (Subgroup 1, Table1) (2) $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ (Subgroups 2, 3, Table 1) b. Dynamic and Functional Tests (1) $25^{\circ} \mathrm{C}$ (Subgroup 7, Table 15) (2) $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ (Subgroups 5 and 6, 8a and b, Table 1) c. Switching Tests at $25^{\circ} \mathrm{C}$ (Subgroup 9, Table I, 5005)	In accordance with Actel applicable device specification 5005 5005 5005 5005 5005	$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \end{aligned}$
17. Seal a.Fine b.Gross	1014	100\%
18. Qualification or Quality Conformance Inspection Test Sample Selection	5005	Group A \& Group B
19 External Visual	2009	100\%

Notes:

1. Actel offers the Extended Flow in order to satisfy those customers that requireadditional screening beyond the requirements of MIL-STD-883, Class B. Actel is compliant to the requirements of MIL-STD-883, Paragraph 1.2.1, and MIL-I-38535, Appendix A. Actel is offering this extended flow incorporating the majority of the screening procedures as outlined in Method 5004 of MIL-STD-883 Class S. The exceptions to Method 5004 are shown in notes 2 to 4 below.
2. Method 5004 requires a 100 percent Radiation latch-up testing to Method 1020. Actel will not be performing any radiation testing, and this requirement must be waived in its entirety.
3. Wafer lot acceptance is performed to Method 5007; however thestep coverage requir rement as specified in Method 2018 must be wai ved.
4. Method 5004 requires a 100 percent, nondestructive bond pull to Method 2023. Actel substitutes a destructive bond pull to Method 2011, condition D on a samplebasis only.

Absolute Maximum Ratings ${ }^{1}$

Free air temperature range

Symbol	Parameter	Limits	Units
V_{CC}	DC Supply Voltage 2,3,4	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage $^{\text {I/O Source Sink }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IO}	± 20	mA	
$\mathrm{C}_{\mathrm{STG}}$	Storage 5		

Notes:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect devicereliability. Deviceshould not beoperated outsidethe recommended operating conditions.
2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than $\mathrm{V}_{C C}+0.5 \mathrm{~V}$ or less than GND -0.5 V , the internal protection diodewill be forward biased and can draw excessivecurrent.

Recommended Operating Conditions

Parameter	Commercial	Military	Units
Temperature Range 1	0 to +70	-55 to +125	${ }^{\circ} \mathrm{C}$
Power Supply Tolerance	± 5	± 10	$\% \mathrm{~V}_{\mathrm{CC}}$

Note:

1. Ambient temperature $\left(T_{A}\right)$ is used for commercial and industrial; case temperature $\left(T_{C}\right)$ is used for military.

Package Thermal Characteristics

The device junction to case thermal characteristic is $\theta j \mathrm{j}$, and the junction to ambient air characteristic is θj a. The thermal characteristics for $\theta j a$ are shown with two different air flow rates.

Maximum junction temperature is $150^{\circ} \mathrm{C}$.
A sample calculation of the absolute maximum power dissipation allowed for a CPGA 176-pin package at military temperature is as follows:
$\frac{\text { Max. junction temp. }\left({ }^{\circ} \mathrm{C}\right)-\text { Max. military temp. }}{\theta \mathrm{ja}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)}=\frac{150^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}}{23^{\circ} \mathrm{C} / \mathrm{W}}=1.1 \mathrm{~W}$

Package Type	Pin Count	$\theta \mathbf{j c}$	θ ja Still	$\theta \mathbf{j a}$ $\mathbf{3 0 0} \mathbf{f t / m i n}$	Units
Ceramic Pin Grid Array	84	20	33	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	132	20	26	16	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	133	20	37	24	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	176	20	23	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	207	20	22	14	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	257	20	21	13	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic Quad Flatpack	84	13	40	25	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	132	13	55	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	172	13	25	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	196	13	36	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
	256	13	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Electrical Specifications

Notes:

1. Actel devi ces can drive and receiveeither CMOS or TTL signal levels. No assignment of $I / O s$ as $T L$ or CMOS is required.
2. Tested one output at a time, $\mathrm{V}_{\mathrm{CC}}=\mathrm{min}$.
3. Not tested; for information only.
4. $V_{\text {OUT }}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

General Power Equation

$P=\left[I_{C C}\right.$ standby $+I_{C C}$ active $] * V_{C C}+I_{O L} * V_{O L} * N+$ $\mathrm{I}_{\mathrm{OH}} *\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}\right) * \mathrm{M}$
Where:
$I_{C C}$ standby is the current flowing when no inputs or outputs are changing.
$I_{C C}$ active is the current flowing due to CMOS switching.
$I_{O L}, I_{\text {OH }}$ are TTL sink/source currents.
$V_{O L}, V_{O H}$ are TTL level output voltages.
N equals the number of outputs driving $T T L$ loads to $V_{O L}$.
M equals the number of outputs driving TTL loads to V_{OH}.
An accurate determination of N and M is problematical because their values depend on the family type, on design details, and on the system $\mathrm{I} / 0$. The power can be divided into two components- static and active.

Static Power Component

Actel FPGAs have small static power components that result in power dissipation lower than that of PALs or PLDs. By integrating multiple PALs or PLDs into one FPGA, an even greater reduction in board-level power dissipation can be achieved.

The power due to standby current is typically a small component of the overall power. Standby power is calculated below for commercial, worst-case conditions.

Family	$I_{\text {CC }}$	$V_{\text {CC }}$	Power
ACT 1	3 mA	5.25 V	15.8 mW
1200XL/3200DX	2 mA	5.25 V	10.5 mW
ACT 2	2 mA	5.25 V	10.5 mW
ACT 3	2 mA	5.25 V	10.5 mW

The static power dissipated by TTL loads depends on the number of outputs driving high or low and the DC load current. Again, this value is typically small. For instance, a 32 -bit bus sinking 4 mA at 0.33 V will generate 42 mW with all outputs driving low, and 140 mW with all outputs driving high.

Active Power Component

Power dissipation in CMOS devices is usually dominated by the active (dynamic) power dissipation. This component is frequency dependent, a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitance due to PC board traces and load device inputs. An additional component of the active power dissipation is the totem-pole current in CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that
can be combined with frequency and voltage to represent active power dissipation.

Equivalent Capacitance

The power dissipated by a CMOS circuit can be expressed by the Equation 1

$$
\begin{equation*}
\text { Power (uW) }=\mathrm{C}_{\mathrm{EQ}} * \mathrm{~V}_{\mathrm{CC}}{ }^{2} * \mathrm{~F} \tag{1}
\end{equation*}
$$

where:
C_{EQ} is the equival ent capacitance expressed in pF .
V_{CC} is the power supply in volts.
F is the switching frequency in MHz .
Equivalent capacitance is calculated by measuring I ICactive at a specified frequency and voltage for each circuit component of interest. Measurements are made over a range of frequencies at a fixed value of V_{C}. Equivalent capacitance is frequency independent so that the results can be used over a wide range of operating conditions. Equivalent capacitance values are shown below.

CEQ Values for Actel FPGAs

1200XL

ACT 1	3200DX	ACT 2	ACT 3
3.7	5.2	5.8	6.7
22.1	11.6	12.9	7.2
31.2	23.8	23.8	10.4
4.6	3.5	3.9	1.6
n/a	n/a	n/a	0.7
n/a	n/a	n/a	0.9

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. Equation 2 shows a piecewise linear summation over all components, it applies to all ACT 1, 1200XL, ACT 2, and ACT 3 devices. Since the ACT 1 family has only one routed array clock, the terms labeled routed_Clk2, dedicated_CIk, and IO_CIk do not apply. Similarly, the ACT 2 family has two routed array clocks, and the dedicated_Clk and IO_Clk terms do not apply. For ACT 3 devices, all terms will apply.

$$
\begin{align*}
& \text { Power }=\mathrm{V}_{\mathrm{CC}}{ }^{2} *\left[\left(\mathrm{~m} * \mathrm{C}_{\mathrm{EQM}} * f_{m}\right)_{\text {modules }}+\left(\mathrm{n} * \mathrm{C}_{\mathrm{EQI}} * f_{\mathrm{n}}\right)_{\text {inputs }}+\right. \\
& \left(p *\left(C_{E Q O}+C_{L}\right) * f_{p}\right)_{\text {outputs }}+0.5 *\left(q_{1} * C_{E Q C R} * f_{q 1}\right)_{\text {routed_CIK1 }} \\
& +\left(\mathrm{r}_{1} * \mathrm{f}_{\mathrm{q} 1}\right)_{\text {routed_Clk } 1}+0.5 *\left(\mathrm{q}_{2} * \mathrm{C}_{\mathrm{EQCR}} * \mathrm{f}_{\mathrm{q} 2}\right)_{\text {routed_Clk2 }}{ }^{-} \\
& \left(r_{2} * f_{\mathrm{q} 2}\right)_{\text {routed_Clk } 2}+0.5 *\left(\mathrm{~s}_{1} * \mathrm{C}_{\text {EQCD }} * \mathrm{f}_{\mathrm{s} 1}\right)_{\text {dedicated_Clk }}+ \\
& \left.\left(\mathrm{s}_{2} * \mathrm{C}_{\mathrm{EQCI}} * \mathrm{f}_{\mathrm{S} 2}^{-}\right)_{\mathrm{OO}_{-} \mathrm{CIK}}\right] \tag{2}
\end{align*}
$$

where:
$\mathrm{m} \quad=$ Number of logic modules switching at fm
$\mathrm{n} \quad=$ Number of input buffers switching at fn
$\mathrm{p} \quad=$ Number of output buffers switching at fp
$q_{1}=$ Number of clock loads on the first routed array clock (all families)
$q_{2}=$ Number of clock loads on the second routed array clock (ACT 2, 1200XL, ACT 3 only)
$r_{1}=$ Fixed capacitance due to first routed array clock (all families)
$r_{2}=$ Fixed capacitance due to second routed array clock (ACT 2, 1200XL, ACT 3 only)
$\mathrm{s}_{1} \quad=$ Fixed number of clock loads on the dedicated array clock (ACT 3 only)
$s_{2}=$ Fixed number of clock loads on the dedicated I/O clock (ACT 3 only)
$\mathrm{C}_{\mathrm{EQM}}=$ Equival ent capacitance of logic modules in pF
$\mathrm{C}_{\mathrm{EQI}}=$ Equivalent capacitance of input buffers in pF
$\mathrm{C}_{\mathrm{EQO}}=$ Equivalent capacitance of output buffers in pF
$\mathrm{C}_{\mathrm{EQCR}}=$ Equivalent capacitance of routed array clock in pF
$\mathrm{C}_{\mathrm{EQCD}}=$ Equival ent capacitance of dedicated array clock in pF
$\mathrm{C}_{\mathrm{EQCI}}$
$C_{L} \quad=$ Output lead capacitance in $p F$
$\mathrm{f}_{\mathrm{m}} \quad=$ Average logic module switching rate in MHz
$\mathrm{f}_{\mathrm{n}}=$ Average input buffer switching rate in MHz
$\mathrm{f}_{\mathrm{p}} \quad=$ Average output buffer switching rate in MHz
$\mathrm{f}_{\mathrm{q} 1}=$ Average first routed array clock rate in MHz (all families)
$\mathrm{f}_{\mathrm{q} 2}=$ Average second routed array clock rate in MHz (ACT 2, 1200XL, ACT 3 only)
$\mathrm{f}_{\mathrm{s} 1}=$ Average dedicated array clock rate in MHz (ACT 3 only)
$\mathrm{f}_{\mathrm{s} 2}=$ Average dedicated I / O clock rate in MHz (ACT 3 only)

Fixed Capacitance Values for Actel FPGAs (pF)

Device Type	r_{1} routed_Clk1	r_{2} routed_Clk2
A1010B	41	n / a
A1020B	69	n / a
A1240A	134	134
A1280A	168	168
A1280XL	168	168
A1425A	75	75
A1460A	165	165
A14100A	195	195
A32100DX	178	178
A32200DX	230	230

Fixed Clock Loads ($\mathrm{s}_{1} / \mathrm{s}_{\mathbf{2}}-\mathrm{ACT} 3$ Only)

	s_{1} Clock Loads on Dedicated	s_{2} Clock Loads on Dedicated
Device Type	Array Clock	I/O Clock
A1425A	160	100
A1460A	432	168
A14100A	697	228

Determining Average Switching Frequency
To determine the switching frequency for a design, you must have a detailed understanding of the data values input to the circuit. The guidelines in the table below are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation.

Type	ACT 1	ACT 2/1200XL/3200DX	ACT 3
Logic modules (m)	90\% of modules	80\% of modules	80\% of modules
Input switching (n)	\# inputs/4	\# inputs/4	\# inputs/4
Outputs switching (p)	\#outputs/4	\#outputs/4	\#outputs/4
First routed array clock loads (q_{1})	40\% of modules	40% of sequential modules	40% of sequential modules
Second routed array clock loads (q_{2})	n/a	40% of sequential modules	40% of sequential modules
Load capacitance (C_{L})	35 pF	35 pF	35 pF
Average logic module switching rate (f_{m})	F/10	F/10	F/10
Average input switching rate (f_{n})	F/5	F/5	F/5
Average output switching rate (f_{p})	F/10	F/10	F/10
Average first routed array clock rate ($\mathrm{f}_{\mathrm{q} 1}$)	F	F	F/2
Average second routed array clock rate ($\mathrm{f}_{\mathrm{q} 2}$)	n/a	F/2	F/2
Average dedicated array clock rate ($\mathrm{f}_{\mathrm{s} 1}$)	n/a	n/a	F
Average dedicated I/O clock rate ($\mathrm{f}_{\mathrm{s} 2}$)	n/a	n/a	F

1200XL Timing Model*

*Values shown for A1280XL-1 at worst-casemilitary conditions.
\dagger Input ModulePredicted Routing Delay

3200DX Timing Model (Logic Functions using Array Clocks)*

*Values shown for A32100DX-1 at worst-case military conditions.

3200DX Timing Model (Logic Functions using Quadrant Clocks)*

* Values shown for A32100DX-1 at worst-casemilitary conditions.
** Load dependent.

3200DX Timing Model (SRAM Functions)*

Input Delays

*Values shown for A32100DX-1 at worst-case military conditions.

Parameter Measurement

Output Buffer Delays

AC Test Load

Load 1
(Used to measure propagation delay)

Load 2
(Used to measure rising/falling edges)

Sequential Timing Characteristics

Flip-Flops and Latches (ACT 1, ACT 2, and 1200XL/3200DX)

Note:

1. D represents all data functions involving A, B, and S for multiplexed flip-flops.

Sequential Timing Characteristics (continued)

Flip-Flops and Latches (ACT 3)

Note:

1. D represents all data functions involving A, B, and S for multiplexed flip-flops.

Sequential Timing Characteristics (continued)

Input Buffer Latches (ACT 2 and 1200XL/3200DX)

Output Buffer Latches (ACT 2 and 1200XL/3200DX)

Decode Module Timing

SRAM Timing Characteristics

Write Port		Read Port
WRAD [5:0]	RAM Array 32×8 or 64×4 (256 bits)	RDAD [5:0]
BLKEN		LEW
WEN		EN
		REN
WCLK		RCLK
WD [7:0]		RD [7:0]

\qquad

Dual-Port SRAM Timing Waveforms

3200DX SRAM Write Operation

Note: Identical timing for falling-edgeclock.

3200DX SRAM Synchronous Read Operation

Note: Identical timing for falling-edge clock.

3200DX SRAM Asynchronous Read Operation-Type 1

(Read Address Controlled)

3200DX SRAM Asynchronous Read Operation-Type 2
(Write Address Controlled)

\qquad

ACT 1 Timing Characteristics

(Worst-Case Military Conditions)

Logic Module Propagation Delays		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {PD1 }}$	Single Module		4.7		5.5	ns
$\mathrm{t}_{\mathrm{PD} 2}$	Dual Module Macros		10.8		12.7	ns
t_{CO}	Sequential Clk to Q		4.7		5.5	ns
t_{GO}	Latch G to Q		4.7		5.5	ns
t_{RS}	Flip-Flop (Latch) Reset to Q		4.7		5.5	ns
Predicted Routing Delays ${ }^{1}$						
$\mathrm{t}_{\mathrm{RD} 1}$	FO=1 Routing Delay		1.5		1.7	ns
$\mathrm{t}_{\mathrm{RD} 2}$	FO=2 Routing Delay		2.3		2.7	ns
$\mathrm{t}_{\mathrm{RD} 3}$	FO=3 Routing Delay		3.4		4.0	ns
$\mathrm{t}_{\mathrm{RD} 4}$	FO=4 Routing Delay		5.0		5.9	ns
tri8	FO=8 Routing Delay		10.6		12.5	ns
Sequential Timing Characteristics ${ }^{2}$						
tsud	Flip-Flop (Latch) Data Input Setup	8.8		10.4		ns
$t_{\text {HD }}$	Flip-Flop (Latch) Data Input Hold	0.0		0.0		ns
$\mathrm{t}_{\text {SUENA }}$	Flip-Flop (Latch) Enable Setup	8.8		10.4		ns
$t_{\text {HENA }}$	Flip-Flop (Latch) Enable Hold	0.0		0.0		ns
twCLKA	Flip-Flop (Latch) Clock Active Pulse Width	10.9		12.9		ns
$t_{\text {WASYN }}$	Flip-Flop (Latch) Asynchronous Pulse Width	10.9		12.9		ns
t_{A}	Flip-Flop Clock Input Period	23.2		27.3		ns
$\mathrm{f}_{\text {MAX }}$	Flip-Flop (Latch) Clock Frequency		44		37	MHz

Notes:

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-routetiming analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shi pment.
2. Setup times assumefanout of 3 . Further derating infor mation can be obtained from the DirectTimeAnalyzer utility.

ACT 1 Timing Characteristics (continued)

(Worst-Case Military Conditions)

Input Module Propagation Delays			-1 Speed		Std Speed		
Parameter	Description		Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {INYH }}$	Pad to Y High			4.9		5.8	ns
tinyt	Pad to Y Low			4.9		5.8	ns
Input Module Predicted Routing Delays ${ }^{1}$							
tIRD1	FO=1 Routing Delay			1.5		1.7	ns
$\mathrm{t}_{\text {IRD2 }}$	FO=2 Routing Delay			2.3		2.7	ns
tiRD3	FO=3 Routing Delay			3.4		4.0	ns
$\mathrm{t}_{\text {IRD4 }}$	$\mathrm{FO}=4$ Routing Delay			5.0		5.9	ns
tIRD8	FO=8 Routing Delay			10.6		12.5	ns
Global Clock Network							
$\mathrm{t}_{\text {CKH }}$	Input Low to High	$\begin{aligned} & \hline \mathrm{FO}=16 \\ & \mathrm{FO}=128 \end{aligned}$		$\begin{aligned} & \hline 7.8 \\ & 8.9 \end{aligned}$		$\begin{gathered} 9.2 \\ 10.5 \end{gathered}$	ns
$\mathrm{t}_{\text {CKL }}$	Input High to Low	$\begin{aligned} & \mathrm{FO}=16 \\ & \mathrm{FO}=128 \end{aligned}$		$\begin{aligned} & 10.3 \\ & 11.2 \end{aligned}$		$\begin{aligned} & 12.1 \\ & 13.2 \end{aligned}$	ns
$t_{\text {PWH }}$	Minimum Pulse Width High	$\begin{aligned} & \mathrm{FO}=16 \\ & \mathrm{FO}=128 \end{aligned}$	$\begin{aligned} & 10.4 \\ & 10.9 \end{aligned}$		$\begin{aligned} & 12.2 \\ & 12.9 \end{aligned}$		ns
$t_{\text {PWL }}$	Minimum Pulse Width Low	$\begin{aligned} & \mathrm{FO}=16 \\ & \mathrm{FO}=128 \end{aligned}$	$\begin{aligned} & 10.4 \\ & 10.9 \end{aligned}$		$\begin{aligned} & 12.2 \\ & 12.9 \end{aligned}$		ns
tcKsw	Maximum Skew	$\begin{aligned} & \mathrm{FO}=16 \\ & \mathrm{FO}=128 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \end{aligned}$		$\begin{aligned} & 2.2 \\ & 3.4 \end{aligned}$	ns
t_{p}	Minimum Period	$\begin{aligned} & \mathrm{FO}=16 \\ & \mathrm{FO}=128 \end{aligned}$	$\begin{aligned} & 21.7 \\ & 23.2 \end{aligned}$		$\begin{aligned} & 25.6 \\ & 27.3 \end{aligned}$		ns
$\mathrm{f}_{\mathrm{MAX}}$	Maximum Frequency	$\begin{aligned} & \mathrm{FO}=16 \\ & \mathrm{FO}=128 \end{aligned}$		$\begin{aligned} & 46 \\ & 44 \end{aligned}$		$\begin{aligned} & 40 \\ & 37 \end{aligned}$	MHz

Note:

1. These parameters should be used for estimating device performance. Routing delays are for typical designs across worst-case operating conditions. Post-routetiming analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shi pment.

ACT 1 Timing Characteristics (continued)

(Worst-Case Military Conditions)

Output Module Timing		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
TTL Output Module Timing ${ }^{1}$						
$t_{\text {DLH }}$ $t_{\text {DHL }}$ $t_{\text {ENZH }}$ $t_{\text {ENZL }}$ tenhz tenlz $\mathrm{d}_{\text {TLH }}$ $\mathrm{d}_{\mathrm{THL}}$	Data to Pad High Data to Pad Low Enable Pad Z to High Enable Pad Z to Low Enable Pad High to Z Enable Pad Low to Z Delta Low to High Delta High to Low		12.1 13.8 12.0 14.6 16.0 14.5 0.09 0.12		$\begin{aligned} & \hline 14.2 \\ & 16.3 \\ & 14.1 \\ & 17.1 \\ & 18.8 \\ & 17.0 \\ & 0.11 \\ & 0.15 \end{aligned}$	ns ns ns ns ns ns $\mathrm{ns} / \mathrm{pF}$ ns/pF
CMOS Output Module Timing ${ }^{1}$						
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{DLH}} \\ & \mathrm{t}_{\mathrm{DHL}} \\ & \mathrm{t}_{\mathrm{ENZH}} \\ & \mathrm{t}_{\mathrm{ENZL}} \\ & \mathrm{t}_{\mathrm{ENHZ}} \\ & \mathrm{t}_{\mathrm{ENLZ}} \\ & \mathrm{~d}_{\text {TLH }} \\ & \mathrm{d}_{\text {THL }} \end{aligned}$	Data to Pad High Data to Pad Low Enable Pad Z to High Enable Pad Z to Low Enable Pad High to Z Enable Pad Low to Z Delta Low to High Delta High to Low		$\begin{aligned} & \hline 15.1 \\ & 11.5 \\ & 12.0 \\ & 14.6 \\ & 16.0 \\ & 14.5 \\ & 0.16 \\ & 0.09 \end{aligned}$		$\begin{aligned} & \hline 17.7 \\ & 13.6 \\ & 14.1 \\ & 17.1 \\ & 18.8 \\ & 17.0 \\ & 0.18 \\ & 0.11 \end{aligned}$	ns ns ns ns ns ns $\mathrm{ns} / \mathrm{pF}$ ns/pF

Notes:

1. Delays based on 50 pF loading.
2. SSO information can be found in the "Si multaneously Switching Output Limits for Actel FPGAs" application note.

Al240A Timing Characteristics

(Worst-Case Military Conditions)

Logic Module Propagation Delays ${ }^{1}$		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {PD1 }}$	Single Module		5.2		6.1	ns
t_{CO}	Sequential Clk to Q		5.2		6.1	ns
t_{GO}	Latch G to Q		5.2		6.1	ns
t_{RS}	Flip-Flop (Latch) Reset to Q		5.2		6.1	ns
Predicted Routing Delays ${ }^{2}$						
$\mathrm{t}_{\text {RD1 }}$	$\mathrm{FO}=1$ Routing Delay		1.9		2.2	ns
$\mathrm{t}_{\mathrm{RD} 2}$	FO=2 Routing Delay		2.4		2.8	ns
$\mathrm{t}_{\text {RD3 }}$	FO=3 Routing Delay		3.1		3.7	ns
$\mathrm{t}_{\text {RD4 }}$	FO=4 Routing Delay		4.3		5.0	ns
$\mathrm{t}_{\text {RD8 }}$	FO=8 Routing Delay		6.6		7.7	ns
Sequential Timing Characteristics ${ }^{3,4}$						
$\mathrm{t}_{\text {SUD }}$	Flip-Flop (Latch) Data Input Setup	0.5		0.5		ns
t_{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		ns
$t_{\text {SUENA }}$	Flip-Flop (Latch) Enable Setup	1.3		1.3		ns
thena	Flip-Flop (Latch) Enable Hold	0.0		0.0		ns
$t_{\text {wCLKA }}$	Flip-Flop (Latch) Clock Active Pulse Width	7.4		8.1		ns
${ }^{\text {twasyn }}$	Flip-Flop (Latch) Asynchronous Pulse Width	7.4		8.1		ns
t_{A}	Flip-Flop Clock Input Period	14.8		18.6		ns
$\mathrm{t}_{\mathrm{INH}}$	Input Buffer Latch Hold	2.5		2.5		ns
tinsu	Input Buffer Latch Setup	-3.5		-3.5		ns
touth	Output Buffer Latch Hold	0.0		0.0		ns
toutsu	Output Buffer Latch Setup	0.5		0.5		ns
$\mathrm{f}_{\text {MAX }}$	Flip-Flop (Latch) Clock Frequency		63		54	MHz

Notes:

1. For dual-module macros, uset $t_{P D 1}+t_{R D 1}+t_{P D n}, t_{C O}+t_{R D 1}+t_{P D n}$, or $t_{P D 1}+t_{R D 1}+t_{S U D}$, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-routetiming analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shi pment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTimeAnalyzer utility.
4. Setup and hold timing parameters for theI nput Buffer Latch are defined with respect to the PAD and theD input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

Al240A Timing Characteristics (continued)

(Worst-Case Military Conditions)

Input Module Propagation Delays			-1 Speed		Std Speed		
Parameter	Description		Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\mathrm{INYH}}$	Pad to Y High			4.0		4.7	ns
$\mathrm{t}_{\text {INYL }}$	Pad to Y Low			3.6		4.3	ns
$\mathrm{t}_{\text {INGH }}$	G to Y High			6.9		8.1	ns
$\mathrm{t}_{\text {INGL }}$	G to Y Low			6.6		7.7	ns
Input Module Predicted Routing Delays ${ }^{1}$							
$\mathrm{t}_{\text {IRD1 }}$	FO=1 Routing Delay			5.8		6.9	ns
$\mathrm{t}_{\text {IRD2 }}$	FO=2 Routing Delay			6.7		7.8	ns
$\mathrm{t}_{\text {IRD3 }}$	FO=3 Routing Delay			7.5		8.8	ns
$\mathrm{t}_{\text {IRD4 }}$	FO=4 Routing Delay			8.2		9.7	ns
$\mathrm{t}_{\text {IRD8 }}$	FO=8 Routing Delay			10.9		12.9	ns
Global Clock Network							
${ }^{\text {chKH }}$	Input Low to High	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$		$\begin{aligned} & \hline 13.3 \\ & 16.3 \end{aligned}$		$\begin{aligned} & \hline 15.7 \\ & 19.2 \end{aligned}$	ns
${ }^{\text {t }}$ KKL	Input High to Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$		$\begin{aligned} & 13.3 \\ & 16.5 \end{aligned}$		$\begin{aligned} & 15.7 \\ & 19.5 \end{aligned}$	ns
$t_{\text {PWW }}$	Minimum Pulse Width High	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 6.7 \\ & 7.1 \end{aligned}$		ns
$t_{\text {PWL }}$	Minimum Pulse Width Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 6.7 \\ & 7.1 \end{aligned}$		ns
${ }^{\text {t CKSW }}$	Maximum Skew	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$		$\begin{aligned} & 0.6 \\ & 3.1 \end{aligned}$		$\begin{aligned} & 0.6 \\ & 3.1 \end{aligned}$	ns
tsuext	Input Latch External Setup	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$	0.0 0.0		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$\mathrm{t}_{\text {HEXT }}$	Input Latch External Hold	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$	$\begin{gathered} 8.6 \\ 13.8 \end{gathered}$		$\begin{gathered} 8.6 \\ 13.8 \end{gathered}$		ns
t_{p}	Minimum Period	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 12.2 \end{aligned}$		$\begin{aligned} & 13.5 \\ & 14.3 \end{aligned}$		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=256 \end{aligned}$		$\begin{aligned} & 87 \\ & 82 \end{aligned}$		$\begin{aligned} & 74 \\ & 70 \end{aligned}$	MHz

Note:

1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns . Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-routetiming is based on actual routing delay measurements performed on the device prior to shipment.

A1240A Timing Characteristics (continued)

(Worst-Case Military Conditions)

Output Module Timing		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
TTL Output Module Timing ${ }^{1}$						
$t_{\text {DLH }}$ $t_{\text {DHL }}$ $t_{\text {ENZH }}$ $t_{\text {ENZL }}$ tenhz $t_{\text {ENLZ }}$ $t_{\text {GLH }}$ $t_{G H L}$ $\mathrm{d}_{\text {TLH }}$ $\mathrm{d}_{\mathrm{THL}}$	Data to Pad High Data to Pad Low Enable Pad Z to High Enable Pad Z to Low Enable Pad High to Z Enable Pad Low to Z G to Pad High G to Pad Low Delta Low to High Delta High to Low		11.0 13.9 12.3 16.1 9.8 11.5 12.4 15.5 0.09 0.17		13.0 16.4 14.4 19.0 11.5 13.6 14.6 18.2 0.11 0.20	ns $\mathrm{ns} / \mathrm{pF}$ $\mathrm{ns} / \mathrm{pF}$
CMOS Output Module Timing ${ }^{1}$						
$t_{\text {DLH }}$ $t_{\text {DHL }}$ $t_{\text {ENZH }}$ tenZL $t_{\text {ENHZ }}$ tenlz $t_{G L H}$ $\mathrm{t}_{\mathrm{GHL}}$ $\mathrm{d}_{\text {TLH }}$ $\mathrm{d}_{\mathrm{THL}}$	Data to Pad High Data to Pad Low Enable Pad Z to High Enable Pad Z to Low Enable Pad High to Z Enable Pad Low to Z G to Pad High G to Pad Low Delta Low to High Delta High to Low		$\begin{gathered} \hline 14.0 \\ 11.7 \\ 12.3 \\ 16.1 \\ 9.8 \\ 11.5 \\ 12.4 \\ 15.5 \\ 0.17 \\ 0.12 \end{gathered}$		$\begin{aligned} & 16.5 \\ & 13.7 \\ & 14.4 \\ & 19.0 \\ & 11.5 \\ & 13.6 \\ & 14.6 \\ & 18.2 \\ & 0.20 \\ & 0.15 \end{aligned}$	ns ns/pF ns/pF

Notes:

1. Delays based on 50 pF loading.
2. SSO information can be found in the "Si multaneously Switching Output Limits for Actel FPGAs" application note.

A1280A Timing Characteristics

(Worst-Case Military Conditions)

Logic Module Propagation Delays ${ }^{1}$		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {PD1 }}$	Single Module		5.2		6.1	ns
t_{CO}	Sequential Clk to Q		5.2		6.1	ns
$\mathrm{t}_{\text {GO }}$	Latch G to Q		5.2		6.1	ns
$t_{\text {RS }}$	Flip-Flop (Latch) Reset to Q		5.2		6.1	ns
Predicted Routing Delays ${ }^{2}$						
$\mathrm{t}_{\text {RD1 }}$	FO=1 Routing Delay		2.4		2.8	ns
$\mathrm{t}_{\mathrm{RD} 2}$	FO=2 Routing Delay		3.4		4.0	ns
$\mathrm{t}_{\text {RD3 }}$	FO=3 Routing Delay		4.2		4.9	ns
$\mathrm{t}_{\text {RD4 }}$	FO=4 Routing Delay		5.1		6.0	ns
$t_{\text {RD8 }}$	FO=8 Routing Delay		9.2		10.8	ns
Sequential Timing Characteristics ${ }^{\text {3, }} 4$						
${ }_{\text {t }}$ SUD	Flip-Flop (Latch) Data Input Setup	0.5		0.5		ns
$t_{\text {HD }}$	Flip-Flop (Latch) Data Input Hold	0.0		0.0		ns
tsuena	Flip-Flop (Latch) Enable Setup	1.3		1.3		ns
thena	Flip-Flop (Latch) Enable Hold	0.0		0.0		ns
${ }^{\text {t WCLKA }}$	Flip-Flop (Latch) Clock Active Pulse Width	7.4		8.6		ns
twasyn	Flip-Flop (Latch) Asynchronous Pulse Width	7.4		8.6		ns
t_{A}	Flip-Flop Clock Input Period	16.4		22.1		ns
$\mathrm{t}_{\mathrm{INH}}$	Input Buffer Latch Hold	2.5		2.5		ns
tinsu	Input Buffer Latch Setup	-3.5		-3.5		ns
touth	Output Buffer Latch Hold	0.0		0.0		ns
toutsu	Output Buffer Latch Setup	0.5		0.5		ns
$\mathrm{f}_{\text {MAX }}$	Flip-Flop (Latch) Clock Frequency		60		41	MHz

Notes:

1. For dual-module macros, use $t_{P D 1}+t_{R D 1}+t_{P D n}, t_{C O}+t_{R D 1}+t_{P D n}$, or $t_{P D 1}+t_{R D 1}+t_{S U D}$, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-routetiming analysis or simulation is requir red to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shi pment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtai ned from the DirectTimeAnalyzer utility.
4. Setup and hold timing parameters for theinput buffer latch are defined with respect to thePAD and theD input. External setup/hold timing parameters must account for delay from an external PAD signal to theG inputs. Delay from an external PAD signal to the G input subtracts (adds) to theinternal setup (hold) time.

A1280A Timing Characteristics (continued)

(Worst-Case Military Conditions)

Input Module Propagation Delays			-1 Speed		Std Speed		
Parameter	Description		Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {INYH }}$	Pad to Y High			4.0		4.7	ns
$\mathrm{t}_{\text {INYL }}$	Pad to Y Low			3.6		4.3	ns
$\mathrm{t}_{\text {INGH }}$	G to Y High			6.9		8.1	ns
$\mathrm{t}_{\text {INGL }}$	G to Y Low			6.6		7.7	ns
Input Module Predicted Routing Delays ${ }^{1}$							
$t_{\text {RD1 }}$	FO=1 Routing Delay			6.2		7.3	ns
$\mathrm{t}_{\mathrm{RD} 2}$	FO=2 Routing Delay			7.2		8.4	ns
$\mathrm{t}_{\mathrm{RD} 3}$	FO=3 Routing Delay			7.7		9.1	ns
$\mathrm{t}_{\text {RD4 }}$	FO=4 Routing Delay			8.9		10.5	ns
$t_{\text {RD8 }}$	FO=8 Routing Delay			12.9		15.2	ns
Global Clock Network							
$\mathrm{t}_{\text {CKH }}$	Input Low to High	$\begin{aligned} & \hline \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$		$\begin{aligned} & \hline 13.3 \\ & 17.9 \end{aligned}$		$\begin{aligned} & \hline 15.7 \\ & 21.1 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{CKL}}$	Input High to Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$		$\begin{aligned} & 13.3 \\ & 18.2 \end{aligned}$		$\begin{aligned} & 15.7 \\ & 21.4 \end{aligned}$	ns
$\mathrm{t}_{\text {PWH }}$	Minimum Pulse Width High	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 7.9 \end{aligned}$		$\begin{aligned} & 8.1 \\ & 9.3 \end{aligned}$		ns
$t_{\text {PWL }}$	Minimum Pulse Width Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 7.9 \end{aligned}$		$\begin{aligned} & 8.1 \\ & 9.3 \end{aligned}$		ns
$t_{\text {CKSW }}$	Maximum Skew	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$		$\begin{aligned} & 0.6 \\ & 3.1 \end{aligned}$		$\begin{aligned} & 0.6 \\ & 3.1 \end{aligned}$	ns
$\mathrm{t}_{\text {SUEXT }}$	Input Latch External Setup	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$\mathrm{t}_{\text {HEXT }}$	Input Latch External Hold	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$	$\begin{gathered} 8.6 \\ 13.8 \end{gathered}$		$\begin{gathered} 8.6 \\ 13.8 \end{gathered}$		ns
t_{p}	Minimum Period	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$	$\begin{aligned} & 13.7 \\ & 16.0 \end{aligned}$		$\begin{aligned} & 16.2 \\ & 18.9 \end{aligned}$		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$		$\begin{aligned} & 73 \\ & 63 \end{aligned}$		$\begin{aligned} & 62 \\ & 53 \end{aligned}$	MHz

Note:

1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns . Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determineactual worst-case performance. Post-routetiming is based on actual routing delay measurements performed on thedevi ceprior to shipment.

A1280A Timing Characteristics (continued)

(Worst-Case Military Conditions)

Output Module Timing		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
TTL Output Module Timing ${ }^{1}$						
$t_{\text {DLH }}$ $\mathrm{t}_{\mathrm{DHL}}$ $t_{\text {ENZH }}$ $t_{\text {ENZL }}$ tenHz tenlz $t_{G L H}$ $t_{G H L}$ $\mathrm{d}_{\mathrm{TLH}}$ $d_{\text {THL }}$	Data to Pad High Data to Pad Low Enable Pad Z to High Enable Pad Z to Low Enable Pad High to Z Enable Pad Low to Z G to Pad High G to Pad Low Delta Low to High Delta High to Low		$\begin{gathered} \hline 11.0 \\ 13.9 \\ 12.3 \\ 16.1 \\ 9.8 \\ 11.5 \\ 12.4 \\ 15.5 \\ 0.09 \\ 0.17 \end{gathered}$		13.0 16.4 14.4 19.0 11.5 13.6 14.6 18.2 0.11 0.20	ns ns ns ns ns ns ns ns ns/pF ns/pF
CMOS Output Module Timing ${ }^{1}$						
$t_{\text {DLH }}$ $\mathrm{t}_{\mathrm{DHL}}$ $t_{\text {ENZH }}$ $t_{\text {ENZL }}$ tenHz tenLZ $t_{G L H}$ $\mathrm{t}_{\mathrm{GHL}}$ $\mathrm{d}_{\mathrm{TLH}}$ $\mathrm{d}_{\text {THL }}$	Data to Pad High Data to Pad Low Enable Pad Z to High Enable Pad Z to Low Enable Pad High to Z Enable Pad Low to Z G to Pad High G to Pad Low Delta Low to High Delta High to Low		$\begin{gathered} \hline 14.0 \\ 11.7 \\ 12.3 \\ 16.1 \\ 9.8 \\ 11.5 \\ 12.4 \\ 15.5 \\ 0.17 \\ 0.12 \end{gathered}$		16.5 13.7 14.4 19.0 11.5 13.6 14.6 18.2 0.20 0.15	ns ns ns ns ns ns ns ns ns/pF ns/pF

Notes:

1. Delays based on 50 pF loading.
2. SSO information can be found in the "Si multaneously Switching Output Limits for Actel FPGAs" application note.

A1280XL Timing Characteristics

(Worst-Case Military Conditions)

Logic Module Propagation Delays ${ }^{1}$		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {PD1 }}$	Single Module		3.7		4.3	ns
t_{CO}	Sequential Clk to Q		3.7		4.3	ns
t_{GO}	Latch G to Q		3.7		4.3	ns
t_{RS}	Flip-Flop (Latch) Reset to Q		3.7		4.3	ns
Predicted Routing Delays ${ }^{2}$						
$\mathrm{t}_{\text {RD1 }}$	FO=1 Routing Delay		1.7		2.1	ns
$\mathrm{t}_{\mathrm{RD} 2}$	FO=2 Routing Delay		2.5		3.0	ns
$\mathrm{t}_{\mathrm{RD} 3}$	FO=3 Routing Delay		3.1		3.6	ns
$\mathrm{t}_{\mathrm{RD} 4}$	FO=4 Routing Delay		3.7		4.3	ns
$\mathrm{t}_{\mathrm{RD} 8}$	FO=8 Routing Delay		7.0		8.3	ns
Sequential Timing Characteristics ${ }^{3,4}$						
tsud	Flip-Flop (Latch) Data Input Setup	0.4		0.5		ns
t_{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		ns
tsuena	Flip-Flop (Latch) Enable Setup	1.1		1.2		ns
$t_{\text {HENA }}$	Flip-Flop (Latch) Enable Hold	0.0		0.0		ns
$t_{\text {WCLKA }}$	Flip-Flop (Latch) Clock Active Pulse Width	5.3		6.1		ns
twasyn	Flip-Flop (Latch) Asynchronous Pulse Width	5.3		6.1		ns
$t_{\text {A }}$	Flip-Flop Clock Input Period	10.7		12.3		ns
$\mathrm{t}_{\text {INH }}$	Input Buffer Latch Hold	0.0		0.0		ns
$\mathrm{t}_{\text {INSU }}$	Input Buffer Latch Setup	0.4		0.4		ns
touth	Output Buffer Latch Hold	0.0		0.0		ns
toutsu	Output Buffer Latch Setup	0.4		0.4		ns
$\mathrm{f}_{\text {MAX }}$	Flip-Flop (Latch) Clock Frequency		90		75	MHz

Notes:

1. For dual-module macros, use $t_{P D 1}+t_{R D 1}+t_{P D n}, t_{C O}+t_{R D 1}+t_{P D n}$, or $t_{P D 1}+t_{R D 1}+t_{S U D}$, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-routetiming analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shi pment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTimeAnalyzer utility.
4. Setup and hold timing parameters for theinput buffer latch are defined with respect to thePAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

A1280XL Timing Characteristics (continued)

(Worst-Case Military Conditions)

Input Module Propagation Delays			-1 Speed		Std Speed		
Parameter	Description		Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\mathrm{INYH}}$	Pad to Y High			1.5		1.7	ns
$\mathrm{t}_{\text {INYL }}$	Pad to Y Low			1.7		2.1	ns
$\mathrm{t}_{\text {INGH }}$	G to Y High			2.8		3.3	ns
$\mathrm{t}_{\text {INGL }}$	G to Y Low			3.7		4.3	ns
Input Module Predicted Routing Delays ${ }^{1}$							
$\mathrm{t}_{\text {RD1 }}$	FO=1 Routing Delay			4.6		5.3	ns
$\mathrm{t}_{\mathrm{RD} 2}$	FO=2 Routing Delay			5.2		6.1	ns
$\mathrm{t}_{\mathrm{RD} 3}$	FO=3 Routing Delay			5.5		6.5	ns
$\mathrm{t}_{\text {RD4 }}$	FO=4 Routing Delay			6.4		7.5	ns
$\mathrm{t}_{\text {RD8 }}$	FO=8 Routing Delay			9.2		10.8	ns
Global Clock Network							
$\mathrm{t}_{\text {CKH }}$	Input Low to High	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$		$\begin{aligned} & 7.1 \\ & 8.0 \end{aligned}$		$\begin{aligned} & 8.4 \\ & 9.5 \end{aligned}$	ns
${ }^{\text {t CKL }}$	Input High to Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$		$\begin{aligned} & 8.3 \\ & 9.5 \end{aligned}$	ns
$t_{\text {PWW }}$	Minimum Pulse Width High	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 4.8 \end{aligned}$		$\begin{aligned} & 5.3 \\ & 5.7 \end{aligned}$		ns
$t_{\text {PWL }}$	Minimum Pulse Width Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 4.8 \end{aligned}$		$\begin{aligned} & 5.3 \\ & 5.7 \end{aligned}$		ns
${ }^{\text {t CKSw }}$	Maximum Skew	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$		$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$		$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	ns
${ }^{\text {t Suext }}$	Input Latch External Setup	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$	0.0 0.0		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$\mathrm{t}_{\text {HEXT }}$	Input Latch External Hold	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 4.6 \end{aligned}$		$\begin{aligned} & 4.2 \\ & 5.3 \end{aligned}$		ns
t_{P}	Minimum Period	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$	$\begin{aligned} & 9.1 \\ & 9.8 \end{aligned}$		$\begin{aligned} & 10.7 \\ & 11.8 \end{aligned}$		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=384 \end{aligned}$		$\begin{aligned} & 110 \\ & 100 \end{aligned}$		$\begin{aligned} & 90 \\ & 85 \end{aligned}$	MHz

Note:

1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns . Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-routetiming is based on actual routing delay measurements performed on the device prior to shipment.

A1280XL Timing Characteristics (continued)

(Worst-Case Military Conditions)

Output Module Timing		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
TTL Output Module Timing ${ }^{1}$						
$\mathrm{t}_{\mathrm{DLH}}$ $\mathrm{t}_{\mathrm{DHL}}$ $t_{\text {ENZH }}$ $t_{\text {ENZL }}$ $t_{\text {ENHZ }}$ tenlz $t_{G L H}$ $t_{G H L}$ $\mathrm{d}_{\text {TLH }}$ $\mathrm{d}_{\mathrm{THL}}$	Data to Pad High Data to Pad Low Enable Pad Z to High Enable Pad Z to Low Enable Pad High to Z Enable Pad Low to Z G to Pad High G to Pad Low Delta Low to High Delta High to Low		$\begin{aligned} & \hline 5.3 \\ & 5.7 \\ & 5.3 \\ & 5.8 \\ & 7.5 \\ & 7.5 \\ & 5.9 \\ & 6.6 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{gathered} \hline 6.2 \\ 6.6 \\ 6.2 \\ 6.8 \\ 8.9 \\ 8.9 \\ 6.9 \\ 7.8 \\ 0.06 \\ 0.09 \end{gathered}$	ns ns/pF ns/pF
CMOS Output Module Timing ${ }^{1}$						
$\mathrm{t}_{\mathrm{DLH}}$ $\mathrm{t}_{\mathrm{DHL}}$ $t_{\text {ENZH }}$ $t_{\text {ENZL }}$ tenhz tenlz $t_{G L H}$ $\mathrm{t}_{\mathrm{GHL}}$ $\mathrm{d}_{\text {TLH }}$ $d_{\text {THL }}$	Data to Pad High Data to Pad Low Enable Pad Z to High Enable Pad Z to Low Enable Pad High to Z Enable Pad Low to Z G to Pad High G to Pad Low Delta Low to High Delta High to Low		6.6 4.7 5.3 5.8 7.5 7.5 5.9 6.6 0.07 0.06		$\begin{gathered} \hline 7.9 \\ 5.5 \\ 6.2 \\ 6.8 \\ 8.9 \\ 8.9 \\ 6.9 \\ 7.8 \\ 0.09 \\ 0.09 \end{gathered}$	ns ns ns ns ns ns ns ns ns/pF ns/pF

Notes:

1. Delays based on 50 pF loading.
2. SSO information can be found in the "Simultaneously Switching Output Limits for Actel FPGAs" application note.

A1425A Timing Characteristics

(Worst-Case Military Conditions)

Logic Module Propagation Delays ${ }^{1}$		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
$t_{\text {PD }}$	Internal Array Module		3.0		3.5	ns
t_{CO}	Sequential Clock to Q		3.0		3.5	ns
$\mathrm{t}_{\text {CLR }}$	Asynchronous Clear to Q		3.0		3.5	ns
Predicted Routing Delays ${ }^{2}$						
$\mathrm{t}_{\text {RD1 }}$	$\mathrm{FO}=1$ Routing Delay		1.3		1.5	ns
$\mathrm{t}_{\text {RD2 }}$	FO=2 Routing Delay		1.9		2.1	ns
$\mathrm{t}_{\mathrm{RD} 3}$	FO=3 Routing Delay		2.1		2.5	ns
$\mathrm{t}_{\text {RD4 }}$	FO=4 Routing Delay		2.6		2.9	ns
$\mathrm{t}_{\text {RD8 }}$	FO=8 Routing Delay		4.2		4.9	ns
Logic Module Sequential Timing						
$t_{\text {SUD }}$	Flip-Flop (Latch) Data Input Setup	0.9		1.0		ns
$t_{\text {HD }}$	Flip-Flop (Latch) Data Input Hold	0.0		0.0		ns
$\mathrm{t}_{\text {SUENA }}$	Flip-Flop (Latch) Enable Setup	0.9		1.0		ns
$t_{\text {HENA }}$	Flip-Flop (Latch) Enable Hold	0.0		0.0		ns
$t_{\text {WASYN }}$	Asynchronous Pulse Width	3.8		4.4		ns
$t_{\text {WCLKA }}$	Flip-Flop Clock Pulse Width	3.8		4.4		ns
t_{A}	Flip-Flop Clock Input Period	7.9		9.3		ns
$\mathrm{f}_{\text {MAX }}$	Flip-Flop Clock Frequency		125		100	MHz

Notes:

1. For dual-module macros, use $t_{P D}+t_{R D 1}+t_{P D n}, t_{C O}+t_{R D 1}+t_{P D n}$, or $t_{P D 1}+t_{R D 1}+t_{S U D}$, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-routetiming analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shi pment.

A1425A Timing Characteristics (continued)

(Worst-Case Military Conditions)

I/O Module Input Propagation Delays		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\mathrm{INY}}$	Input Data Pad to Y		4.2		4.9	ns
ticky	Input Reg IOCLK Pad to Y		7.0		8.2	ns
tocky	Output Reg IOCLK Pad to Y		7.0		8.2	ns
ticliy	Input Asynchronous Clear to Y		7.0		8.2	ns
toclery	Output Asynchronous Clear to Y		7.0		8.2	ns
Predicted Input Routing Delays ${ }^{1}$						
$\mathrm{t}_{\text {RD1 }}$	FO=1 Routing Delay		1.3		1.5	ns
$\mathrm{t}_{\text {R } \mathrm{RD} 2}$	FO=2 Routing Delay		1.9		2.1	ns
$\mathrm{t}_{\text {IRD3 }}$	FO=3 Routing Delay		2.1		2.5	ns
$\mathrm{t}_{\text {RD4 }}$	FO=4 Routing Delay		2.6		2.9	ns
$\mathrm{t}_{\text {IRD8 }}$	FO=8 Routing Delay		4.2		4.9	ns
I/O Module Sequential Timing						
t_{NH}	Input F-F Data Hold (w.r.t. IOCLK Pad)	0.0		0.0		ns
tinsu	Input F-F Data Setup (w.r.t. IOCLK Pad)	2.1		2.4		ns
$\mathrm{t}_{\text {IDEH }}$	Input Data Enable Hold (w.r.t. IOCLK Pad)	0.0		0.0		ns
$\mathrm{t}_{\text {IDESU }}$	Input Data Enable Setup (w.r.t. IOCLK Pad)	8.7		10.0		ns
touth	Output F-F Data Hold (w.r.t. IOCLK Pad)	1.1		1.2		ns
toutsu	Output F-F Data Setup (w.r.t. IOCLK Pad)	1.1		1.2		ns
toder	Output Data Enable Hold (w.r.t. IOCLK Pad)	0.5		0.6		ns
todesu	Output Data Enable Setup (w.r.t. IOCLK Pad)	2.0		2.4		ns

Note:

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-routetiming analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on thedevice prior to shipment.

A1425A Timing Characteristics (continued)

(Worst-Case Military Conditions)

I/O Module - TTL Output Timing ${ }^{1}$		-1 Speed		Std Speed		
Parameter	Description	Min	Max.	Min	Max.	Units
$t_{\text {DHS }}$	Data to Pad, High Slew		7.5		8.9	ns
$t_{\text {DLS }}$	Data to Pad, Low Slew		11.9		14.0	ns
$\mathrm{t}_{\text {ENZHS }}$	Enable to Pad, Z to H/L, Hi Slew		6.0		7.0	ns
$\mathrm{t}_{\text {ENZLS }}$	Enable to Pad, Z to H/L, Lo Slew		10.9		12.8	ns
$\mathrm{t}_{\text {ENHSZ }}$	Enable to Pad, H/L to Z, Hi Slew		9.9		11.6	ns
$\mathrm{t}_{\text {ENLSZ }}$	Enable to Pad, H/L to Z, Lo Slew		9.9		11.6	ns
$\mathrm{t}_{\text {CKHS }}$	IOCLK Pad to Pad H/L, Hi Slew		10.5		11.6	ns
$\mathrm{t}_{\text {CKLS }}$	IOCLK Pad to Pad H/L, Lo Slew		15.7		17.4	ns
$\mathrm{d}_{\text {TLHHS }}$	Delta Low to High, Hi Slew		0.04		0.04	$\mathrm{ns} / \mathrm{pF}$
$\mathrm{d}_{\text {TLHLS }}$	Delta Low to High, Lo Slew		0.07		0.08	$\mathrm{ns} / \mathrm{pF}$
$\mathrm{d}_{\text {THLHS }}$	Delta High to Low, Hi Slew		0.05		0.06	$\mathrm{ns} / \mathrm{pF}$
$\mathrm{d}_{\text {THLLS }}$	Delta High to Low, Lo Slew		0.07		0.08	$\mathrm{ns} / \mathrm{pF}$
I/O Module - CMOS Output Timing ${ }^{1}$						
$\mathrm{t}_{\text {DHS }}$	Data to Pad, High Slew		9.2		10.8	ns
$\mathrm{t}_{\text {DLS }}$	Data to Pad, Low Slew		17.3		20.3	ns
$\mathrm{t}_{\text {ENZHS }}$	Enable to Pad, Z to H/L, Hi Slew		7.7		9.1	ns
$\mathrm{t}_{\text {ENZLS }}$	Enable to Pad, Z to H/L, Lo Slew		13.1		15.5	ns
tenhsz	Enable to Pad, H/L to Z, Hi Slew		9.9		11.6	ns
$\mathrm{t}_{\text {ENLSZ }}$	Enable to Pad, H/L to Z, Lo Slew		10.5		11.6	ns
$\mathrm{t}_{\text {CKHS }}$	IOCLK Pad to Pad H/L, Hi Slew		12.5		13.7	ns
$\mathrm{t}_{\text {CKLS }}$	IOCLK Pad to Pad H/L, Lo Slew		18.1		20.1	ns
$\mathrm{d}_{\text {TLHHS }}$	Delta Low to High, Hi Slew		0.06		0.07	$\mathrm{ns} / \mathrm{pF}$
$\mathrm{d}_{\text {TLHLS }}$	Delta Low to High, Lo Slew		0.11		0.13	$\mathrm{ns} / \mathrm{pF}$
$\mathrm{d}_{\text {THLHS }}$	Delta High to Low, Hi Slew		0.04		0.05	$\mathrm{ns} / \mathrm{pF}$
$\mathrm{d}_{\text {THLLS }}$	Delta High to Low, Lo Slew		0.05		0.06	$\mathrm{ns} / \mathrm{pF}$

Notes:

1. Delays based on 35 pF loading.
2. SSO information can be found in the "Si multaneously Switching Output Limits for Actel FPGAs" application note.

A1425A Timing Characteristics (continued)

(Worst-Case Military Conditions)

Dedicated (Hard-Wired) I/O Clock Network		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {IOCKH }}$	Input Low to High (Pad to I/O Module Input)		3.0		3.5	ns
tiopwh	Minimum Pulse Width High	3.9		4.4		ns
tiopWL	Minimum Pulse Width Low	3.9		4.4		ns
tiosapw	Minimum Asynchronous Pulse Width	3.9		4.4		ns
tocksw	Maximum Skew		0.5		0.5	ns
$\mathrm{t}_{\text {IOP }}$	Minimum Period	7.9		9.3		ns
fiomax	Maximum Frequency		125		100	MHz
Dedicated (Hard-Wired) Array Clock Network						
thekh $^{\text {l }}$	Input Low to High (Pad to S-Module Input)		4.6		5.3	ns
${ }^{\text {thCKL }}$	Input High to Low (Pad to S-Module Input)		4.6		5.3	ns
$\mathrm{t}_{\text {HPW }}$	Minimum Pulse Width High	3.9		4.4		ns
$\mathrm{t}_{\text {HPWL }}$	Minimum Pulse Width Low	3.9		4.4		ns
$t_{\text {HCKSW }}$	Maximum Skew		0.4		0.4	ns
t_{HP}	Minimum Period	7.9		9.3		ns
$\mathrm{f}_{\text {HMAX }}$	Maximum Frequency		125		100	MHz
Routed Array Clock Networks						
$\mathrm{t}_{\text {RCKH }}$	Input Low to High (FO=64)		5.5		6.4	ns
$\mathrm{t}_{\text {RCKL }}$	Input High to Low (FO=64)		6.0		7.0	ns
$\mathrm{t}_{\text {RPWH }}$	Min. Pulse Width High (FO=64)	4.9		5.7		ns
$t_{\text {RPWL }}$	Min. Pulse Width Low (FO=64)	4.9		5.7		ns
$\mathrm{t}_{\text {RCKSW }}$	Maximum Skew ($\mathrm{FO}=128$)		1.1		1.2	ns
$\mathrm{t}_{\text {RP }}$	Minimum Period (FO=64)	10.1		11.6		ns
$\mathrm{f}_{\text {RMAX }}$	Maximum Frequency (FO=64)		100		85	MHz
Clock-to-Clock Skews						
tiohcksw	I/O Clock to H-Clock Skew	0.0	3.0	0.0	3.0	ns
tiorcksw	I/O Clock to R-Clock Skew	0.0	3.0	0.0	3.0	ns
$t_{\text {HRCKSW }}$	$\begin{aligned} & \text { H-Clock to R-Clock Skew } \\ & \text { (FO }=64 \text {) } \\ & \text { (FO }=50 \% \text { max.) } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

Note:

1. Delays based on 35 pF loading.

A1460A Timing Characteristics

(Worst-Case Military Conditions)

Logic Module Propagation Delays ${ }^{1}$		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {PD }}$	Internal Array Module		3.0		3.5	ns
t_{CO}	Sequential Clock to Q		3.0		3.5	ns
$\mathrm{t}_{\mathrm{CLR}}$	Asynchronous Clear to Q		3.0		3.5	ns
Predicted Routing Delays ${ }^{2}$						
$\mathrm{t}_{\text {RD1 }}$	FO=1 Routing Delay		1.3		1.5	ns
$\mathrm{t}_{\mathrm{RD} 2}$	FO=2 Routing Delay		1.9		2.1	ns
$\mathrm{t}_{\text {RD3 }}$	FO=3 Routing Delay		2.1		2.5	ns
$\mathrm{t}_{\text {RD4 }}$	$\mathrm{FO}=4$ Routing Delay		2.6		2.9	ns
$\mathrm{t}_{\text {RD8 }}$	FO=8 Routing Delay		4.2		4.9	ns
Logic Module Sequential Timing						
$t_{\text {SUD }}$	Flip-Flop (Latch) Data Input Setup	0.9		1.0		ns
$t_{\text {HD }}$	Flip-Flop (Latch) Data Input Hold	0.0		0.0		ns
tsuena	Flip-Flop (Latch) Enable Setup	0.9		1.0		ns
$t_{\text {HENA }}$	Flip-Flop (Latch) Enable Hold	0.0		0.0		ns
$t_{\text {WASYN }}$	Asynchronous Pulse Width	4.8		5.6		ns
$t_{\text {WCLKA }}$	Flip-Flop Clock Pulse Width	4.8		5.6		ns
t_{A}	Flip-Flop Clock Input Period	9.9		11.6		ns
$\mathrm{f}_{\text {MAX }}$	Flip-Flop Clock Frequency		100		85	MHz

Notes:

1. For dual-module macros, use $t_{P D}+t_{R D 1}+t_{P D n}, t_{C O}+t_{R D 1}+t_{P D n}$, or $t_{P D 1}+t_{R D 1}+t_{S U D}$, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shi pment.

A1460A Timing Characteristics (continued)

(Worst-Case Military Conditions)

I/O Module Input Propagation Delays		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
tiny	Input Data Pad to Y		4.2		4.9	ns
ticky	Input Reg IOCLK Pad to Y		7.0		8.2	ns
tocky	Output Reg IOCLK Pad to Y		7.0		8.2	ns
ticlir	Input Asynchronous Clear to Y		7.0		8.2	ns
tocliry	Output Asynchronous Clear to Y		7.0		8.2	ns
Predicted Input Routing Delays ${ }^{1}$						
$\mathrm{t}_{\text {RD1 }}$	FO=1 Routing Delay		1.3		1.5	ns
$\mathrm{t}_{\text {RD2 }}$	$\mathrm{FO}=2$ Routing Delay		1.9		2.1	ns
$\mathrm{t}_{\text {IRD3 }}$	FO=3 Routing Delay		2.1		2.5	ns
$\mathrm{t}_{\text {RD4 }}$	FO=4 Routing Delay		2.6		2.9	ns
$\mathrm{t}_{\text {IRD8 }}$	FO=8 Routing Delay		4.2		4.9	ns
I/O Module Sequential Timing						
$\mathrm{t}_{\text {INH }}$	Input F-F Data Hold (w.r.t. IOCLK Pad)	0.0		0.0		ns
tinsu	Input F-F Data Setup (w.r.t. IOCLK Pad)	2.1		2.4		ns
$\mathrm{t}_{\text {IDEH }}$	Input Data Enable Hold (w.r.t. IOCLK Pad)	0.0		0.0		ns
$\mathrm{t}_{\text {IDESU }}$	Input Data Enable Setup (w.r.t. IOCLK Pad)	8.7		10.0		ns
touth	Output F-F Data Hold (w.r.t. IOCLK Pad)	1.1		1.2		ns
toutsu	Output F-F Data Setup (w.r.t. IOCLK Pad)	1.1		1.2		ns
toder	Output Data Enable Hold (w.r.t. IOCLK Pad)	0.5		0.6		ns
todesu	Output Data Enable Setup (w.r.t. IOCLK Pad)	2.0		2.4		ns

Note:

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-routetiming analysis or simulation is required to determine actual worst-case performance. Post-routetiming is based on actual routing delay measurements performed on thedevice prior to shipment.

A1460A Timing Characteristics (continued)

(Worst-Case Military Conditions)

I/O Module - TTL Output Timing ${ }^{1}$		-1 Speed		Std Speed		
Parameter	Description	Min	Max.	Min.	Max.	Units
${ }_{\text {t }}$ HS	Data to Pad, High Slew		7.5		8.9	ns
$\mathrm{t}_{\text {LLS }}$	Data to Pad, Low Slew		11.9		14.0	ns
$t_{\text {ENZHS }}$	Enable to Pad, Z to H/L, Hi Slew		6.0		7.0	ns
$t_{\text {ENZLS }}$	Enable to Pad, Z to H/L, Lo Slew		10.9		12.8	ns
$t_{\text {ENHSZ }}$	Enable to Pad, H/L to Z, Hi Slew		11.5		13.5	ns
$\mathrm{t}_{\text {ENLSZ }}$	Enable to Pad, H/L to Z, Lo Slew		10.9		12.8	ns
$\mathrm{t}_{\text {CKHS }}$	IOCLK Pad to Pad H/L, Hi Slew		11.6		13.4	ns
$\mathrm{t}_{\text {CKLS }}$	IOCLK Pad to Pad H/L, Lo Slew		17.8		19.8	ns
$\mathrm{d}_{\text {TLHHS }}$	Delta Low to High, Hi Slew		0.04		0.04	$\mathrm{ns} / \mathrm{pF}$
$\mathrm{d}_{\text {TLHLS }}$	Delta Low to High, Lo Slew		0.07		0.08	ns/pF
$\mathrm{d}_{\text {THLLHS }}$	Delta High to Low, Hi Slew		0.05		0.06	$\mathrm{ns} / \mathrm{pF}$
$\mathrm{d}_{\text {THLLS }}$	Delta High to Low, Lo Slew		0.07		0.08	ns/pF
I/O Module - CMOS Output Timing ${ }^{1}$						
$\mathrm{t}_{\text {DHS }}$	Data to Pad, High Slew		9.2		10.8	ns
tols	Data to Pad, Low Slew		17.3		20.3	ns
$t_{\text {ENZHS }}$	Enable to Pad, Z to H/L, Hi Slew		7.7		9.1	ns
$t_{\text {ENZLS }}$	Enable to Pad, Z to H/L, Lo Slew		13.1		15.5	ns
$t_{\text {ENHSZ }}$	Enable to Pad, H/L to Z, Hi Slew		10.9		12.8	ns
tenlsz	Enable to Pad, H/L to Z, Lo Slew		10.9		12.8	ns
$\mathrm{t}_{\text {CKHS }}$	IOCLK Pad to Pad H/L, Hi Slew		14.1		16.0	ns
$\mathrm{t}_{\text {ckLs }}$	IOCLK Pad to Pad H/L, Lo Slew		20.2		22.4	ns
$\mathrm{d}_{\text {TLHHS }}$	Delta Low to High, Hi Slew		0.06		0.07	$\mathrm{ns} / \mathrm{pF}$
$\mathrm{d}_{\text {TLHLS }}$	Delta Low to High, Lo Slew		0.11		0.13	ns/pF
$\mathrm{d}_{\text {THLHS }}$	Delta High to Low, Hi Slew		0.04		0.05	ns/pF
$\mathrm{d}_{\text {THLLS }}$	Delta High to Low, Lo Slew		0.05		0.06	$\mathrm{ns} / \mathrm{pF}$

Notes:

1. Delays based on 35 pF loading.
2. SSO information can be found in the "Simultaneously Switching Output Limits for Actel FPGAs" application note.

A1460A Timing Characteristics (continued)

(Worst-Case Military Conditions)

Dedicated (Hard-Wired) I/O Clock Network		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {IOCKH }}$	Input Low to High (Pad to I/O Module Input)		3.5		4.1	ns
topwh	Minimum Pulse Width High	4.8		5.7		ns
tiopwL	Minimum Pulse Width Low	4.8		5.7		ns
tiosapw	Minimum Asynchronous Pulse Width	3.9		4.4		ns
tiocksw	Maximum Skew		0.9		1.0	ns
$\mathrm{t}_{\text {IOP }}$	Minimum Period	9.9		11.6		ns
fiomax	Maximum Frequency		100		85	MHz
Dedicated (Hard-Wired) Array Clock Network						
$\mathrm{t}_{\text {HCKH }}$	Input Low to High (Pad to S-Module Input)		5.5		6.4	ns
${ }^{\text {H }}$ CKL	Input High to Low (Pad to S-Module Input)		5.5		6.4	ns
$\mathrm{t}_{\text {HPWH }}$	Minimum Pulse Width High	4.8		5.7		ns
$\mathrm{t}_{\text {HPWL }}$	Minimum Pulse Width Low	4.8		5.7		ns
$\mathrm{t}_{\text {HCKSW }}$	Maximum Skew		0.9		1.0	ns
t_{HP}	Minimum Period	9.9		11.6		ns
$\mathrm{f}_{\text {HMAX }}$	Maximum Frequency		100		85	MHz
Routed Array Clock Networks						
$\mathrm{t}_{\text {RCKH }}$	Input Low to High (FO=256)		9.0		10.5	ns
$\mathrm{t}_{\text {RCKL }}$	Input High to Low (FO=256)		9.0		10.5	ns
$\mathrm{t}_{\text {RPWH }}$	Min. Pulse Width High (FO=256)	6.3		7.1		ns
$t_{\text {RPWL }}$	Min. Pulse Width Low (FO=256)	6.3		7.1		ns
$\mathrm{t}_{\text {RCKSW }}$	Maximum Skew (FO=128)		1.9		2.1	ns
t_{RP}	Minimum Period (FO=256)	12.9		14.5		ns
$\mathrm{f}_{\text {RMAX }}$	Maximum Frequency ($\mathrm{FO}=256$)		75		65	MHz
Clock-to-Clock Skews						
tiohcksw	I/O Clock to H-Clock Skew	0.0	3.0	0.0	3.0	ns
tiorcksw	I/O Clock to R-Clock Skew	0.0	5.0	0.0	5.0	ns
$t_{\text {HRCKSW }}$	$\begin{aligned} & \text { H-Clock to R-Clock Skew } \\ & \text { (FO }=64 \text {) } \\ & \text { (FO }=50 \% \text { max.) } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

Note:

1. Delays based on 35 pF loading.

A14100A Timing Characteristics

(Worst-Case Military Conditions)

Logic Module Propagation Delays ${ }^{1}$		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {PD }}$	Internal Array Module		3.0		3.5	ns
t_{CO}	Sequential Clock to Q		3.0		3.5	ns
$\mathrm{t}_{\text {CLR }}$	Asynchronous Clear to Q		3.0		3.5	ns
Predicted Routing Delays ${ }^{2}$						
$\mathrm{t}_{\text {RD1 }}$	FO=1 Routing Delay		1.3		1.5	ns
$\mathrm{t}_{\text {RD2 }}$	FO=2 Routing Delay		1.9		2.1	ns
$\mathrm{t}_{\text {RD3 }}$	FO=3 Routing Delay		2.1		2.5	ns
$\mathrm{t}_{\text {RD4 }}$	$\mathrm{FO}=4$ Routing Delay		2.6		2.9	ns
$\mathrm{t}_{\text {RD8 }}$	FO=8 Routing Delay		4.2		4.9	ns
Logic Module Sequential Timing						
$t_{\text {SUD }}$	Flip-Flop (Latch) Data Input Setup	1.0		1.0		ns
$t_{\text {HD }}$	Flip-Flop (Latch) Data Input Hold	0.6		0.6		ns
tsuena	Flip-Flop (Latch) Enable Setup	1.0		1.0		ns
$t_{\text {HENA }}$	Flip-Flop (Latch) Enable Hold	0.6		0.6		ns
$t_{\text {WASYN }}$	Asynchronous Pulse Width	4.8		5.6		ns
$t_{\text {WCLKA }}$	Flip-Flop Clock Pulse Width	4.8		5.6		ns
t_{A}	Flip-Flop Clock Input Period	9.9		11.6		ns
$\mathrm{f}_{\text {MAX }}$	Flip-Flop Clock Frequency		100		85	MHz

Notes:

1. For dual-module macros, use $t_{P D}+t_{R D 1}+t_{P D n}, t_{C O}+t_{R D 1}+t_{P D n}$, or $t_{P D 1}+t_{R D 1}+t_{S U D}$, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shi pment.

A14100A Timing Characteristics (continued)

(Worst-Case Military Conditions)

I/O Module Input Propagation Delays		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
tiny	Input Data Pad to Y		4.2		4.9	ns
ticky	Input Reg IOCLK Pad to Y		7.0		8.2	ns
tocky	Output Reg IOCLK Pad to Y		7.0		8.2	ns
ticlik	Input Asynchronous Clear to Y		7.0		8.2	ns
tocler	Output Asynchronous Clear to Y		7.0		8.2	ns
Predicted Input Routing Delays ${ }^{1}$						
$\mathrm{t}_{\text {RD1 }}$	FO=1 Routing Delay		1.3		1.5	ns
$\mathrm{t}_{\text {IRD2 }}$	FO=2 Routing Delay		1.9		2.1	ns
$\mathrm{t}_{\text {IRD3 }}$	FO=3 Routing Delay		2.1		2.5	ns
$\mathrm{t}_{\text {IRD4 }}$	$\mathrm{FO}=4$ Routing Delay		2.6		2.9	ns
$\mathrm{t}_{\text {IRD8 }}$	FO=8 Routing Delay		4.2		4.9	ns
I/O Module Sequential Timing						
t_{NH}	Input F-F Data Hold (w.r.t. IOCLK Pad)	0.0		0.0		ns
${ }_{\text {tinsu }}$	Input F-F Data Setup (w.r.t. IOCLK Pad)	2.1		2.4		ns
$\mathrm{t}_{\text {IDEH }}$	Input Data Enable Hold (w.r.t. IOCLK Pad)	0.0		0.0		ns
$\mathrm{t}_{\text {IDESU }}$	Input Data Enable Setup (w.r.t. IOCLK Pad)	8.7		10.0		ns
touth	Output F-F Data Hold (w.r.t. IOCLK Pad)	1.2		1.2		ns
toutsu	Output F-F Data Setup (w.r.t. IOCLK Pad)	1.2		1.2		ns
toder	Output Data Enable Hold (w.r.t. IOCLK Pad)	0.6		0.6		ns
todesu	Output Data Enable Setup (w.r.t. IOCLK Pad)	2.4		2.4		ns

Note:

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-routetiming analysis or simulation is required to determine actual worst-case performance. Post-routetiming is based on actual routing delay measurements performed on thedevice prior to shipment.

A14100A Timing Characteristics (continued)

(Worst-Case Military Conditions)

I/O Module - TTL Output Timing ${ }^{1}$		-1 Speed		Std Speed		
Parameter	Description	Min	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {DHS }}$	Data to Pad, High Slew		7.5		8.9	ns
tbls	Data to Pad, Low Slew		11.9		14.0	ns
$t_{\text {ENZHS }}$	Enable to Pad, Z to H / L, Hi Slew		6.0		7.0	ns
$t_{\text {ENZLS }}$	Enable to Pad, Z to H / L, Lo Slew		10.9		12.8	ns
$t_{\text {ENHSZ }}$	Enable to Pad, H/L to Z, Hi Slew		11.9		14.0	ns
$t_{\text {ENLSZ }}$	Enable to Pad, H/L to Z, Lo Slew		10.9		12.8	ns
$\mathrm{t}_{\text {CKHS }}$	IOCLK Pad to Pad H/L, Hi Slew		12.2		14.0	ns
${ }_{\text {t }}^{\text {CKLS }}$	IOCLK Pad to Pad H/L, Lo Slew		17.8		17.8	ns
$\mathrm{d}_{\text {TLHHS }}$	Delta Low to High, Hi Slew		0.04		0.04	ns/pF
$d_{\text {TLHLS }}$	Delta Low to High, Lo Slew		0.07		0.08	ns/pF
$\mathrm{d}_{\text {THLHS }}$	Delta High to Low, Hi Slew		0.05		0.06	ns/pF
$\mathrm{d}_{\text {THLLS }}$	Delta High to Low, Lo Slew		0.07		0.08	ns/pF
I/O Module - CMOS Output Timing ${ }^{1}$						
$\mathrm{t}_{\text {DHS }}$	Data to Pad, High Slew		9.2		10.8	ns
tbls	Data to Pad, Low Slew		17.3		20.3	ns
$t_{\text {ENZHS }}$	Enable to Pad, Z to H / L, Hi Slew		7.7		9.1	ns
$t_{\text {ENZLS }}$	Enable to Pad, Z to H/L, Lo Slew		13.1		15.5	ns
$t_{\text {ENHSZ }}$	Enable to Pad, H/L to Z, Hi Slew		11.6		14.0	ns
$t_{\text {ENLSZ }}$	Enable to Pad, H/L to Z, Lo Slew		10.9		12.8	ns
$\mathrm{t}_{\text {CKHS }}$	IOCLK Pad to Pad H/L, Hi Slew		14.4		16.0	ns
$\mathrm{t}_{\text {CKLS }}$	IOCLK Pad to Pad H/L, Lo Slew		20.2		22.4	ns
$\mathrm{d}_{\text {TLHHS }}$	Delta Low to High, Hi Slew		0.06		0.07	ns/pF
$\mathrm{d}_{\text {TLHLS }}$	Delta Low to High, Lo Slew		0.11		0.13	ns/pF
$\mathrm{d}_{\text {THLHS }}$	Delta High to Low, Hi Slew		0.04		0.05	ns/pF
$\mathrm{d}_{\text {THLLS }}$	Delta High to Low, Lo Slew		0.05		0.06	ns/pF

Notes:

1. Delays based on 35 pF loading.
2. SSO information can be found in the "Simultaneously Switching Output Limits for Actel FPGAs" application note.

A14100A Timing Characteristics (continued)

(Worst-Case Military Conditions)

Dedicated (Hard-Wired) I/O Clock Network		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {IOCKH }}$	Input Low to High (Pad to I/O Module Input)		3.5		4.1	ns
$\mathrm{t}_{\text {IOPWH }}$	Minimum Pulse Width High	4.8		5.7		ns
topwL	Minimum Pulse Width Low	4.8		5.7		ns
tosapw	Minimum Asynchronous Pulse Width	3.9		4.4		ns
tiocksw	Maximum Skew		0.9		1.0	ns
$\mathrm{t}_{\text {IOP }}$	Minimum Period	9.9		11.6		ns
fiomax	Maximum Frequency		100		85	MHz
Dedicated (Hard-Wired) Array Clock Network						
$\mathrm{t}_{\text {HCKH }}$	Input Low to High (Pad to S-Module Input)		5.5		6.4	ns
${ }^{\text {H }} \mathrm{CKL}$	Input High to Low (Pad to S-Module Input)		5.5		6.4	ns
$\mathrm{t}_{\text {HPW }}$	Minimum Pulse Width High	4.8		5.7		ns
$\mathrm{t}_{\text {HPWL }}$	Minimum Pulse Width Low	4.8		5.7		ns
$\mathrm{thcksw}^{\text {l }}$	Maximum Skew		0.9		1.0	ns
t_{HP}	Minimum Period	9.9		11.6		ns
$\mathrm{f}_{\text {HMAX }}$	Maximum Frequency		100		85	MHz
Routed Array Clock Networks						
$\mathrm{t}_{\text {RCKH }}$	Input Low to High ($\mathrm{FO}=256$)		9.0		10.5	ns
$\mathrm{t}_{\text {RCKL }}$	Input High to Low (FO=256)		9.0		10.5	ns
$\mathrm{t}_{\text {RPWH }}$	Min. Pulse Width High (FO=256)	6.3		7.1		ns
$t_{\text {RPWL }}$	Min. Pulse Width Low (FO=256)	6.3		7.1		ns
$\mathrm{t}_{\text {RCKSW }}$	Maximum Skew ($\mathrm{FO}=128$)		1.9		2.1	ns
t_{RP}	Minimum Period (FO=256)	12.9		14.5		ns
$\mathrm{f}_{\text {RMAX }}$	Maximum Frequency ($\mathrm{FO}=256$)		75		65	MHz
Clock-to-Clock Skews						
tiohcksw	I/O Clock to H-Clock Skew	0.0	3.5	0.0	3.5	ns
tiorcksw	I/O Clock to R-Clock Skew	0.0	5.0	0.0	5.0	ns
$t_{\text {HRCKSW }}$	$\begin{aligned} & \text { H-Clock to R-Clock Skew } \\ & \text { (FO }=64 \text {) } \\ & \text { (FO }=50 \% \text { max.) } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$	ns

Note:

1. Delays based on 35 pF loading.

A32100DX Timing Characteristics

(Worst-Case Military Conditions)

Logic Module Propagation Delays	'-1' Speed		'Std' Speed		
Parameter Description	Min.	Max.	Min.	Max.	Units
Combinatorial Functions					
$t_{\text {PD }}$ Internal Array Module Delay $t_{\text {PDD }}$ Internal Decode Module Delay		$\begin{aligned} & \hline 3.1 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \hline 4.1 \\ & 4.3 \end{aligned}$	ns ns
Predicted Module Routing Delays					
$t_{\text {RD1 }}$ $F O=1$ Routing Delay $t_{\text {RD2 }}$ $F O=2$ Routing Delay $t_{\text {RD3 }}$ $F O=3$ Routing Delay $t_{\text {RD4 }}$ $F O=4$ Routing Delay $t_{\text {RD5 }}$ $F O=8$ Routing Delay $t_{\text {RDD }}$ Decode-to-Output Routing Delay		$\begin{aligned} & \hline 1.3 \\ & 1.9 \\ & 2.6 \\ & 3.3 \\ & 0.6 \\ & 0.5 \end{aligned}$		$\begin{aligned} & \hline 1.8 \\ & 2.6 \\ & 3.4 \\ & 4.3 \\ & 0.8 \\ & 0.6 \end{aligned}$	ns ns ns ns ns ns
Sequential Timing Characteristics					
$\mathrm{t}_{\text {CO }}$ Flip-Flop Clock-to-Output $\mathrm{t}_{\text {GO }}$ Latch Gate-to-Output $\mathrm{t}_{\text {SU }}$ Flip-Flop (Latch) Setup Time t_{H} Flip-Flop (Latch) Hold Time $\mathrm{t}_{\text {RO }}$ Flip-Flop (Latch) Reset to Output $\mathrm{t}_{\text {SUENA }}$ Flip-Flop (Latch) Enable Setup $\mathrm{t}_{\text {HENA }}$ Flip-Flop (Latch) Enable Hold $\mathrm{t}_{\text {WCLKA }}$ Flip-Flop (Latch) Clock Active Pulse Width $\mathrm{t}_{\text {WASYN }}$ Flip-Flop (Latch) Asynchronous Pulse Width	0.5 0.0 0.9 0.0 4.3 5.6	3.1 3.1 3.1	$\begin{aligned} & 0.6 \\ & 0.0 \\ & 1.2 \\ & 0.0 \\ & 5.8 \\ & 7.5 \end{aligned}$	4.1 4.1 4.1	ns

A32100DX Timing Characteristics (continued)

(Worst-Case Military Conditions)

Logic Module Timing		'-1 Speed		'Std' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
Synchronous SRAM Operations						
tra $t_{\text {WC }}$ $t_{\text {RCKHL }}$ $t_{\text {RCO }}$ $t_{\text {ADSU }}$ $t_{\text {ADH }}$ $t_{\text {RENSU }}$ $t_{\text {RENH }}$ $t_{\text {WENSU }}$ $t_{\text {WENH }}$ $t_{\text {BENS }}$ $t_{\text {BENH }}$	Read Cycle Time Write Cycle Time Clock High/Low Time Data Valid After Clock High/Low Address/Data Setup Time Address/Data Hold Time Read Enable Setup Read Enable Hold Write Enable Setup Write Enable Hold Block Enable Setup Block Enable Hold	$\begin{aligned} & \hline 8.8 \\ & 8.8 \\ & 4.4 \\ & 2.1 \\ & 0.0 \\ & 0.8 \\ & 4.4 \\ & 3.5 \\ & 0.0 \\ & 3.6 \\ & 0.0 \end{aligned}$	4.4	11.8 11.8 5.9 2.8 0.0 1.1 5.9 4.7 0.0 4.8 0.0	5.9	ns ns ns ns ns ns
Asynchronous SRAM Operations						
$t_{\text {RPD }}$ $t_{\text {RDADV }}$ $\mathrm{t}_{\text {ADSU }}$ $t_{\text {ADH }}$ $t_{\text {RENSUA }}$ $t_{\text {RENHA }}$ twensu twENH t_{DOH}	Asynchronous Access Time Read Address Valid Address/Data Setup Time Address/Data Hold Time Read Enable Setup to Address Valid Read Enable Hold Write Enable Setup Write Enable Hold Data Out Hold Time	$\begin{gathered} 11.5 \\ 2.1 \\ 0.0 \\ 0.8 \\ 4.4 \\ 3.5 \\ 0.0 \end{gathered}$	10.6	15.3 2.8 0.0 1.1 5.9 4.7 0.0	14.1	ns ns

A32100DX Timing Characteristics (continued)

(Worst-Case Military Conditions)

Input Module Propagation Delays			'-1' Speed		'Std' Speed		
Parameter	Description		Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\mathrm{INPY}}$	Input Data Pad to Y			1.9		2.6	ns
tingo	Input Latch Gate-to-Output ${ }^{1}$			4.0		5.3	ns
$\mathrm{t}_{\mathrm{INH}}$	Input Latch Hold ${ }^{1}$		0.0		0.0		ns
tinsu	Input Latch Setup ${ }^{1}$		0.7		0.9		ns
tILA	Latch Active Pulse Width ${ }^{1}$		6.1		8.1		ns
Input Module Predicted Routing Delays							
$\mathrm{t}_{\text {IRD1 }}$	FO=1 Routing Delay			2.2		2.9	ns
$\mathrm{t}_{\text {IRD2 }}$	FO=2 Routing Delay			2.8		3.8	ns
tIRD3	FO=3 Routing Delay			3.5		4.7	ns
$\mathrm{t}_{\text {IRD4 }}$	FO=4 Routing Delay			3.5		4.7	ns
$\mathrm{t}_{\text {IRD8 }}$	FO=8 Routing Delay			5.6		7.5	ns
Global Clock Network							
$\mathrm{t}_{\text {CKH }}$	Input Low to High	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 7.9 \end{aligned}$		$\begin{gathered} \hline 8.7 \\ 10.6 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {CKL }}$	Input High to Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$		$\begin{aligned} & 6.6 \\ & 8.8 \end{aligned}$		$\begin{gathered} 8.8 \\ 11.8 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PWH }}$	Minimum Pulse Width High	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 4.6 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 6.1 \end{aligned}$		ns ns
$t_{\text {PWL }}$	Minimum Pulse Width Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 4.6 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 6.1 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {t CKS }}$ w	Maximum Skew	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$		$\begin{aligned} & 1.8 \\ & 1.8 \end{aligned}$		$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	ns ns
$\mathrm{t}_{\text {SUEXT }}$	Input Latch External Setup	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {HEXT }}$	Input Latch External Hold	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.8 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 5.1 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
t_{P}	Minimum Period (1/fmax)	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$	$\begin{aligned} & 7.1 \\ & 7.9 \end{aligned}$		$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{f}_{\text {HMAX }}$	Maximum Datapath Frequency	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$		$\begin{aligned} & 140 \\ & 126 \end{aligned}$		105	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$

Note:

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determineactual worst-case performance.

A32100DX Timing Characteristics (continued)

(Worst-Case Military Conditions)

Output Module Timing		'-1' Speed		'Std' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
TTL Output Module Timing ${ }^{1}$						
$\mathrm{t}_{\text {DLH }}$	Data to Pad High		5.1		6.8	ns
$\mathrm{t}_{\text {DHL }}$	Data to Pad Low		6.3		8.3	ns
$\mathrm{t}_{\text {ENZH }}$	Enable Pad Z to High		6.6		8.8	ns
tenzl	Enable Pad Z to Low		7.1		9.4	ns
$\mathrm{t}_{\text {ENHz }}$	Enable Pad High to Z		11.5		15.3	ns
tenlz	Enable Pad Low to Z		11.5		15.3	ns
$\mathrm{t}_{\mathrm{GLLH}}$	G to Pad High		11.5		15.3	ns
$\mathrm{t}_{\mathrm{GHL}}$	G to Pad Low		12.4		16.6	ns
tisu	I/O Latch Output Setup	0.4		0.5		ns
tLH	I/O Latch Output Hold	0.0		0.0		ns
tico	I/O Latch Clock-Out (Pad-to-Pad) 32 I/O		11.5		15.4	ns
$\mathrm{t}_{\mathrm{ACO}}$	Array Latch Clock-Out (Pad-to-Pad) $32 \mathrm{I} / \mathrm{O}$		16.3		21.7	ns
$\mathrm{d}_{\text {TLH }}$	Capacitive Loading, Low to High		0.04		0.06	$\mathrm{ns} / \mathrm{pF}$
$\mathrm{d}_{\text {THL }}$	Capacitive Loading, High to Low		0.06		0.08	ns/pF
twdo	Hard-Wired Wide Decode Output		0.05		0.07	ns
CMOS Output Module Timing ${ }^{1}$						
$t_{\text {DLH }}$	Data to Pad High		6.3		8.3	ns
$\mathrm{t}_{\text {DHL }}$	Data to Pad Low		5.1		6.8	ns
$t_{\text {ENZH }}$	Enable Pad Z to High		6.6		8.8	ns
tenzl	Enable Pad Z to Low		7.1		9.4	ns
$\mathrm{t}_{\text {ENHz }}$	Enable Pad High to Z		11.5		15.3	ns
tenlz	Enable Pad Low to Z		11.5		15.3	ns
$\mathrm{t}_{\mathrm{GLH}}$	G to Pad High		11.5		15.3	ns
$\mathrm{t}_{\mathrm{GHL}}$	G to Pad Low		12.4		16.6	ns
tisu	I/O Latch Setup	0.4		0.5		ns
tLH	I/O Latch Hold	0.0		0.0		ns
tlco	I/O Latch Clock-Out (Pad-to-Pad) 32 I/O		13.7		18.2	ns
$\mathrm{t}_{\mathrm{ACO}}$	Array Latch Clock-Out (Pad-to-Pad) $32 \mathrm{I} / \mathrm{O}$		19.2		25.6	ns
$\mathrm{d}_{\text {TLH }}$	Capacitive Loading, Low to High		0.06		0.08	ns/pF
$\mathrm{d}_{\text {THL }}$	Capacitive Loading, High to Low		0.05		0.07	ns/pF
twdo	Hard-Wired Wide Decode Output		0.05		0.07	ns

Notes:

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-routetiming analysis or simulation is required to determineactual worst-case performance.
2. SSO information can be found in the "Si multaneously Switching Output Limits for Actel FPGAs" application note.

A32200DX Timing Characteristics

(Worst-Case Military Conditions)

Logic Module Propagation Delays	'-1 Speed		'Std' Speed		
Parameter Description	Min.	Max.	Min.	Max.	Units
Combinatorial Functions					
t PD Internal Array Module Delay tPDD Internal Decode Module Delay		$\begin{aligned} & 2.8 \\ & 3.4 \end{aligned}$		$\begin{aligned} & \hline 3.8 \\ & 4.6 \end{aligned}$	ns ns
Predicted Module Routing Delays					
$t_{\text {RD1 }}$ $F O=1$ Routing Delay $t_{\text {RD2 }}$ $F O=2$ Routing Delay $t_{\text {RD3 }}$ $F O=3$ Routing Delay $t_{\text {RD4 }}$ $F O=4$ Routing Delay $t_{\text {RD5 }}$ $F O=8$ Routing Delay $t_{\text {RDD }}$ Decode-to-Output Routing Delay		$\begin{aligned} & \hline 1.6 \\ & 2.3 \\ & 2.9 \\ & 3.5 \\ & 6.2 \\ & 0.8 \end{aligned}$		$\begin{aligned} & \hline 2.1 \\ & 3.1 \\ & 3.9 \\ & 4.7 \\ & 8.2 \\ & 1.1 \end{aligned}$	ns ns ns ns ns ns
Sequential Timing Characteristics					
$\mathrm{t}_{\text {CO }}$ Flip-Flop Clock-to-Output $\mathrm{t}_{\text {GO }}$ Latch Gate-to-Output $\mathrm{t}_{\text {SU }}$ Flip-Flop (Latch) Setup Time t_{H} Flip-Flop (Latch) Hold Time $\mathrm{t}_{\text {RO }}$ Flip-Flop (Latch) Reset to Output $\mathrm{t}_{\text {SUENA }}$ Flip-Flop (Latch) Enable Setup $\mathrm{t}_{\text {HENA }}$ Flip-Flop (Latch) Enable Hold $\mathrm{t}_{\text {WCLKA }}$ Flip-Flop (Latch) Clock Active Pulse Width $\mathrm{t}_{\text {WASYN }}$ Flip-Flop (Latch) Asynchronous Pulse Width	$\begin{aligned} & 0.5 \\ & 0.0 \\ & 0.9 \\ & 0.0 \\ & 4.3 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 2.8 \end{aligned}$ 3.2	$\begin{aligned} & 0.6 \\ & 0.0 \\ & 1.2 \\ & 0.0 \\ & 5.8 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 3.8 \end{aligned}$ 4.2	ns

A32200DX Timing Characteristics (continued)

(Worst-Case Military Conditions)

Logic Module Timing		'-1 Speed		'Std' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
Synchronous SRAM Operations						
t_{RC} twc $t_{\text {RCKHL }}$ $\mathrm{t}_{\mathrm{RCO}}$ $\mathrm{t}_{\mathrm{ADSU}}$ $t_{\text {ADH }}$ $t_{\text {RENSU }}$ $t_{\text {RENH }}$ twensu $t_{\text {WENH }}$ $t_{\text {BENS }}$ $t_{\text {BENH }}$	Read Cycle Time Write Cycle Time Clock High/Low Time Data Valid After Clock High/Low Address/Data Setup Time Address/Data Hold Time Read Enable Setup Read Enable Hold Write Enable Setup Write Enable Hold Block Enable Setup Block Enable Hold	$\begin{aligned} & \hline 8.8 \\ & 8.8 \\ & 4.4 \\ & 2.1 \\ & 0.0 \\ & 0.8 \\ & 4.4 \\ & 3.5 \\ & 0.0 \\ & 3.6 \\ & 0.0 \end{aligned}$	4.4	$\begin{gathered} \hline 11.8 \\ 11.8 \\ 5.9 \\ \\ 2.8 \\ 0.0 \\ 1.1 \\ 5.9 \\ 4.7 \\ 0.0 \\ 4.8 \\ 0.0 \end{gathered}$	5.9	ns ns
Asynchronous SRAM Operations						
$\mathrm{t}_{\mathrm{RPD}}$ trdadV $\mathrm{t}_{\text {ADSU }}$ $\mathrm{t}_{\text {ADH }}$ $t_{\text {RENSUA }}$ trenha twensu ${ }^{\text {t WENH }}$ t_{DOH}	Asynchronous Access Time Read Address Valid Address/Data Setup Time Address/Data Hold Time Read Enable Setup to Address Valid Read Enable Hold Write Enable Setup Write Enable Hold Data Out Hold Time	$\begin{gathered} 11.5 \\ 2.1 \\ 0.0 \\ 0.8 \\ 4.4 \\ 3.5 \\ 0.0 \end{gathered}$	10.6	$\begin{gathered} 15.3 \\ 2.8 \\ 0.0 \\ 1.1 \\ 5.9 \\ 4.7 \\ 0.0 \end{gathered}$	14.1 2.1	ns ns ns ns ns ns ns ns ns

A32200DX Timing Characteristics (continued)

(Worst-Case Military Conditions)

Input Module Propagation Delays			'-1' Speed		'Std' Speed		
Parameter	Description		Min.	Max.	Min.	Max.	Units
$\mathrm{t}_{\text {INPY }}$	Input Data Pad to Y			1.9		2.6	ns
tingo	Input Latch Gate-to-Output ${ }^{1}$			4.6		6.0	ns
$\mathrm{t}_{\mathrm{INH}}$	Input Latch Hold ${ }^{1}$		0.0		0.0		ns
tinsu	Input Latch Setup ${ }^{1}$		0.7		0.9		ns
$t_{\text {ILA }}$	Latch Active Pulse Width ${ }^{1}$		6.1		8.1		ns
Input Module Predicted Routing Delays							
$\mathrm{t}_{\text {IRD1 }}$	FO=1 Routing Delay			2.6		3.5	ns
$\mathrm{t}_{\text {IRD2 }}$	FO=2 Routing Delay			3.4		4.6	ns
tIRD3	FO=3 Routing Delay			4.6		6.1	ns
$\mathrm{t}_{\text {IRD4 }}$	FO=4 Routing Delay			5.4		7.2	ns
$\mathrm{t}_{\text {IRD5 }}$	FO=8 Routing Delay			7.0		9.3	ns
Global Clock Network							
$\mathrm{t}_{\text {CKH }}$	Input Low to High	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$		$\begin{aligned} & \hline 7.3 \\ & 8.5 \end{aligned}$		$\begin{gathered} \hline 9.8 \\ 11.3 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {CKL }}$	Input High to Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$		$\begin{aligned} & 7.2 \\ & 9.3 \end{aligned}$		$\begin{gathered} 9.6 \\ 12.5 \end{gathered}$	ns ns
$t_{\text {PWH }}$	Minimum Pulse Width High	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.9 \end{aligned}$		$\begin{aligned} & 4.3 \\ & 5.2 \end{aligned}$		ns ns
$t_{\text {PWL }}$	Minimum Pulse Width Low	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.9 \end{aligned}$		$\begin{aligned} & 4.3 \\ & 5.2 \end{aligned}$		ns ns
$\mathrm{t}_{\text {CKSW }}$	Maximum Skew	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$		$\begin{aligned} & 1.8 \\ & 1.8 \end{aligned}$		$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	ns ns
$\mathrm{t}_{\text {SUEXT }}$	Input Latch External Setup	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {HEXT }}$	Input Latch External Hold	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.8 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 5.1 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
t_{P}	Minimum Period (1/fmax)	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 6.8 \end{aligned}$		$\begin{aligned} & 7.7 \\ & 9.1 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{f}_{\text {HMAX }}$	Maximum Datapath Frequency	$\begin{aligned} & \mathrm{FO}=32 \\ & \mathrm{FO}=635 \end{aligned}$		$\begin{aligned} & 172 \\ & 147 \end{aligned}$		$\begin{aligned} & 130 \\ & 110 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$

Note:

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determineactual worst-case performance.

A32200DX Timing Characteristics (continued)

(Worst-Case Military Conditions)

Output Module Timing		'-1' Speed		'Std' Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Units
TTL Output Module Timing ${ }^{1}$						
$\mathrm{t}_{\text {DLH }}$	Data to Pad High		5.1		6.8	ns
$\mathrm{t}_{\text {DHL }}$	Data to Pad Low		6.3		8.3	ns
$\mathrm{t}_{\text {ENZH }}$	Enable Pad Z to High		6.6		8.8	ns
$\mathrm{t}_{\text {ENZL }}$	Enable Pad Z to Low		7.1		9.5	ns
$\mathrm{t}_{\text {ENHz }}$	Enable Pad High to Z		11.5		15.3	ns
tenlz	Enable Pad Low to Z		11.5		15.3	ns
$\mathrm{t}_{\mathrm{GLLH}}$	G to Pad High		11.5		15.3	ns
t_{GH}	G to Pad Low		12.3		16.5	ns
tisu	I/O Latch Output Setup	0.4		0.5		ns
tLH	I/O Latch Output Hold	0.0		0.0		ns
tico	I/O Latch Clock-Out (Pad-to-Pad) 32 I/O		11.5		15.4	ns
$\mathrm{t}_{\mathrm{ACO}}$	Array Latch Clock-Out (Pad-to-Pad) $32 \mathrm{I} / \mathrm{O}$		16.3		21.7	ns
$\mathrm{d}_{\text {TLH }}$	Capacitive Loading, Low to High		0.04		0.06	$\mathrm{ns} / \mathrm{pF}$
$\mathrm{d}_{\text {THL }}$	Capacitive Loading, High to Low		0.06		0.08	ns/pF
twdo	Hard-Wired Wide Decode Output		0.05		0.07	ns
CMOS Output Module Timing ${ }^{1}$						
$t_{\text {DLH }}$	Data to Pad High		5.1		6.8	ns
$\mathrm{t}_{\text {DHL }}$	Data to Pad Low		6.3		8.3	ns
$t_{\text {ENZH }}$	Enable Pad Z to High		6.6		8.8	ns
tenzl	Enable Pad Z to Low		7.1		9.5	ns
$\mathrm{t}_{\text {ENHz }}$	Enable Pad High to Z		11.5		15.3	ns
tenlz	Enable Pad Low to Z		11.5		15.3	ns
$\mathrm{t}_{\mathrm{GLH}}$	G to Pad High		11.5		15.3	ns
$\mathrm{t}_{\mathrm{GHL}}$	G to Pad Low		12.3		16.5	ns
tisu	I/O Latch Setup	0.4		0.5		ns
tLH	I/O Latch Hold	0.0		0.0		ns
tlco	I/O Latch Clock-Out (Pad-to-Pad) 32 I/O		13.7		18.2	ns
$\mathrm{t}_{\mathrm{ACO}}$	Array Latch Clock-Out (Pad-to-Pad) $32 \mathrm{I} / \mathrm{O}$		19.2		25.6	ns
$\mathrm{d}_{\text {TLH }}$	Capacitive Loading, Low to High		0.06		0.08	ns/pF
$\mathrm{d}_{\text {THL }}$	Capacitive Loading, High to Low		0.05		0.07	ns/pF
twdo	Hard-Wired Wide Decode Output		0.05		0.07	ns

Notes:

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-routetiming analysis or simulation is required to determineactual worst-case performance.
2. SSO information can be found in the "Si multaneously Switching Output Limits for Actel FPGAs" application note.

Package Pin Assignments

84-Pin CPGA (Top View)

Function	A1010B Pin Number	A1020B Pin Number
CLK or I/O	F9	F9
DCLK or I/O	C10	C10
GND	B7, E2, E3, F10, G10, K5	B7, E2, E3, F10, G10, K5
MODE	E11	E11
N/C (No Connection $)$	B1, B2, C1, C2, C11, D10, D11, J2, J10,	B2
	K1, K10, K11, L1	A11
PRA or I/O	A11	B10
PRB or I/O	B10	B11
SDI or I/O	B11	B5, E9, E10, F1, G2, K2, K7
$V_{\text {CC }}$	B5, E9, E10, F1, G2, K2, K7	

Notes:

1. MODE should beterminated to GND through a 10K resistor to enableActi onprobe usage, otherwi seit can be terminated di rectly to GND.
2. Unused I / O pins are designated as outputs by ALS and are driven low.
3. All unassigned pins are available for useas I/Os

Package Pin Assignments (continued)

132-Pin CPGA (Top View)

Orientation Pin

Function	A1240A Pin Number
CLKA or I/O	B7
CLKB or I/O	B6
DCLK or I/O	C3
GND	B5, B9, C5, C9, E3, E11, E12, F4, H13, J2, J3, J11, K12, L5, L9, M9
MODE	A1
PRA or I/O	B8
PRB or I/O	C6
SDI or I/O	B12
V_{CC}	C7, D7, G2, G3, G4, G10, G11, G12, G13, K7, L7

Notes:

1. Unused I/O pins are designated as outputs by ALS and are driven low.
2. All unassigned pins are available for useasl/Os.
3. MODE should beterminated to GND through a 10 K resistor to enableActionprobe usage, otherwi seit can be terminated di rectly to GND.

Package Pin Assignments (continued)

133-Pin CPGA (Top View)

Function	A1425A Pin Number
CLKA or I/O	D7
CLKB or I/O	B6
DCLK or I/O	D4
GND	A2, C3, C7, C11, C12, F10, G3, G11, L3, L7, L11, M3, N12
HCLKA or I/O	K7
IOCLK or I/O	C10
IOPCL or I/O	L10
MODE	E3
NC	A1, A7, A13, G1, G13, N1, N7, N13
PRA or I/O	A6
PRB or I/O	L6
SDI or I/O	C2
$V_{\text {CC }}$	B2, B7, B12, E11, G2, G12, J2, J12, M2, M7, M12

Notes:

1. Unused I / O pins are designated as outputs by ALS and are driven Iow.
2. All unassigned pins are available for useas I/Os.
3. MODE should beterminated to GND through a 10K resistor to enableActionprobe usage, otherwiseit can be terminated directly to GND.

Package Pin Assignments (continued)

176-Pin CPGA (Top View)

Function	A1280A, A1280XL Pin Number
CLKA or I/O	A9
CLKB or I/O	B8
DCLK or I/O	B3
GND	C8, D4, D6, D10, D12, E4, E12, F12, G4, H4, H12, J12, J13, K4, K12, L4, M4, M6, M8, M10, M12
MODE	C3
PRA or I/O	C9
PRB or I/O	D7
SDI or I/O	B14
$V_{\text {CC }}$	D5, D8, D11, F4, G12, H2, H3, H13, H14, J4, J14, M5, M11, N8

Notes:

1. Unused I/O pins aredesignated as outputs by ALS and aredriven Iow.
2. All unassigned pins are available for useasI/Os.
3. MODE should beterminated to GND through a 10 K resistor to enable Actionprobe usage, otherwi seit can be terminated directly to GND.

Package Pin Assignments (continued)

207-Pin CPGA (Top View)

Function	A1460A Pin Number
CLKA or I/O	K1
CLKB or I/O	J3
DCLK or I/O	E4
GND	C15, D4, D5, D9, D14, J4, J14, P3, P4, P7, P9, P14, R15
HCKL or I/O	J15
IOCLK or I/O	P5
IOPCL or I/O	N14
MODE	D7
NC	A1, A2, A16, A17, B1, B17, C1, C2, S1, S3, S17, T1, T2, T16, T17
PRA OR I/O	H1
PRB or I/O	K16
SDI or I/O	C3
$V_{\text {CC }}$	B2, B9, B16, D11, J2, J16, P12, S2, S9, S16, T5

Notes:

1. Unused I / O pins are designated as outputs by ALS and are driven Iow.
2. All unassigned pins are available for useas I/Os.
3. MODE should beterminated to GND through a 10K resistor to enableActi onprobe usage, otherwiseit can be terminated directly to GND.

Package Pin Assignments (continued)

257-Pin CPGA (Top View)

Function	A14100A Pin Number
CLKA or I/O	L4
CLKB or I/O	L5
DCLK or I/O	E4
GND	B16, C4, D4, D10, D16, E11, J5, K4, K16, L15, R4, T4, T10, T16, T17, X7
HCLK or I/O	J16
IOCLK or I/O	T5
IOPCL or I/O	R16
MODE	A5
NC	E5
PRA OR I/O	J1
PRB or I/O	J17
SDI or I/O	B4
$V_{\text {CC }}$	C3, C10, C13, C17, K3, K17, V3, V7, V10, V17, X14

Notes:

1. Unused I/O pins aredesignated as outputs by ALS and aredriven low.
2. All unassigned pins are available for use as I/Os.
3. MODE should beterminated to GND through a 10 K resistor to enable Acti onprobe usage, otherwiseit can be terminated di rectly to GND.

Package Pin Assignments (continued)

84-Pin CQFP (Top View)

Function	A1020B Pin Number
CLKA or I/O	53
DCLK or I/O	62
GND	$7,8,29,49,50,71$
MODE	55
N/C (No Connection)	1
PRA or I/O	63
PRB or I/O	64
SDI or I/O	61
$V_{\text {CC }}$	$14,15,22,35,56,57,77$

Notes:

1. MODE should beterminated to GND through a 1OK resistor to enableActionprobe usage, other wi seit can be terminated di rectly to GND.
2. Unused I / O pins aredesignated as outputs by ALS and are driven low.
3. All unassigned pins are available for use as I/Os

Package Pin Assignments (continued)

84-Pin CQFP (Top View)

Notes:

1. Unused I/O pins aredesignated as outputs by ALS and are driven low.
2. All unassigned pins are available for use as I/Os.
3. MODE should beterminated to GND through a 10K resistor to enableActi onprobe usage, otherwiseit can be terminated di rectly to GND.

84-Pin CQFP (continued)

Pin Number	A32100DX Function
1	GND
2	MODE
7	V_{CC}
10	GND
11	V_{CC}
12	V_{CC}
17	GND
22	GND
25	I/O (WD)
26	I/O (WD)
28	QCLKA, I/O
29	GND
30	I/O (WD)
32	GND
33	V_{CC}
34	I/O (WD)
35	I/O (WD)
36	QCLKB, I/O
37	I/O (WD)
38	GND
39	I/O (WD)
40	I/O (WD)
41	I/O (WD)
42	SDO, I/O
43	GND
50	GND
51	TCK, I/O
52	GND

Pin Number	A32100DX Function
53	V_{CC}
54	$V_{C C}$
55	$V_{C C}$
56	$V_{C C}$
59	GND
63	GND
64	SDI, I/O
65	I/O (WD)
66	I/O (WD)
67	I/O (WD)
68	I/O (WD)
69	QCLKD, I/O
70	I/O (WD)
71	I/O (WD)
72	PRA, I/O
73	CLKA, I/O
74	V_{CC}
75	GND
76	CLKB, I/O
77	PRB, I/O
78	I/O (WD)
79	I/O (WD)
80	QCLKC, I/O
81	GND
82	I/O (WD)
83	I/O (WD)
84	DCLK, I/O

Package Pin Assignments (continued)

132-Pin CQFP (Top View)

Function	A1425A Pin Number
CLKA or I/O	116
CLKB or I/O	117
DCLK or I/O	131
GND	$2,10,26,36,42,58,65,74,90,92,101,106,122$
HCLK or I/O	50
IOCLK or I/O	98
IOPCL or I/O	64
MODE	9
NC	$1,34,66,67,99,100,132$
PRA or I/O	118
PRB or I/O	48
SDI or I/O	3
VCC	$11,22,27,43,59,75,78,89,91,107,123$

Notes:

1. Unused I/O pins aredesignated as outputs by ALS and aredriven low.
2. All unassigned pins are available for useasI/Os.
3. MODE should beterminated to GND through a 10 K resistor to enable Actionprobe usage, other wi seit can be terminated di rectly to GND.

Package Pin Assignments (continued)

172-Pin CQFP (Top View)

Function	A1280A, A1280XL Pin Number
CLKA or I/O	150
CLKB or I/O	154
DCLK or I/O	171
GND	$7,17,22,32,37,55,65,75,98,103,106,108,118,123,141,152,161$
MODE	1
PRA or I/O	148
PRB or I/O	156
SDI or I/O	131
V $_{\text {CC }}$	$12,23,24,27,66,80,107,109,110,113,136,151,166$

Notes:

1. Unused I/O pins aredesignated as outputs by ALS and aredriven low.
2. All unassigned pins are available for useas I/Os.
3. MODE should beterminated to GND through a 10 K resistor to enable Actionprobe usage, otherwi seit can beterminated directly to GND.

Package Pin Assignments (continued)

196-Pin CQFP (Top View)

Function	A1460A Pin Number
CLKA or I/O	172
CLKB or I/O	173
DCLK or I/O	196
GND	$1,13,37,51,52,64,86,98,101,112,138,139,149,162,183,193$
HCLK or I/O	77
IOCLK or I/O	148
IOPCL or I/O	100
MODE	11
PRA or I/O	174
PRB or I/O	75
SDI or I/O	2
$V_{\text {CC }}$	$12,38,39,59,94,110,111,137,140,155,189$

Notes:

1. Unused I/O pins aredesignated as outputs by ALS and aredriven low.
2. All unassigned pins are available for useasI/Os.
3. MODE should beterminated to GND through a 10 K resistor to enableActionprobe usage, otherwi seit can be terminated di rectly to GND.

Package Pin Assignments (continued)

208-Pin CQFP (Top View)

Notes:

1. Unused I / O pins are designated as outputs by ALS and are driven low.
2. All unassigned pins are available for useas I/Os.
3. MODE should beterminated to GND through a 10K resistor to enableActionprobe usage, other wi seit can be terminated di rectly to GND.

208-Pin CQFP (continued)

Pin Number	A32100DX Function
1	GND
2	V_{CC}
3	MODE
17	$\mathrm{V}_{\text {CC }}$
22	GND
27	GND
28	V_{CC}
29	V_{CC}
32	V_{CC}
52	GND
53	GND
54	TMS, I/O
55	TDI, I/O
57	I/O (WD)
58	I/O (WD)
60	V_{CC}
65	QCLKA, I/O
66	I/O (WD)
67	I/O (WD)
70	I/O (WD)
71	I/O (WD)
78	GND
79	V_{CC}
80	V_{Cc}
85	I/O (WD)
86	I/O (WD)
91	QCLKB, I/O
93	I/O (WD)
94	I/O (WD)
98	V_{CC}
100	I/O (WD)
101	I/O (WD)
103	SDO, I/O
105	GND
106	V_{Cc}

Pin Number	A32100DX Function
126	GND
128	TCK, I/O
129	GND
130	V_{CC}
131	GND
132	V_{CC}
133	V_{CC}
136	V_{CC}
150	GND
157	GND
159	SDI, I/O
161	I/O (WD)
162	I/O (WD)
164	V_{CC}
168	I/O (WD)
169	I/O (WD)
171	QCLKD, I/O
176	I/O (WD)
177	I/O (WD)
178	PRA, I/O
180	CLKA, I/O
182	V_{CC}
183	V_{CC}
184	GND
186	CLKB, I/O
188	PRB, I/O
190	I/O (WD)
191	I/O (WD)
194	I/O (WD)
195	I/O (WD)
196	QCLKC, I/O
202	V_{CC}
203	I/O (WD)
204	I/O (WD)
207	DCLK, I/O

Package Pin Assignments (continued)

256-Pin CQFP (Top View)

Function	A14100A Pin Number
CLKA or I / O	219
CLKB or I / O	220
DCLK or I/O	256
GND	$1,29,31,59,91,93,110,128,158,160,175,176,189,222,224,240$
HCLK or I/O	96
IOCLK or I/O	188
IOPCL or I/O	127
MODE	11
PRA or I/O	225
PRB or I/O	90
SDI or I / O	2
$V_{\text {CC }}$	$28,30,46,92,94,141,159,161,174,221,223$

Notes:

1. Unused I/O pins aredesignated as outputs by ALS and are driven low.
2. All unassigned pins are available for useas I/Os.
3. MODE should beterminated to GND through a 10K resistor to enableActionprobe usage, other wi seit can be terminated directly to GND.

Package Pin Assignments (continued)

256-Pin CQFP (Top View)

Notes:

1. NC: Denotes No Connection
2. MODE should beterminated to GND through a 10 K resistor to enableActi onprobe usage, otherwiseit can be terminated di rectly to GND.

256-Pin CQFP (continued)

Pin Number	$\begin{aligned} & \text { A32200DX } \\ & \text { Function } \end{aligned}$
1	NC
2	GND
3	I/O
10	GND
11	I/O
12	I/O
26	VCC
29	VCC
30	VCC
31	GND
32	VCC
33	GND
34	TCK, I/O
36	GND
45	I/O
46	I/O
47	I/O
48	GND
60	VCC
61	GND
62	GND
63	NC
64	NC
65	NC
67	SDO, I/O
69	I/O (WD)
70	I/O (WD)
72	VCC
76	I/O (WD)
77	GND
78	I/O (WD)
80	QCLKB, I/O
86	I/O
87	I/O (WD)
88	I/O (WD)
89	I/O
92	I/O
93	I/O
94	I/O

Pin Number	$\begin{aligned} & \text { A32200DX } \\ & \text { Function } \end{aligned}$
95	VCC
96	VCC
97	GND
98	GND
105	I/O (WD)
106	I/O (WD)
109	I/O (WD)
110	I/O (WD)
111	I/O
112	QCLKA, I/O
114	GND
119	VCC
121	I/O (WD)
122	I/O (WD)
124	I/O
125	TDI, I/O
126	TMS, I/O
127	GND
128	NC
129	NC
130	NC
131	GND
138	I/O
139	GND
140	I/O
152	I/O
155	VCC
158	VCC
159	VCC
160	GND
165	GND
170	VCC
171	I/O
173	I/O
180	GND
185	I/O
188	MODE
189	VCC
190	GND

Pin Number	A32200DX Function
191	NC
192	NC
193	NC
195	DCLK, I/O
198	I/O
199	I/O (WD)
200	I/O (WD)
201	VCC
206	GND
207	I/O
209	QCLKC, I/O
211	I/O (WD)
212	I/O (WD)
215	I/O (WD)
216	I/O (WD)
218	PRB, I/O
220	CLKB, I/O
222	GND
223	GND
224	VCC
225	VCC
227	CLKA, I/O
228	I/O
229	PRA, I/O
230	I/O
231	I/O
232	I/O (WD)
233	I/O (WD)
238	I/O
240	QCLKD, I/O
242	I/O (WD)
243	GND
244	I/O (WD)
248	VCC
250	I/O (WD)
251	I/O (WD)
253	SDI, I/O
255	GND
256	NC

Package Mechanical Drawings

133-Pin Ceramic Pin Grid Array (CPGA)

Notes:

1. All dimensions are in inches unless otherwise stated.
2. BSC-Basic Spacing between Centers.

Package Mechanical Drawings (continued)

207-Pin CPGA

Notes:

1. All dimensions arein inches unless otherwise stated.
2. BSC-Basic Spacing between Centers.

Package Mechanical Drawings (continued)

257-Pin CPGA

Notes:

1. All dimensions arein inches unless otherwisestated.
2. BSC-Basic Spacing between Centers.

Package Mechanical Drawings (continued)

Ceramic Quad Flatpack (84-Pin CQFP)

Notes:

1. Dimensions are in inches.
2. Seal Ring and Lid are connected to Ground.
3. Lead material is Kovar with gold plate over ni ckel.
4. Packages are shi pped unformed with the ceramic tie bar in a test carrier.

Package Mechanical Drawings (continued)

Ceramic Quad Flatpack (CQFP-Cavity Up)

Notes:

1. All dimensions arein inches except CQ208 and CQ256 which are in millimeters.
2. Outsideleadframeholes (from dimension H) arecircular for theCQ208 and CQ256.
3. Seal ring and lid are connected to Ground.
4. Lead material is Kovar with minimum 60 mi coniches gold over nickel.
5. Packages are shi pped unformed with the ceramic tie bar.
6. 32200DX - CQ208 has heat sink on the backside.

Ceramic Quad Flatpack (CQFP)

	CQ84			CQ132			CQ172			CQ196		
Symbol	Min	Nom.	Max									
A	0.070	0.090	0.100	0.094	0.105	0.116	0.094	0.105	0.116	0.094	0.105	0.116
A1	0.060	0.075	0.080	0.080	0.090	0.100	0.080	0.090	0.100	0.080	0.090	0.100
b	0.008	0.010	0.012	0.007	0.008	0.010	0.007	0.008	0.010	0.007	0.008	0.010
c	0.004	0.006	0.008	0.004	0.006	0.008	0.004	0.006	0.008	0.004	0.006	0.008
D1/E1	0.640	0.650	0.660	0.940	0.950	0.960	1.168	1.180	1.192	1.336	1.350	1.364
D2/E2	0.500 BSC			0.800 BSC			1.050 BSC			1.200 BSC		
e	0.025 BSC											
F	0.130	0.140	0.150	0.325	0.350	0.375	0.175	0.200	0.225	0.175	0.200	0.225
H	1.460 BSC			2.320 BSC			2.320 BSC			2.320 BSC		
K	-			2.140 BSC			2.140 BSC			2.140 BSC		
L1	1.595	1.600	1.615	2.485	2.500	2.505	2.485	2.495	2.505	2.485	2.495	2.505

Note:

1. All dimensions are in inches except CQ208 and CQ256, which is in millimeters.
2. BSC equals Basic Spacing between Centers. This is a theor etical true position dimension and so has no tolerance.

Ceramic Quad Flatpack (CQFP) (continued)

	CQ208			CQ256		
Symbol	Min	Nom.	Max	Min	Nom.	Max
A	2.78	3.17	3.56	2.28	2.67	3.06
A1	2.43	2.79	3.15	1.93	2.29	2.65
b	0.18	0.20	0.22	0.18	0.20	0.22
C	0.11	0.15	0.17	0.11	0.15	0.18
D1/E1	28.96	29.21	29.46	35.64	36.00	36.36
D2/E2	25.5 BSC			31.5 BSC		
e	0.50 BSC			0.50 BSC		
	7.05	7.75	8.45	7.05	7.75	8.45
H	70.00 BSC			70.00 BSC		
K	65.90 BSC			65.90 BSC		
	74.60	75.00	75.40	74.60	75.00	75.40

Note:

1. All dimensions arein inches except CQ208 and CQ256, which is in millimeters.
2. BSC equals Basic Spacing between Centers. This is a theoretical true position dimension and so has no tol erance.

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.actel.com

Actel Europe Ltd.
Daneshill House, Lutyens Close
Basingstoke, Hampshire RG24 8AG
United Kingdom
Tel: +44.(0)1256.305600
Fax: +44.(0)1256.355420

Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086 USA
Tel: 408.739.1010
Fax: 408.739.1540

Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81.(0)3.3445.7671
Fax: +81.(0)3.3445.7668

