Viewlogic® Workview® Office

Interface Guide

Windows® Environments
Table of Contents

Introduction ... ix
Document Organization ... ix
Document Assumptions ... ix
Document Conventions .. x
Actel Manuals .. x
On-Line Help .. xiii

1 Setup ... 1
Software Requirements ... 1
Actel Libraries ... 1
Migration Libraries ... 1
User Setup .. 2
Project Setup ... 5

2 Actel-Viewlogic Design Flow 7
Schematic-Based Design Flow Illustrated 7
Schematic-Based Design Flow Overview 8
VHDL Synthesis-Based Design Flow Illustrated 10
VHDL Synthesis-Based Design Flow Overview 11

3 Actel-Viewlogic Design Considerations 15
Naming Conventions .. 15
Adding Pins to the Schematic 15
Generating a Top-Level Symbol 16
Buried I/O .. 16
Adding Power and Ground 16
Sheets and Symbols ... 16
Assigning Pins in a Schematic 17
Adding ACTgen Macros ... 17
Adding ACTmap Blocks ... 18
Adding FPGA Express Blocks 19
Generating an EDIF Netlist 19
Generating a Structural VHDL Netlist 20
Table of Contents

Using FPGA Express with SpeedWave ... 21
Using FPGA Express with ViewSim ... 21

4 Simulation Using ViewSim ... 23
 Functional Simulation ... 23
 Timing Simulation .. 24
 Multichip Simulation ... 24

5 Simulation Using SpeedWave .. 27
 Behavioral Simulation .. 27
 Structural Simulation ... 28
 Timing Simulation .. 29

A Product Support ... 31
 Actel U.S. Toll-Free Line .. 31
 Customer Service .. 31
 Customer Applications Center .. 32
 Guru Automated Technical Support 32
 Web Site ... 32
 FTP Site ... 33
 Electronic Mail .. 33
 Worldwide Sales Offices .. 34

Index ... 35
List of Figures

Customize Tools Menu Dialog Box ... 3
Actel-Viewlogic Schematic-Based Design Flow 7
Actel-Viewlogic VHDL Synthesis-Based Design Flow 10
Adding Pins to a design ... 15
Input/Output Ports ... 16
Directory Structure for Multichip Simulation 25
Introduction

The Viewlogic Workview Office Interface Guide contains information about using the Viewlogic Workview Office CAE software tools with the Actel Designer Series FPGA development software tools to create designs for Actel devices. Refer to the Designing with Actel manual for additional information about using the Designer series software and the Viewlogic documentation for information about using the Workview Office software.

Document Organization

The Viewlogic Workview Office Interface Guide is divided into the following chapters:

Chapter 1 - Setup contains information and procedures about setting up the Workview Office software for use in creating Actel designs.

Chapter 2 - Design Flow illustrates and describes the design flow for creating Actel designs using Workview Office software and Designer Series software.

Chapter 3 - Actel-Viewlogic Design Considerations contains information and procedures to assist you in creating Actel designs with Workview Office and Designer Series software.

Chapter 4 - Simulation Using ViewSim® contains information and procedures about simulating Actel designs with ViewSim.

Chapter 5 - Simulation Using SpeedWave™ contains information and procedures about simulating Actel designs with SpeedWave.

Appendix A - Product Support provides information about contacting Actel for customer and technical support.

Document Assumptions

The information in this guide is based on the following assumptions:

1. You have installed the Designer Series software in the “C:\Actel” directory.
2. You have installed the Workview Office software in the “C:\Wvoffice” directory.
3. You are familiar with PCs and Windows operating environments.
4. You are familiar with FPGA architecture and FPGA design software.

Document Conventions

The following conventions are used throughout this manual.

Information that is meant to be input by the user is formatted as follows:

```
keyboard input
```

The content of a file is formatted as follows:

```
file contents
```

Messages that are displayed on the screen appear as follows:

```
Screen Message
```

The `<act_fam>` variable represents an Actel device family. To reference an actual family, substitute the name of the Actel device when you see this variable. Available families are act1, act2 (for ACT 2 and 1200XL devices), act3, 3200dx, 40mx, 42mx, and 54sx.

The `<vhd_fam>` variable represents Compiled VHDL libraries. To reference an actual compiled library, substitute the name of the library (act1, act2 (for ACT 2 and 1200XL devices), act3, a3200dx, a40mx, a42mx, and a54sx) when you see this variable. Compiled VHDL libraries must begin with an alpha character.

Actel Manuals

The Designer Series software includes printed and on-line manuals. The on-line manuals are in PDF format on the CD-ROM in the “/manuals” directory. These manuals are also installed onto your
system when you install the Designer software. To view the on-line manuals, you must install Adobe® Acrobat Reader® from the CD-ROM.

The Designer Series includes the following manuals, which provide additional information on designing Actel FPGAs:

Designing with Actel. This manual describes the design flow and user interface for the Actel Designer Series software, including information about using the ACTgen Macro Builder and ACTmap VHDL Synthesis software.

Actel HDL Coding Style Guide. This guide provides preferred coding styles for the Actel architecture and information about optimizing your HDL code for Actel devices.

ACTmap VHDL Synthesis Methodology Guide. This guide contains information, optimization techniques, and procedures to assist designers in the design of Actel devices using ACTmap VHDL.

Silicon Expert User’s Guide. This guide contains information and procedures to assist designers in the use of Actel’s Silicon Expert tool.

DeskTOP Interface Guide. This guide contains information about using the integrated VeriBest® and Synplicity® CAE software tools with the Actel Designer Series FPGA development tools to create designs for Actel Devices.

Cadence® Interface Guide. This guide contains information and procedures to assist designers in the design of Actel devices using Cadence CAE software and the Designer Series software.

Mentor Graphics® Interface Guide. This guide contains information and procedures to assist designers in the design of Actel devices using Mentor Graphics CAE software and the Designer Series software.

MOTIVE™ Static Timing Analysis Interface Guide. This guide contains information and procedures to assist designers in the use of the MOTIVE software to perform static timing analysis on Actel designs.

Synopsys® Synthesis Methodology Guide. This guide contains preferred HDL coding styles and information and procedures to assist designers in the design of Actel devices using Synopsys CAE software and the Designer Series software.
Viewlogic Powerview® Interface Guide. This guide contains information and procedures to assist designers in the design of Actel devices using Powerview CAE software and the Designer Series software.

Viewlogic Workview Office Interface Guide. This guide contains information and procedures to assist designers in the design of Actel devices using Workview Office CAE software and the Designer Series software.

VHDL Vital Simulation Guide. This guide contains information and procedures to assist designers in simulating Actel designs using a Vital compliant VHDL simulator.

Verilog Simulation Guide. This guide contains information and procedures to assist designers in simulating Actel designs using a Verilog simulator.

Activator and APS Programming System Installation and User’s Guide. This guide contains information about how to program and debug Actel devices, including information about using the Silicon Explorer diagnostic tool for system verification.

Silicon Sculptor User’s Guide. This guide contains information about how to program Actel devices using the Silicon Sculptor software and device programmer.

Silicon Explorer Quick Start. This guide contains information about connecting the Silicon Explorer diagnostic tool and using it to perform system verification.

Designer Series Development System Conversion Guide UNIX® Environments. This guide describes how to convert designs created in Designer Series versions 3.0 and 3.1 for UNIX to be compatible with later versions of Designer Series.

Designer Series Development System Conversion Guide Windows Environments. This guide describes how to convert designs created in Designer Series versions 3.0 and 3.1 for Windows to be compatible with later versions of Designer Series.

Actel FPGA Data Book. This guide contains detailed specifications on Actel device families. Information such as propagation delays, device
package pinout, derating factors, and power calculations are found in this guide.

Macro Library Guide. This guide provides descriptions of Actel library elements for Actel device families. Symbols, truth tables, and module count are included for all macros.

A Guide to ACTgen Macros. This Guide provides descriptions of macros that can be generated using the Actel ACTgen Macro Builder software.

On-Line Help

The Designer Series software comes with on-line help. On-line help specific to each software tool is available in Designer, ACTgen, ACTmap, Silicon Expert, Silicon Explorer, Silicon Sculptor, and APSW.
Setup

This chapter contains information about setting up Workview Office to create Actel designs. This includes information about accessing the Actel and migration libraries, setting up Workview Office to interface with the Designer Series software, and setting up Actel projects in Workview Office. Refer to the Viewlogic documentation for additional information about setting up Workview Office.

Software Requirements

The information in this guide applies to the Actel Designer Series software release R1-1999 or later and Viewlogic Workview Office. For specific information about which versions are supported with this release, go to the Guru automated technical support system on the Actel Web site (http://www.actel.com/guru) and type the following in the Keyword box:

third party

Actel Libraries

The Actel libraries contain models for each Actel macro in all Actel families for use in Viewlogic. The Actel libraries are sufficient for most cases. Refer to “Migration Libraries” below for exceptions to using the Actel libraries.

Migration Libraries

In addition to the Actel libraries, Actel provides a set of migration libraries. These libraries contain macros that were supported in earlier versions of the Designer Series software and macros that may be needed to retarget designs from a different Actel family. If you are upgrading from a previous version of Designer and you have existing Actel designs, you must use the migration libraries. Actel does not recommend using the migration libraries on new designs.
The Workview Office software uses a “libs.lst” file to access the Actel libraries. A “migrate.lst” file is installed in the “c:\actel\lib\wv” directory when the Designer Series software is installed. You must use this “migrate.lst” file as your “libs.lst” file to properly access the migration libraries.

To access the migration libraries:

1. (Optional) Create a backup copy of the “libs.lst” in the “c:\wvoffice\standard” directory.
2. Delete the “libs.lst” file in the “c:\wvoffice\standard” directory.
3. Copy the “migrate.lst” file in the “c:\actel\lib\wv” directory to the “c:\wvoffice\standard” directory.
4. Rename the “migrate.lst” file as the “libs.lst” file in the “c:\wvoffice\standard” directory.

User Setup

Before creating designs, there are some one-time procedures to perform so that the Workview Office and Designer Series software can interface properly. This section describes those procedures.

Actel EDIF Command

To automatically generate an Actel compatible EDIF netlist, add a custom command to the Tools menu in ViewDraw. Once added, this command appears as the Actel EDIF command. The following steps describe the procedure.

1. **Invoke ViewDraw.** If you have not already set up a project, the Project Manager Wizard dialog box is displayed. You must set up an Actel project for ViewDraw to open. Go to “Project Setup” on page 5 for the procedure.

2. **Open the Customize Tools Menu dialog box.** Choose the Customize command from the Tools menu.
3. **Add the Actel EDIF command.** Click the User Menu radio button. In the Menu Text box type “Actel EDIF.” In the Command box type or use the Browse button to select: “c:\wvoffice\edifneto.exe.” In the Arguments box type “-L hard $BLOCKNAME.” Click OK. Figure 1-1 shows the configured Customize Tools Menu dialog box.

![Customize Tools Menu Dialog Box](image)

Before simulating VHDL netlists that reference Actel macros in Speedwave, you must compile Actel VITAL libraries. The following procedures describe the process.

1. **Create a directory called “swave” in the “c:\actel\lib\vtl\95” directory.**

2. **Set your project directory.** Invoke Project Manager and click the New button. Enter “swave” in the Project Name box and “c:\actel\lib\vtl\95\swave” in the Project Directory box. Click the Next button three times, then click the Finish button to complete
Chapter 1: Setup

the process. Do not set your library search order. The New Project Information box appears.

3. Click the OK button in the New Project Information Dialog Box.
4. Save your project and exit Project Manager.
5. Invoke SpeedWave.
6. Open the HDL Library Manager window. Choose the Analyze VHDL Design command from the File menu. Click Cancel in the Welcome dialog box. The HDL Manager window is displayed.
7. Create a <vhd_fam> library. Choose the Create command from the Library menu. Specify “c:\actel\lib\vtl\95\swave” in the Library Path box and <vhd_fam> in the Symbolic Name box. Click OK.
8. Add system libraries to search order. Make sure that the “SYNOPSYS.LIB” and “IEEE.LIB” libraries are listed under the VHDL System Libraries section in the VHDL View window.
9. Add the Actel VITAL library to the <vhd_fam> library. Choose the Add Source Files command from the Library menu. Select the <act_fam>.vhd file from the “c:\actel\lib\vtl\95\” directory. Click OK.
10. Compile the Actel VITAL library. Select the <act_fam>.vhd file in the VHDL View section of the HDL Manager window. Choose the Analyze Source File command from the Analyze menu.
11. (Optional) Add the Actel VITAL Migration library to the <vhd_fam> library. Select the <act_fam>_mig.vhd file from the “c:\actel\lib\vtl\95\” directory. Click OK.
12. (Optional) Compile the Actel VITAL Migration library. Select the <act_fam>_mig.vhd file in the VHDL View section of the HDL Manager window. Choose the Analyze Source File command from the Analyze menu.
Project Setup

You must set up an Actel project in the Viewlogic Project Manager for each Actel design before creating your design in Viewlogic. The following procedures describe the process.

1. **Invoke Project Manager.**
2. **Set up a new project.** Choose the New command from the File menu. The Creating a New Project wizard is displayed.
3. **Set the Project Directory.** Type the full path name of your design directory in the Project Directory box or use the Browse button. Type the name of your project in the Project Name box. Click the Next button.
4. **Locate your project file.** Type the full path name of your project file in the Location of Project File box or use the Browse button. Click the Next button.
5. **Select an Actel FPGA library.** Choose a library in the Configured FPGA Libraries box. Click the icon of the Actel library you want to select, then click Next.
6. **(Optional) Add additional libraries.** Click the Add button and type the full path name of the library you want to add or use the Browse button.
7. **Click the Finish button in the Creating a New Project box.** The New Project information box appears. Click OK.
8. **Save the project.** Choose the Save command from the File menu.

Creating a Project Library in SpeedWave

If you use SpeedWave to simulate your designs, you must create a project library in SpeedWave, in addition to creating an Actel project in Project Manager, for each VHDL synthesis-based Actel project. The following procedures describe the process.

1. **Invoke SpeedWave.**
2. **Open the HDL Manager window.** Choose the Analyze VHDL Design command from the File menu. Click Cancel in the Welcome dialog box. The HDL Manager window is displayed.
3. **Setup a project.** Choose the Create command from the Library menu. The Create Library dialog box is displayed. Make sure the path in the Library Path box is correct and already exists. Type “user” in the Symbolic Name box and click OK. Make sure no errors are reported in the Output window.

4. **Verify that the “user” library icon appears under the VHDL User Libraries section in the VHDL View window.**

5. **Add the compiled Actel VITAL library to the Project Libraries.** Choose the Add to Workspace command from the Library menu. The Add Existing Library to Workspace dialog box is displayed. Click the ellipsis box to open the Select Directory dialog box. Browse to the “c:\actel\lib\vtl\95\swave\<vhd_fam>.lib” directory and click OK. Click OK again in the Add Existing Library to Workspace dialog box. If you have not compiled the Actel VITAL library, go to “Compiling Actel VITAL Libraries” on page 3 for the procedure.

 Note: Only add the <vhd_fam>.lib if you have referenced Actel macros in your VHDL netlist.

6. **Add system libraries to the Project Libraries.** Make sure the “SYNOPSYS.LIB” and “IEEE.LIB” libraries are listed under VHDL System Libraries in the VHDL View window. If they are not present you must reinstall SpeedWave making sure to choose the Synopsys IEEE libraries when prompted.

7. **Save the project workspace.** Choose the Save command from the File menu.
This chapter illustrates and describes the design flow for creating Actel designs using the Workview Office and Designer Series software.

Schematic-Based Design Flow Illustrated

Figure 2-1 shows the schematic-based design flow for creating an Actel device using the Workview Office and Designer Series software.

1. Actel-specific utilities/tools are denoted by the grey boxes in Figure 2-1.
Schematic-Based Design Flow Overview

The Actel-Viewlogic schematic-based design flow has four main steps; design creation/verification, design implementation, programming, and system verification. These steps are described in the following sections.

Design Creation/Verification

During design creation/verification, a schematic representation of a design is captured using the Viewlogic ViewDraw software. After design capture, a pre-layout (functional) simulation can be performed with the Viewlogic ViewSim software. Finally, an EDIF netlist is generated for use in Designer.

Schematic Capture

Functional Simulation

Perform a functional simulation of your design using ViewSim before generating an EDIF netlist for place and route. Functional simulation verifies that the logic of the design is correct. Unit delays are used for all gates during functional simulation. Refer to “Functional Simulation” on page 23 and the Viewlogic documentation for information about performing functional simulation.

EDIF Netlist Generation

After you have captured and verified your design, you must generate an EDIF netlist for place and route in Designer. Refer to “Generating an EDIF Netlist” on page 19 for information about generating an EDIF netlist.

Design Implementation

During design implementation, a design is placed and routed using Designer. Additionally, static timing analysis can be performed on a design in Designer with the DT Analyze tool. After place and route, post-layout (timing) simulation is performed with the Viewlogic ViewSim software.
Place and Route

Use Designer to place and route your design. Make sure you specify VIEWLOGIC as the Edif Flavor and Generic as the Naming Style when importing the EDIF netlist into Designer. Refer to the Designing with Actel manual for information about using Designer.

Static Timing Analysis

Use the DT Analyze tool in Designer to perform static timing analysis on your design. Refer to the Designing with Actel manual for information about using DT Analyze.

Timing Simulation

Perform a timing simulation of your design using ViewSim after placing and routing it in Designer. Timing simulation requires information extracted and back annotated from Designer. Refer to “Timing Simulation” on page 24 and the Viewlogic documentation for information about performing timing simulation.

Programming

Program a device with programming software and hardware from Actel or a supported 3rd party programming system. Refer to the Designing with Actel manual and the Activator and APS Programming System Installation and User’s Guide or Silicon Sculptor User’s Guide for information about programming an Actel device.

System Verification

You can perform system verification on a programmed device using the Actel Silicon Explorer diagnostic tool. Refer to the Activator and APS Programming System Installation and User’s Guide or Silicon Explorer Quick Start for information about using the Silicon Explorer.
VHDL Synthesis-Based Design Flow Illustrated

Figure 2-2 shows the VHDL synthesis-based design flow for an Actel device using the Workview Office and Designer Series software¹.

¹. Actel-specific utilities/tools are denoted by the grey boxes in Figure 2-2.
VHDL Synthesis-Based Design Flow Overview

The Actel-Viewlogic VHDL synthesis-based design flow has four main steps: design creation/verification, design implementation, programming, and system verification. Two verification tools are described, SpeedWave and ViewSim. SpeedWave should be used if it is available. It is a VHDL simulator that allows you to perform behavioral, structural, and timing simulation. It also allows stimulus to be written in VHDL. If SpeedWave is not available, structural and timing simulation may be done with ViewSim. These steps are described in the following sections.

During design creation/verification, a design is captured in an RTL-level (behavioral) VHDL source file. After capturing the design, a behavioral simulation of the VHDL file may be performed with SpeedWave to verify that the VHDL code is correct. The code is then synthesized into a structural EDIF netlist using FPGA Express. After synthesis, a structural simulation of the design can be performed with SpeedWave or ViewSim. The EDIF netlist is imported into Designer and a timing simulation is performed using SpeedWave or ViewSim.

VHDL Design Source Entry

Enter your design source using a text editor or a context-sensitive VHDL editor. Your VHDL design source can contain RTL-level constructs as well as instantiations of structural elements, such as ACTgen macros.

Behavioral Simulation

If SpeedWave is available, perform a behavioral simulation of your design before synthesis. Behavioral simulation verifies the functionality of your VHDL code. Typically, unit delays are used and a standard VHDL test bench can be used to drive simulation. Refer to “Behavioral Simulation” on page 27 and the Viewlogic documentation for information about performing behavioral simulation.
Chapter 2: Actel-Viewlogic Design Flow

Synthesis

Synthesize your design using FPGA Express. This transforms the behavioral VHDL file into a gate-level EDIF netlist, optimizing the design for a target technology.

Structural VHDL Netlist Generation

If SpeedWave is used for structural and timing simulation, generate a structural VHDL netlist from your EDIF netlist by either exporting it from Designer or by using the Actel “edn2vhdl” program. Refer to “Generating a Structural VHDL Netlist” on page 20 for information about generating a structural netlist.

Structural Simulation

Perform a structural simulation of your design before placing and routing it. Structural simulation verifies the functionality of your post-synthesis structural netlist. Unit delays are used for each gate. Refer to “Functional Simulation” on page 23 if using ViewSim or “Structural Simulation” on page 28 if using Speedwave. Also refer to the Viewlogic documentation for information about performing structural simulation.

Design Implementation

During design implementation, a design is placed and routed using Designer. Additionally, static timing analysis can be performed on a design in Designer with the DT Analyze tool. After place and route, post-layout (timing) simulation is performed with the Viewlogic SpeedWave software.

Place and Route

Use Designer to place and route your design. Make sure to use GENERIC for the Edif flavor and VHDL for the Naming Style when importing the EDIF netlist into Designer. Refer to the Designing with Actel manual for information about using Designer.

Static Timing Analysis

Use the DT Analyze tool in Designer to perform static timing analysis of your design. Refer to the Designing with Actel manual for information about using DT Analyze.
Timing Simulation

Perform a timing simulation of your design after placing and routing it. Timing simulation uses information extracted from Designer, which overrides unit delays in the Actel VHDL. Refer to “Timing Simulation” on page 24 if using Viewsim or “Timing Simulation” on page 29 if using SpeedWave. Also refer to the Viewlogic documentation for information about performing timing simulation.

Programming

Program a device with programming software and hardware from Actel or a supported 3rd party programming system. Refer to the Designing with Actel manual and the Activator and APS Programming System Installation and User’s Guide or Silicon Sculptor User’s Guide for information about programming an Actel device.

System Verification

You can perform system verification on a programmed device using the Actel Silicon Explorer diagnostic tool. Refer to the Activator and APS Programming System Installation and User’s Guide or Silicon Explorer Quick Start for information about using the Silicon Explorer.
This chapter contains information and procedures to assist you in creating Actel designs with the Viewlogic Workview Office software. This includes naming conventions, information about adding pins to a schematic, and about generating top-level symbols. Also included is information about using buried I/Os, adding power and ground, and how sheets and symbols are treated. Other sections include how to assign pins in a schematic and how to add ACTgen, ACTmap and FPGA Express blocks to a design. Finally, procedures for generating EDIF and structural VHDL netlists are given.

Naming Conventions

Top level blocks in ViewDraw and FPGA Express must have a design name that follows the DOS file naming convention (i.e. 8,3 naming convention). The Actel back annotation program can only accept file names that follow this convention.

Use only alphanumeric and underscore “_” characters for schematic net and instance names. Do not use asterisks, forward and backward slashes, spaces, or periods.

Adding Pins to the Schematic

Add pins to the top-level schematic of the design by using the I/O buffer macros with a dangling net attached to the pad, as shown in Figure 3-1. The label on the dangling net becomes the I/O pin name.

Figure 3-1. Adding Pins to a design
Generating a Top-Level Symbol

When generating a top-level symbol, ViewGen looks for an In or Out port. The convention is illustrated in Figure 3-2. ViewGen does not generate symbols for schematics without IN/OUT ports. The IN/OUT ports are found in the “c:\actel\lib\wv\asicbin” directory.

![Figure 3-2. Input/Output Ports](image)

Buried I/O

I/O macros can be buried in the design hierarchy.

Adding Power and Ground

To add power or ground signals in the schematic, use the Actel VCC or GND symbols. You can also label the nets as VDD or GND.

Sheets and Symbols

A multiple-page design is composed of more than one schematic file or <design.n> file in the schematic directory. For a multiple-page design, each sheet is treated as a part of a top-level schematic and is not considered a hierarchy level.
Assigning Pins in a Schematic

Nets in your schematic that have the “PIN” attribute assigned to them in ViewDraw are automatically assigned to that pin during design implementation in Designer.

To assign the “PIN” attribute to a net:

1. Double-click the net to assign pin information. The Net Properties dialog box is displayed.
2. Select the Attributes Tab.
3. Assign the “PIN” attribute to the net. Type “PIN” in the Name box and the pin number to be assigned in the Value box. Click OK.

Note: This procedure assigns the pin name to the signal net in the netlist. If you use this method to fix pins, and you change your pin assignments in PinEdit, you will not be able to back annotate. PinEdit does not change netlist information.

Adding ACTgen Macros

The ACTgen Macro Builder can automatically generate symbols that can be added to your schematic. The following steps describe the procedure.

1. Invoke ACTgen.
2. Select the family, macro type, and macro options.
3. Generate your macro as a Viewlogic symbol. Make sure that you specify Viewlogic as the Netlist/CAE Formats in the Generate Macro dialog box.
4. Add the macro as a component in the schematic. Refer to the Viewlogic documentation for information about adding components to a schematic.

Refer to the Designing With Actel manual or the ACTgen on-line help for additional information about using ACTgen.
Adding ACTmap Blocks

The ACTmap VHDL Synthesis tool can generate symbols from VHDL blocks that can be added to your schematic. The following steps describe the procedure.

1. **Invoke ACTmap.**
2. **Open the ACTmap VHDL Compiler window.** Select the VHDL Compiler command from the File menu.
3. **Compile your VHDL block and generate an EDIF netlist.** Type the name of your design in the Source Design box or use the Browse button. Specify Block as the Mode, select options, and click the Run button. The Main window displays a report of the compilation process.
4. **Translate the EDIF netlist to a Viewlogic symbol.** Click the Translate button in the ACTmap VHDL Compile window. Type the name of your VHDL block in the Source Design box or use the Browse button. Specify Viewlogic as the Output Format, select options, and click the Run button.
5. **Set VL options.** In the Set VL dialog box, make sure the symbol check box is marked. The other check boxes are optional. Click OK.
6. **Add the block as a component in the schematic.** Refer to the Viewlogic documentation for information about adding components to a schematic.

 Note: ACTmap supports hierarchical EDIF output, but the symbol generator only creates the top level symbol.

Refer to the *Designing with Actel* manual, the *ACTmap VHDL Synthesis Methodology Guide*, or the ACTmap on-line help for additional information about using ACTmap.
Adding FPGA Express Blocks

FPGA Express can generate blocks that can be added to your ViewDraw schematic. The following steps describe the procedure.

1. Invoke FPGA Express.

2. Create a new project or open an existing one. Add your VHDL source file(s) to the project.

3. Create an implementation. In the Create Implementation form, select “Do not insert I/O pads.”

4. Export the Netlist. In the Export form, select “%s<%d:%d>” for Bus Style and NONE for the Simulation Output Format.

5. Save the Project and exit FPGA Express.

6. Translate the EDIF file into ViewDraw’s wir format. Invoke the EDIF Interfaces program and select the EDIF Netlist Reader tab. Specify the EDIF file created by FPGA Express as the Input and your Viewlogic project directory as your Output Dir.

7. Invoke ViewGen to generate a symbol. Specify the wir file generated by the EDIF Netlist Reader as the input. Select “Generate the top level symbol” and optionally, “Generate schematic.”

8. Add the symbol to your ViewDraw schematic. Refer to the Viewlogic documentation for information about adding symbols to a schematic.

Refer to the FPGA Express and other WorkView Office on-line help for additional information.

Generating an EDIF Netlist

The EDIF netlist is used for place and route in Designer. This section describes the procedures for generating an EDIF netlist for your design.
To generate an EDIF netlist from a schematic-based design:

Select the Actel EDIF command from the Tools menu of ViewDraw. If you have not added the Actel EDIF command to the tools menu in ViewDraw, go to “Actel EDIF Command” on page 2 for the procedure.

To generate an EDIF netlist from a synthesis-based design:

FPGA Express creates an EDIF file that can be imported directly into Designer. No special procedure is required.

Generating a Structural VHDL Netlist

You can generate a structural VHDL netlist for SpeedWave simulation from your EDIF netlist by either exporting it from Designer or by using the “edn2vhdl” program. The structural VHDL netlist generated by Designer and the “edn2vhdl” use std_logic for all ports. The bus ports are in the same bit order as they appear in the EDIF netlist.

To generate a structural VHDL netlist using Designer:

1. Invoke Designer.
2. Import the EDIF netlist. Select the Import Netlist File command from the File menu. The Import Netlist dialog box is displayed. Specify EDIF as the Netlist Type, GENERIC (or VIEWLOGIC if you are using a Viewlogic synthesis tool) as the Edif Flavor, and VHDL in the Naming Style. Type the full path name of your EDIF netlist or use the Browse button to select your design. Click OK.
3. Export the structural VHDL netlist. Select the Export command from the File menu. The Export dialog box is displayed. Specify Netlist File as the File Type and VHDL as the Format. Click OK.

To generate a structural VHDL netlist using edn2vhdl:

1. Open a DOS window.
2. Change to the directory that contains the EDIF netlist.
3. Translate the EDIF netlist to a structural VHDL Netlist. Type the following command at the prompt:

 edn2vhdl fam:<act_fam> <design_name>
Using FPGA Express with SpeedWave

When using FPGA Express with SpeedWave, you do not need to use ViewDraw, ViewSim, ViewGen, or Viewlogic EDIF interfaces. You use three point tools: SpeedWave, FPGA Express, and Designer.

1. **Perform a behavior simulation in SpeedWave.** After writing your VHDL, simulate and debug it in SpeedWave as described in “Behavioral Simulation” on page 27.

2. **Synthesize your design in FPGA Express.** Create or open an existing FPGA Express project. Add your VHDL source file(s) to the project.

 In the Create Implementation form, be sure that the “Do not insert I/O pads” checkbox is not selected.

 In the Export form, select "%s<%d:%d>" for Bus Style and NONE for the Simulation Output Format.

 An EDIF netlist is exported by FPGA Express.

3. **Perform a structural simulation in SpeedWave.** Translate the EDIF into VHDL as described in “Generating a Structural VHDL Netlist” on page 20. Then perform a structural simulation as described in “Structural Simulation” on page 28.

4. **Place and route your design in Designer.** Export an SDF timing file.

5. **Perform a timing simulation in SpeedWave.** Perform a timing simulation as described in “Timing Simulation” on page 29.

Using FPGA Express with ViewSim

When using FPGA Express with ViewSim, you cannot perform a behavioral simulation, and you need to import the synthesized design into the ViewDraw/ViewSim environment.

1. **Synthesize your design in FPGA Express.** Create or open an existing FPGA Express project. Add your VHDL source file(s) to the project.
In the Create Implementation form, make sure that the “Do not insert I/O pads” checkbox is not selected.

In the Export form, select “%s<%d:%d>” for Bus Style and NONE for the Simulation Output Format.

An EDIF netlist is exported by FPGA Express.

2. Import the synthesized EDIF into the ViewDraw/ViewSim environment. Invoke the EDIF Interfaces program and select the EDIF Netlist Reader tab. Specify the EDIF file created by FPGA Express as the Input and your Viewlogic project directory as your Output Dir.

4. Place and route your design in Designer. Export an STF (also known as Generic) timing file.

Simulation Using ViewSim

This chapter describes the procedures for performing functional and timing simulations of an Actel design using the Viewlogic ViewSim simulation tool.

Functional Simulation

Use the following procedure to perform a functional simulation of an Actel design:

1. Select your Actel project in the Viewlogic Project Manager. If you have not created or setup your project, go to “Project Setup” on page 5 for the procedure.

2. Open the ViewSim Wirelister dialog box. Invoke ViewVSM, or from ViewDraw choose the Create Digital Netlist command from the Tools menu.

3. Generate a simulation (.vsm) wirelist. Type in the design name or use the Browse button. Click OK. A simulation wirelist is generated and the Workview Office Simulation window is displayed.

4. Simulate the design. Invoke ViewSim. Type in the design name in the Design Name box and click OK.

Refer to the Viewlogic documentation for additional information about performing simulation with ViewSim.
Timing Simulation

Use the following procedure to perform a timing simulation of an Actel design:

1. **Place and route your design in Designer.** Refer to the *Designing with Actel* manual for information on using Designer.

2. **Extract timing information for your design.** Choose the Extract command from the Tools menu or click the Extract button. The Extract dialog box is displayed. Create a `<design_name>.stf` file by choosing the GENERIC option from the CAE pull-down menu. Click OK.

3. **Back annotate your delays.** Select the Viewlogic Back annotate icon from the Designer Series group. The Open dialog box is displayed. Select the `<design_name>.stf` file and click OK to generate the `<design_name>.dtb` file and the `<design_name>.vsm` file for use with ViewSim.

4. **Select your Actel project in Project Manager.** If you have not created or setup your project see “Project Setup” on page 5.

5. **Simulate the design.** Invoke ViewSim. Choose the Load Design from the File menu. The Load compiled VSM file dialog box is displayed. Select the `<design_name>.vsm` file created in step 3 and click OK.

Refer to the Viewlogic documentation for additional information about performing simulation with ViewSim.

Multichip Simulation

System designs are typically divided into functional modules that are implemented by several Actel devices. To check the functionality of the system, all Actel devices must be simulated together. You can use ViewSim and Designer to perform multichip simulation. Use the following procedure to perform a multichip simulation of an Actel design:
Note: Because the viewdraw.ini file uses the same alias for all Actel families, you can only simulate multiple Actel devices of the same family.

1. Create a top level schematic and instantiate the individual chip designs. This example, assumes there are three designs with instance names “chip1,” “chip2,” and “chip3.” The name of the top level schematic is “top.” Figure 4-1 depicts the directory structure for this example. Names written in normal text represent file names and those in bold text represent directory names.

```
\top
  \sch
  chip1.1
  chip2.1
  chip3.1
  top.1
  \sym
  chip1.1
  chip2.1
  chip3.1
  \wir
  chip1.1
  chip2.1
  chip3.1
  top.1
```

Figure 4-1. Directory Structure for Multichip Simulation

Note: This example only contains single-sheet schematics for each design. Similar procedures apply to multiple-sheet designs.

2. Place and route your design in Designer. Refer to the Designing with Actel manual for information about using Designer.

3. Extract timing information for your design. Choose the Extract command from the Tools menu or click the Extract button. The Extract dialog box is displayed. Create a “chip1.stf” file by choosing the GENERIC option from the CAE pull-down menu. Click OK. Repeat for “chip2.stf” and “chip3.stf.”

4. Back annotate your delays. Select the Viewlogic Back annotate icon from the Designer Series group. The Open dialog box is displayed. Select the “chip1.stf” file and click OK to generate the “chip1.dtb” file. Repeat for the “chip2.dtb” and “chip3.dtb” files.
5. **Generate a “top.dtb” file for the top level schematic.** The top level DTB file should include the following lines:

```
.ba
 c chip1
 a dtb=chip1.dtb
 c chip2
 a dtb=chip2.dtb
 c chip3
 a dtb=chip3.dtb
.ab
```

The “c” line above specifies an instance name, “chip1.” If you haven’t labeled an instance, you can use the default handle name of an instance, “$1I38” as it appears in your top-level schematic. Also, the individual DTB files should reside in the top level design directory, “top.”

6. **Run ViewVSM on “top.dtb.”** Reference the “top.dtb” file in the VSM pop-up dialog box. The VSM program processes the DTB files for each chip and creates the “top.vsm” file with back annotated post-layout timing delays.

7. **Simulate “top.vsm.”** Invoke ViewSim. Type “top.vsm” in the Design Name box and click OK.

Refer to the Viewlogic documentation for additional information about performing simulation with ViewSim.
Simulation Using SpeedWave

This chapter describes the procedures for performing behavioral, structural, and timing simulations of an Actel design using the Viewlogic SpeedWave simulation tool.

Behavioral Simulation

Use the following procedures to perform a behavioral simulation of an Actel design. Refer to the Viewlogic documentation for additional information about performing simulation with SpeedWave:

1. **Select your Actel project in Project Manager.** If you have not created your project, go to “Project Setup” on page 5 for the procedure.

2. **Invoke SpeedWave.**

3. **Open the HDL Manager dialog box.** Choose the Analyze VHDL Design command from the File menu. If the HDL Manager wizard appears, you must create a project library before continuing. Click the Cancel button in the Welcome dialog box and go to “Creating a Project Library in SpeedWave” on page 5 for the procedure.

4. **Open a project HDL workspace (.hws) file.** Choose the Open command from the File menu. Select an .hws file and click the Open button in the Open dialog box.

5. **Analyze your behavioral VHDL design files and test bench.** Select the user library icon in the VHDL User Libraries section of the VHDL View window. Choose the Add Source Files command from the Library menu. The Assign Source Files dialog box is displayed. Select the behavioral VHDL and test bench files from the VHDL Source File Name window and click OK. Select each file and choose the Analyze Source File command from the Analyze menu. Check the Output window for successful completion. Save the HDL workspace and close the HDL Manager window.

 Note: SpeedWave can only simulate configurations. You must have at least one configuration in your test bench.

6. **Select a configuration to simulate.** Choose the Load Design command from the File menu. Double click “user.lib” and select the
configuration you want to simulate. Click OK. A Source Viewer window and a Hierarchy Viewer window are displayed.

7. **Simulate your design.** Choose the Run Simulation command from the Simulate menu. The Run Simulation dialog box is displayed. Select the desired options and click the Apply button. Click the Close button when you have completed your simulation.

Structural Simulation

Use the following procedures to perform a structural simulation of an Actel design. Refer to the Viewlogic documentation for additional information about performing simulation with SpeedWave.

1. **Synthesize your design.** Refer to the documentation included with your synthesis tool for information about synthesis.

2. **Select your Actel project in Project Manager.** If you have not created your project, go to “Project Setup” on page 5 for the procedure.

3. **Invoke SpeedWave.**

4. **Open the HDL Manager dialog box.** Choose the Analyze VHDL Design command from the File menu. If the HDL Manager wizard appears, you must create a project library before continuing. Click the Cancel button in the Welcome dialog box and go to “Creating a Project Library in SpeedWave” on page 5 for the procedure.

5. **Open a project HDL workspace (.hws) file.** Choose the Open command from the File menu. Select an .hws file and click the Open button in the Open dialog box.

6. **Analyze your structural VHDL netlist and test bench.** If you have not already generated a structural VHDL netlist, go to “Generating a Structural VHDL Netlist” on page 20 for the procedure. Select the user library icon in the VHDL User Libraries section of the VHDL View window. Choose the Add Source Files command from the Library menu. The Assign Source Files dialog box is displayed. Select the structural VHDL netlist and test bench files from the VHDL Source File Name window and click OK. Select each file and choose the Analyze Source File command from the
Analyze menu. Check the Output window for successful completion. Save the HDL workspace and close the HDL Manager window.

Note: SpeedWave can only simulate configurations. You must have at least one configuration in your test bench.

7. **Select a configuration to simulate.** Choose the Load Design command from the File menu. Double click “user.lib” and select the configuration you want to simulate. Click OK. A Source Viewer window and a Hierarchy Viewer window are displayed.

8. **Simulate your design.** Choose the Run Simulation command from the Simulate menu. The Run Simulation dialog box is displayed. Select the desired options and click the Apply button. Click the Close button when you have completed your simulation.

Timing Simulation

Use the following procedures to perform a timing simulation of an Actel design. Refer to the Viewlogic documentation for additional information about performing simulation with SpeedWave.

1. **Place and route your design in Designer.** Refer to the *Designing with Actel* manual for information about using Designer.

2. **Extract timing information for your design from Designer.** Choose the Extract command from the Tools menu or click the Extract button. The Extract dialog is displayed. Create a <design_name>.sdf file by choosing the SDF option from the CAE pull-down menu. Click OK.

3. **Select your Actel project in Project Manager.** If you have not created a project, go to “Project Setup” on page 5 for the procedure.

4. **Invoke SpeedWave.**

5. **Open the HDL Manager dialog box.** Choose the Analyze VHDL Design command from the File menu. If the HDL Manager wizard appears, you must create a project library before continuing. Click the Cancel button in the Welcome dialog box and go to “Creating a Project Library in SpeedWave” on page 5 for the procedure.
6. **Open a project HDL workspace (.hws) file.** Choose the Open command from the File menu. Select an .hws file and click the Open button in the Open dialog box.

7. **(Optional) Analyze your VHDL design files and test bench.** Skip this step if you are using the same structural VHDL netlist and test bench you analyzed for structural simulation. Select the user library icon in the VHDL User Libraries section of the VHDL View window. Choose the Add Source Files command from the Library menu. The Assign Source Files dialog box is displayed. Select the structural VHDL netlist and test bench files from the VHDL Source File Name window and click OK. Select each file and choose the Analyze Source File command from the Analyze menu. Check the Output window for successful completion. Save the HDL workspace and close the HDL Manager window.

 Note: SpeedWave can only simulate configurations. You must have at least one configuration in your test bench.

8. **Select a configuration to simulate.** Choose the Load Design command from the File menu. Double click “user.lib” and select the configuration you want to simulate. Click OK. A Source Viewer window and a Hierarchy Viewer window are displayed.

9. **Import the timing information for your design.** Click the VITAL Timing index tab. Click the Perform SDF Back Annotation check box and click OK. The Setup SDF Back Annotation dialog box is displayed. Type the name of your <design_name>.sdf in the SDF File box or use the Browse button.

10. **Add Scope options.** In the Scope window, fill in the name of the instance in the test bench you want to back annotate (e.g. “/uut”). Select the Delay Mode you want use (Minimum, Typical, or Maximum). Click the Add button and verify that Scope, File, and Timing settings are correct in the main window. Use the Change and Remove buttons to make any corrections.

11. **Back annotate your design.** Click OK.

12. **Simulate your design.** Choose the Run Simulation command from the Simulate menu. The Run Simulation dialog box is displayed. Select the desired options and click the Apply button. Click the Close button when you have completed your simulation.
Product Support

Actel backs its products with various support services including Customer Service, a Customer Applications Center, a Web and FTP site, electronic mail, and worldwide sales offices. This appendix contains information about using these services and contacting Actel for service and support.

Actel U.S. Toll-Free Line

Use the Actel toll-free line to contact Actel for sales information, technical support, requests for literature about Actel and Actel products, Customer Service, investor information, and using the Action Facts service.

The Actel Toll-Free Line is (888) 99-ACTEL.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From Northeast and North Central U.S.A., call (408) 522-4480.
From Southeast and Southwest U.S.A., call (408) 522-4480.
From South Central U.S.A., call (408) 522-4434.
From Northwest U.S.A., call (408) 522-4434.
From Canada, call (408) 522-4480.
From Europe, call (408) 522-4252 or +44 (0) 1256 305600.
From Japan, call (408) 522-4743.
From the rest of the world, call (408) 522-4743.
Fax, from anywhere in the world (408) 522-8044.
Appendix A: Product Support

Customer Applications Center

The Customer Applications Center is staffed by applications engineers who can answer your hardware, software, and design questions.

All calls are answered by our Technical Message Center. The center retrieves information, such as your name, company name, phone number and your question, and then issues a case number. The Center then forwards the information to a queue where the first available application engineer receives the data and returns your call. The phone hours are from 7:30 a.m. to 5 p.m., Pacific Standard Time, Monday through Friday.

The Customer Applications Center number is (800) 262-1060.

European customers can call +44 (0) 1256 305600.

Guru Automated Technical Support

Guru is a Web based automated technical support system accessible through the Actel home page (http://www.actel.com/guru/). Guru provides answers to technical questions about Actel products. Many answers include diagrams, illustrations and links to other resources on the Actel Web site. Guru is available 24 hours a day, seven days a week.

Web Site

Actel has a World Wide Web home page where you can browse a variety of technical and non-technical information. Use a Net browser (Netscape recommended) to access Actel's home page.

The URL is http://www.actel.com. You are welcome to share the resources we have provided on the net.

Be sure to visit the “Actel User Area” on our Web site, which contains information regarding: products, technical services, current manuals, and release notes.
FTP Site

Actel has an anonymous FTP site located at ftp://ftp.actel.com. You can directly obtain library updates, software patches, design files, and data sheets.

Electronic Mail

You can communicate your technical questions to our e-mail address and receive answers back by e-mail, fax, or phone. Also, if you have design problems, you can e-mail your design files to receive assistance. The e-mail account is monitored several times per day.

The technical support e-mail address is tech@actel.com.
Appendix A: Product Support

Worldwide Sales Offices

Headquarters
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
Toll Free: 888.99.ACTEL
Tel: 408.739.1010
Fax: 408.739.1540

US Sales Offices

California
Bay Area
Tel: 408.328.2200
Fax: 408.328.2358
Irvine
Tel: 949.727.0470
Fax: 949.727.0476
San Diego
Tel: 619.938.9860
Fax: 619.938.9887
Thousand Oaks
Tel: 805.375.5769
Fax: 805.375.5749

Colorado
Tel: 303.420.4335
Fax: 303.420.4336

Florida
Tel: 407.677.6661
Fax: 407.677.1030

Georgia
Tel: 770.831.9090
Fax: 770.831.0055

Illinois
Tel: 847.259.1501
Fax: 847.259.1572

Maryland
Tel: 410.381.3289
Fax: 410.290.3291

Massachusetts
Tel: 978.244.3800
Fax: 978.244.3820

Minnesota
Tel: 612.854.8162
Fax: 612.854.8120

North Carolina
Tel: 919.376.5419
Fax: 919.376.5421

Pennsylvania
Tel: 215.830.1458
Fax: 215.706.0680

Texas
Tel: 972.235.8944
Fax: 972.235.965

International Sales Offices

Canada
Suite 203
135 Michael Cowpland Dr,
Kanata, Ontario K2M 2E9
Tel: 613.591.2074
Fax: 613.591.0348

France
361 Avenue General de Gaulle
92147 Clamart Cedex
Tel: +33 (0)1.40.83.11.00
Fax: +33 (0)1.40.94.11.04

Germany
Bahnhofstrasse 15
85375 Neufahrn
Tel: +49 (0)8165.9584.0
Fax: +49 (0)8165.9584.1

Hong Kong
Suite 2206,
Parkside Pacific Place,
88 Queenstown
Tel: +852.2877.6226
Fax: +852.2918.9693

Italy
Via Giovanni da Udine No. 34
20156 Milano
Tel: +39 (0)2.3809.3259
Fax: +39 (0)2.3809.3260

Japan
EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150
Tel: +81 (0)3.3445.7671
Fax: +81 (0)3.3445.7668

Korea
155-000, 18th Floor,
Kyoung Am Building
157-27 Samsung-dong
Kangnam-ku, Seoul
Tel: +82 (0)2.555.7425
Fax: +82 (0)2.555.7779

Taiwan
4F-3, No. 75, Sec. 1,
Hsin-Tai-Wu Road,
Hsi-chih, Taipei, 221
Tel: +886 (0)2.2682.2525
Fax: +886 (0)2.2698.2548

United Kingdom
Daneshill House,
Lutyens Close
Basingstoke,
Hampshire RG24 8AG
Tel: +44 (0)1256.305600
Fax: +44 (0)1256.355420
Index

<act_fam> variable x
<act_fam> variable x

A
Actel x
Device Families x
EDIF command 2
FPGA Libraries 5
FTP Site 33
Manuals x
Web Based Technical Support 32
Web Site 32
Actel Project Setup 5–6
Project Manager 5
SpeedWave 5
Actel VITAL Libraries
Compiling 3
Creating an swave Directory 3
ACTgen, Generating Symbols 17
ACTmap
Adding Blocks 18
Generating Symbols 18
Adding
Actel EDIF command 2
Pins in a Schematic 17
Pins to a Top-Level Schematic 15
Power and Ground Symbols 16
VHDL Blocks 18, 19
Analyzing
Test Bench 27, 28, 30
VHDL Source File 27, 28, 30
Arguments
EDIF Netlister 3
Assigning
Nets 17
Pins 17

Assumptions ix

B
Back Annotate 24, 25, 30
DTB File 24, 25
Naming Conventions 15
VSM File 24, 26
Behavioral Simulation 11, 27
SpeedWave 11, 27
Buried I/O Macros 16

C
Capturing a Design
Schematic-Based 8
VHDL-Based 11
Compiling Actel VITAL Libraries 3
Configuration 27, 29, 30
Configuring EDIF Netlister 2
Contacting Actel
Customer Service 31
Electronic Mail 33
Technical Support 32
Toll-Free 31
Web Based Technical Support 32
Conventions x
<act_fam> variable x
<vhd_fam> variable x
Creating
Macros 17
SDF File 29
STF File 24, 25
swave Directory 3
Customer Service 31
Customizing ViewDraw 2
Index

D
Dangling Net 15
Delay Mode 30
Design Creation/Verification 8, 11
 Behavioral Simulation 11
EDIF Netlist Generation 8
Functional Simulation 8
Schematic Capture 8
Structural Netlist Generation 12
Structural Simulation 12
Synthesis 12
VHDL Source Entry 11
Design Flow
 Design Creation/Verification 8, 11
 Design Implementation 8, 12
 Schematic-Based 8–9
 VHDL Synthesis-Based 11–13
Design Implementation 8, 12
 Place and Route 9, 12
 Timing Analysis 9, 12
 Timing Simulation 9, 13
Design Layout 9, 12
Design Synthesis 12
Designer
 DT Analyze Tool 9, 12
 EDIF Option 20
 Extracting Timing Information 24, 25, 29
 GENERIC Option 24, 25
 Place and Route 9, 12
 SDF Option 29
 Software Installation Directory ix
 Structural VHDL Netlist Generation 20
 Timing Analysis 9, 12
 VHDL Option 12
 VIEWLOGIC Option 12, 20
Device
 Debugging 9, 13
 Families x
 Programming 9, 13
 Digital Netlist Generation 23
Document
 Assumptions ix
 Conventions x
 Organization ix
 DT Analyze
 Static Timing Analysis 9, 12
 DTB file 24, 25

E
EDIF Netlist Generation
 Schematic-Based 8, 20
 Synthesis-Based 20
EDIF Netlister Arguments 3
EDIF Option 20
edn2vhdl 20
Electronic Mail 33
Extracting Timing Information 24, 25, 29

F
Fixing Pins 17
FPGA Express
 Adding Blocks 19
 Design Synthesis 12
 Generating Symbols 19
 Synthesis Considerations 21
 Use In VHDL Flow 12
FPGA Libraries 5
Functional Simulation 8, 23
 ViewSim 8, 23

G
Gate-Level Netlist 12
Generating
Digital Netlist 23
DTB File 24, 25, 26
EDIF Netlist 8
Gate-Level Netlist 12
Simulation Wirelist 23, 26
Structural Netlist 12
Top-Level Symbol 16
VSM File 23, 24, 26
Generating Symbols
ACTgen 17
ACTmap 18
FPGA Express 19
GENERIC Option 24, 25
GND 16

I
I/O Macros 16
Importing Timing Information 30
In/Out Ports 16
Installation Directory
Designer ix
Workview Office x
Instance Name 26

L
Libraries
Actel FPGA 5
Actel VITAL 3
Project 5

M
Macros 17
Multichip Simulation 24–26
Directory Structure 25
Multiple-Sheet Schematic 16, 25

N
Netlist Generation
Digital 23
EDIF 8
Gate-Level 12
Structural 12

O
On-Line Help xiii

P
PinEdit 17
Pins
Assigning 17
Attribute 17
Back Annotate 17
PinEdit 17
Place and Route 9, 12
Post-Synthesis Simulation 13
Primary Directory 5
Product Support 31–34
Customer Applications Center 32
Customer Service 31
Electronic Mail 33
FTP Site 33
Technical Support 32
Toll-Free Line 31
Web Site 32
Programming a Device 9, 13
Project Manager
Project Setup 5
Selecting an Actel FPGA Library 5
Setting the Primary Directory 5
Project Setup 5–6
Project Manager 5
SpeedWave 5
Index

R
Related Manuals x
Required Software 1

S
Schematic Capture 8
Schematic Design Considerations 15–17
 Adding Pins in a Schematic 17
 Adding Pins to a Top-Level Schematic 15
 Adding Power and Ground 16
 Adding VHDL Blocks 18, 19
 Creating Macros 17
 Generating a Top-Level Symbol 16
I/O Macros 16
Multiple-Page Design 16
Naming Conventions 15
Schematic Naming Conventions 15
Schematic-Based Design Flow 8–9
 Design Creation/Verification 8
 Design Implementation 8
 Programming 9
 System Verification 9
Scope Options 30
SDF
 File 29
 Option 29
Selecting
 An Actel FPGA Library 5
 Scope Options 30
Setting the Primary Directory 5
Setting Up
 an Actel Project in Project Manager 5
 an Actel Project in SpeedWave 5
 SpeedWave 3
 ViewDraw 2
Setup Procedures 2–6
Adding the Actel EDIF command 2
Compiling Actel VITAL Libraries 3
Creating a Project Library 5
Project Setup 5–6
Setting Up an Actel Project 5
User Setup 2–4
Simulation
 Behavioral 11, 27
 Configuration 27, 29, 30
 Functional 8, 23
 Multichip 24
 Post-Synthesis 13
 Schematic-Based 8, 9, 23–26
 SpeedWave 11, 12, 13, 27–30
 Structural 12, 23, 28
 Synthesis-Based 11, 12, 13, 27–30
 Test Bench 27, 29, 30
 Timing 9, 13, 24, 29
 ViewSim 8, 9, 12, 23–26
Simulation Wirelist, Generating 23, 26
Software Requirements 1
SpeedWave
 Behavioral Simulation 11, 27
 Compiling Actel VITAL Libraries 3
 Creating a Project Library 5
 Importing Timing Information 30
 Post-Synthesis Simulation 13
 Scope Options 30
 Set Up 3
 Structural Simulation 12, 28
 Timing Simulation 13, 29
Static Timing Analysis 9, 12
STF file 24, 25
Structural Netlist Generation 12
 GENERIC Option 20
 VIEWLOGIC Option 20
Structural Simulation 12, 23, 28
 SpeedWave 12, 28
 VIEWLOGIC Option 20
 ViewSim 12, 23
Structural VHDL Netlist Generation
 Designer 20
 edn2vhdl 20
 swave Directory 3
Synthesis 12
System Requirements 1
System Verification 9, 13
 Silicon Explorer 9, 13

T
Technical Support 32
Test Bench 27, 28, 30
Timing Analysis 9, 12
Timing Information 24, 25, 29, 30
 SDF File 29
 STF File 24, 25
Timing Simulation 9, 13, 24, 29
 GENERIC Option 24, 25
 SDF
 Option 29
 SpeedWave 13, 29
 ViewSim 9, 24
Toll-Free Line 31
Top-Level
 Schematic 15, 25
 Symbol 16

U
Unit Delays 8, 11
User Setup 2–4

V
variables
 <act_fam> x
 <vhd_fam> x
VCC 16
VDD 16
VHDL Option 12
VHDL Source Entry 11
VHDL Source File
 Analyzing 27, 28, 30
VHDL Synthesis-Based Design Flow 11–13
 Design Creation/Verification 11
 Design Implementation 12
 Programming 13
 System Verification 13
ViewDraw
 Alias 25
 Creating an Actel EDIF Netlist 2
 Customizing 2
 Set Up 2
viewdraw.ini File
 Alias 25
ViewGen
 Generating Symbols for Schematics 16
VIEWLOGIC Option 12, 20
ViewSim
 Adding Pins in a Schematic 17
 Adding Pins to a Top-Level Schematic 15
 Adding Power and Ground 16
 Adding VHDL Blocks 18
 Creating Macros 17
 Functional Simulation 8, 23
 Generating a Top-Level Symbol 16
 I/O Macros 16
 Multichip Simulation 24
 Multiple-Page Design 16
Index

Naming Conventions 15
Schematic Design Considerations 15–17
Structural Simulation 12, 23
Timing Simulation 9, 24
ViewVSM, Generating a Simulation Wirelist 23, 26
VSM File 23, 24, 26

W
Web Based Technical Support 32
Workview Office, Software Installation Directory x