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Design Introduction  
JPEG2000 is a recently standardized image compression algorithm that provides significant 
enhancements over the existing JPEG standard. JPEG2000 differs from widely used compression 
standards in that it relies on discrete wavelet transform (DWT) and uses embedded bit plane coding of 
the wavelet coefficients [1]. Due to the bit-oriented processing techniques used in the standard, full 
implementation via software is inefficient, making embedded processing slow on standard 
microprocessors. Possible applications, such as scanners and printers, require a reasonable processing 
speed, which may be difficult to achieve using existing embedded processors. On the other hand, a full 
hardware implementation may not utilize the flexibility available in the standard. To improve the speed 
of the JPEG2000 algorithm while maintaining flexibility, we investigate the use of a co-design 
approach, using hardware acceleration for the bit-oriented and digital signal processing (DSP) tasks 
while leaving packet formation, code-stream formatting, and manipulation to software. 

The Nios® II processor provides an ideal platform for implementing a co-design solution. The 
customizable arithmetic logic unit (ALU) allows for the addition of DSP-style instructions, which will 
improve the wavelet transform speed and code size. By adding custom peripherals to the system, the bit-
oriented functions can be moved outside of the software into dedicated hardware. The provided real-
time operating system (RTOS) (μC/OS-II) allows for parallel processing using multiple custom 
peripherals. 

A software implementation of JPEG2000, called Kakadu [2], is used as the implementation framework 
and baseline for our design. Our proposed design adds the following features to Kakadu: multithreading 
with RTOS, custom instructions, and custom peripherals. 
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Function Description 
Our system is a JPEG2000 encoder based on a Kakadu software framework. Fully compliant with Part 1 
of the JPEG2000 standard, the main features of the system are: 

■ Lossless and lossy compression 

■ Region of interest (ROI) coding 

■ Compression of color and gray-scale images 

Figure 1. JPEG2000 Encoding Flow 

 

Figure 1 illustrates the compression system of the JPEG2000 algorithm. The image is compressed in the 
following steps: 

1. Image samples are separated into color components (if any). 

2. Image color components are optionally decomposed into rectangular tiles, with each tile to be 
compressed independently. 

3. DWT is used to decompose each tile into four frequency subbands. JPEG2000-Part 1 specifies two 
wavelet kernels for lossy and lossless compression, 9/7 and 5/3 wavelet kernels respectively. 

4. The output from the wavelet transform is quantized and separated into rectangular `code-blocks', to 
be processed by EBCOT unit. 

5. Each code-block is processed independently by the block coder (BC). The BC may be subdivided 
into bit-plane coder (BPC) and arithmetic coder (AC) modules. The BPC encodes a code-block in 
bit-plane by bit-plane order generating context-data (C x D) pairs. C x D pairs are then encoded by 
the AC module to generate the compressed bitstream. 

6. Rate-distortion optimization selects optimal contribution of a code-block to the compressed 
bitstream for a given target bit rate such that the reconstructed image has minimum distortion. 
Kakadu uses the post compression rate distortion (PCRD) optimization algorithm [3]. 

7. Markers are added to the output bitstream to increase error resilience and packed into the 
JPEG2000 compressed bitstream. 
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The DWT and BC are two most resource intensive components of JPEG2000. A detailed study and 
analysis is performed to determine the strategy to best partition JPEG2000 into software and hardware 
components to optimize the compression stream using the rich feature set of the Nios II processor. We 
made the following changes to Kakadu: 

■ Custom instructions used to implement DWT 

■ Implementation of EBCOT in hardware, with BPC, AC, and the distortion estimation module 
implemented as hardware peripherals 

■ RTOS (μC/OS-II) used to instantiate multiple block-coders to increase throughput 

Performance Parameters 
Table 1 presents the test environment used for comparison between the baseline and the proposed 
Kakadu implementation. It is to be noted that modules (DWT custom instructions, BPC, and AC) 
implemented in hardware are bit-exact with respect to the baseline, and thus do not alter the output 
bitstream. However, the hardware version of the module Distortion Estimation is not, and experimental 
results show that this change results in an average 0.02-dB PSNR difference between the baseline 
implementation and our proposed design when compressed for a given target rate. 

Table 1. Test Environment Parameters 
 

 

 

 

 

 

Profile Results 
The profile results for a purely software implementation of Kakadu is presented in Figure 2. From the 
profile, we note that block coding accounts for 103.02 of the total 167.08 seconds (64.01%) used to 
compress the cafe test image. DWT, on the other hand, accounts for 11.36 seconds (6.89%) of 
computation time. 

Property Value 
Image café (ISO test image) 

Image dimensions 2,560 × 2,048 

Image format pgm; 8-bit samples 

DWT kernel CDF 9/7 

DWT levels 5 

Block coder mode Normal 

Code-block size 64×64 
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Figure 2. Kakadu Profiling Results 

Flat profile: 
 Each sample counts as 0.001 seconds. 
  %   cumulative   self              self     total            
 time   seconds   seconds    calls   s/call   s/call  name     
 28.80     48.13    48.13     1286     0.04     0.08  encoder() 
 17.23     76.92    28.79     9420     0.00     0.00  encode_cleanup_pass() 
 15.62    103.02    26.10     8134     0.00     0.00  encode_mag_ref_pass() 
  3.89    109.52     6.51     4960     0.00     0.00  perform_vertical_lifting_step() 
  3.54    115.44     5.92                             __floatsidf() 
  3.48    121.25     5.82     2560     0.00     0.00  transfer_bytes() 
  3.12    126.47     5.22                             __pack_d() 
  2.90    131.32     4.85     4960     0.00     0.02  horizontal_analysis() 
  2.89    136.16     4.83      122     0.04     0.92  encode_row_of_blocks() 
  2.69    140.64     4.49                             __unpack_d() 
  2.47    144.77     4.13     4960     0.00     0.00  push(kdu_line_buf&) 
  0.00    167.08     0.00        1     0.00   133.29  main() 
index % time    self  children    called     name 
               48.13   56.70    1286/1286        encode_row_of_blocks()  
[10]    62.7   48.13   56.70    1286             encode() 
               28.79    0.00    9420/9420        encode_cleanup_pass() 
               26.10    0.00    8134/8134        encode_mag_ref_pass() 
                1.51    0.00    1286/1286        find_convex_hull() 
                0.21    0.00   23116/25688       find_truncation_point() 
                0.06    0.03    1286/1286        terminate(bool)  
                0.00    0.00    1286/1286        start(unsigned char*, bool)  
                0.00    0.00       2/2           set_max_bytes(int, bool)  
                0.00    0.00       1/1           set_max_contexts(int)  
                0.00    0.00       1/1           set_max_passes(int, bool) 
 

Block Encode Time 
On average, the hardware implementation of the BC (BPC combined with an AC), will take: 

clkcyc

blk
BPC F

1.
CTX
CTX

T =  

Where CTXblk is the average number of C x D pairs produced per block, CTXcyc is the average number of 
C x D pairs produced per cycle and Fclk is the system clock frequency. For a system running at 50 MHz 
and processing 64 sample code-blocks, the average code-block processing time is: 
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For each code-block, the internal code-block RAM must be loaded via direct memory access (DMA). 
This time will accumulate in systems that use multiple BCs.  

clkb

ss
DMA FW

WN
T =  

Ns is the number of samples in the code-block, Ws is the width of the sample in bits, Wb is the width of 
the bus in bits, and Fclk is the system clock frequency. This equation assumes that the DMA has 
exclusive access to the bus, as it will in our system. Using 64 sample code-blocks, where each sample is 
16 bits, the system bus is 32 bits and the 50-MHz clock gives: 
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The average time taken to code a code-block in a system is approximately: 

)TT(
N
1T BPCDMAavg,blk +=  

It should be noted that this equation is only accurate while the utilization of the data bus is low. When 
the time spent performing DMA transfers is greater than the time required to code a single code-block, 
the bus will become the limiting factor. This would indicate that the number of BCs should be 
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T
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⎢
≤ . Proper simulation is invaluable when determining the true value of N. 

Because block coding accounts for 103.02 of the total 167.08 seconds used to compress the cafe test 
image (Table 2), we expect that the implementation of block coding in hardware will give the highest 
performance improvement. We also note that the BC must process 1,286 blocks. Table 2 shows the 
average block coding time when using N parallel hardware BCs, and the time taken to code 1,286 
blocks, while Table 3 shows the speed-up factor using multiple BCs. 

Table 2. Average Block Coding Times for Parallel BCs 

 

Table 3. Speed-Up Achievable With Multiple BCs 

N 1 2 3 4 
Speedup 2.58 2.59 2.60 2.60 

 

DWT Flow 
Amdahl's Law provides us with an estimate of the speed-up achieved from an improvement to a 
computation that affects a proportion P of that computation where the improvement has a speedup of S. 
(For example, if an improvement can speed up 30% of the computation, P will be 0.3; if the 
improvement makes the portion affected twice as fast, S will be 2.) Amdahl's law states that the overall 
speed-up of applying the improvement will be: 

S
PP

upspeed
+−

=−
)1(

1  

From the profiling analysis performed, we estimate that the DWT processing consumes approximate 
6.78% (P=0.068) of the total image compression time. If we achieved a 5/2 improvement in the lifting 
step, by applying Amdahl's Law we estimate an approximately 1.0425 (4.3%) improvement in the 
processing speed overall. 

Design Architecture 
The system structure is illustrated by Figure 3. 

N 1 2 3 4 
T_{blk,avg} 4.5916×10-4 2.2958×10-4 1.5305×10-4 1.1479×10-4 
T_{blk,total} 0.59 0.30 0.20 0.15 
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Figure 3. JPEG2000 Co-Design Configuration on Altera® EP1S40 FPGA 
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U1: 16 Mbytes of SDRAM containing the modified Kakadu program and image to be compressed 

U2: Nios II processor 

U3: 2 Mbytes of SRAM, which is loaded with code block data as it is created by Kakadu 

U4: DMA controller configured to feed code block data at the rate of 16-bits per clock cycle to the BPC 
(U5) 

U5: Block encoder hardware peripheral as described in detail later. 

The number of DMAs and BPCs determined by the available bandwidth on the Avalon® bus. We chose 
to load the image directly onto the SDRAM so that the speed of our system is not limited by data 
transfer rates of external data I/Os. In this way, a fair comparison is made between the baseline and our 
proposed system. In the future, it will be possible to integrate the system with a fast bus fabric that will 
not saturate the speed advantages it provides. 
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Figure 4. BC Detailed System Configuration 
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Figure 4 shows a detailed block diagram for the BC hardware peripheral, where: 

U6: 4,096-word RAM to buffer the code-block data (entire code-block, if necessary) 

U7: Reorganizes sub-band samples in a bit-plane by bit-plane fashion to feed the BPC 

U8: 16 x 4-bit FIFO buffer to store the data bits from U7 

U9: 16 x 4-bit FIFO buffer to store the sign bits from U7 

U10: BPC module  

U11: 22 x 13-bit FIFO buffer used to store distortion estimation data 

U12: AC module  

U13: 16 x 17-bit FIFO buffer used to store compressed data from the AC module 

U14: Finite state machine to control the information flow between the various components of the 
system 

U15: Register file containing 32 x 32-bit registers, 16 for read and 16 for write, to interface between the 
BPC (U5) system and the control bus 

U16 : Distortion estimation module  

Design Methodology 
The hardware/software co-design of the JPEG2000 followed these design steps: 

1. Alteration to Kakadu to support multithreading. 

2. Development of bit-accurate software to verify the functionality of the proposed hardware 
peripherals. 
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3. Implementation of hardware peripherals using hardware description languages (HDLs). 

4. Use of the ModelSim® tool to verify the hardware peripherals' functionality. The testbench vectors 
are generated using the bit-accurate software. 

5. Use of the LeonardoSpectrum™ tool to synthesize the hardware peripherals. 

6. Use of the Quartus® II development suite to produce the layout and timing analysis of the hardware 
peripherals. 

7. Post-synthesis simulation in the ModelSim software using the Quartus II timing results. 

8. Load Kakadu software into the Nios II integrated development environment (IDE) and develop 
glue software to interface it to the hardware peripherals. Custom instructions were also added to 
Kakadu at this point. 

9. Build and load of the Quartus II project onto the FPGA. 

To improve the performance of the DWT function in Kakadu, we augmented the instruction set in the 
Nios II processor with two new custom instructions. The block diagram for the custom instructions is 
shown in Figure 5.  

Figure 5. Nios II Arithmetic Logic Unit (ALU) [4] & Custom Logic Layout to Perform a 
Lifting Step 

se
l

se
l

 

Design Features 
This section describes the project’s design features. 

DWT Custom Instructions 
As can be seen from Figure 6 of the state machine for the CDF 9/7 Lifting DWT implementation, the 
four lifting steps are very similar; the only difference is the value of the multiplier coefficient. 
Therefore, it was clear that the DWT would best be implemented using the Nios II processor’s ability to 
add custom logic to its ALU. To perform a lifting step, two custom instructions were needed: one to 
augment two 16-bit samples into one, and one to perform the lifting step, shown in Figure 6. 
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Upon compilation, the number of assembly instructions to perform the lifting step decreased from five 
(in the pure C implementation) to two (using Nios II custom instructions). 

Figure 6. 9/7 DWT Lifting State Machine 

 

Multi-Threading of Kakadu 
The Kakadu software library was originally written as a single-threaded library. While this is adequate 
for single CPU systems, it makes dispatching multiple code-blocks to multiple BCs quite challenging. 
To utilize the availability of multiple BCs, the Kakadu library was modified to support threads. The use 
of threads requires using the μC/OS-II real-time operating system, a useful feature integrated into the 
Nios II IDE. 

When enough data has been generated by the DWT, a row of code-blocks is dispatched via the function 
call 'encode_row_of_blocks()' [2]. At this point, the library was modified to support threads. The library 
was supplied with a thread pool, where each thread is capable of encoding a single code-block. Each 
thread is attached to a single BC hardware resource and is responsible for initiating the DMA transfer 
and for collecting the compressed data and rate distortion information. When a thread completes, it is 
restarted with a new code-block until the row of code-blocks is exhausted. 

Hardware Peripheral 
The main reason for the high computational cost of JPEG2000 on a general-purpose processor is due to 
the bit-oriented processing during block coding. This motivates the use of a custom hardware 
accelerator for the BC. A major feature of the Nios II SOPC Builder is that it supports the creation and 
utilization of custom hardware peripherals. Thus, it presents an ideal platform for our design. 

The BC peripheral consists of two Avalon slave interfaces and four sub-modules. The first slave 
interface is used to receive block samples via DMA to remove the processor overhead involved in 
transferring sample data into the BC. The second slave interface accesses a register file, and is used to 
control the peripheral as well as access status information and compressed data. The four sub-modules 
perform bit-plane reorganization, bit-plane coding, distortion estimation, and AC. They are outlined 
below. 

Bit-Plane Reorganization 
As the BPC operates on bit planes, sample data must be converted to this format before being sent to the 
BPC. The bit-plane reorganizer scans through stripe columns and forms a 4-bit word that contains the 
bit value of the four samples in that stripe column for the current bit plane. These are then stored in a 
FIFO buffer ready for sending to the BPC. This system must operate at twice the rate of the BPC to 
ensure data is always available. 
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BPC Module 
■ Generic: Handles all modes of BPC operation for all nominal code-block dimensions 

■ High processing throughput: Generates an average of 1.1 C x D/clock-cycle (Existing generic BC 
architectures only generate 0.7CxD/clock-cycle) [5] 

■ Based on two-state memory system [6] 

■ Uses proposed optimal two sub-bank memory architecture for internal memories [7] 

■ Minimum memory cost (16 Kbits dual port RAM) currently reported for a generic BPC architecture 

■ Efficient intermediate buffer: The BPC has a varying C x Ds per clock-cycle output (anywhere 
between 0 to 10 C x Ds per clock-cycle) depending on image statistics. Since our AC module has a 
maximum input rate of two C x Ds per clock-cycle, we use an intermediate buffer [8] to integrate 
the BPC and AC module. The buffer is optimized for its hardware cost versus throughput 
performance using real image statistics. 

AC Module 
The BPC is capable of producing multiple C x D pairs per clock cycle. Although an AC capable of 
coding a single pair per cycle can have enough throughput to cope with the C x D rate of the BPC, this 
would require the AC to have a separate, faster clock domain. To mitigate this complexity, an AC was 
designed that could consume two C x D pairs per cycle, while operating at the same frequency as the 
BPC [9]. 

Distortion Estimation 
The PCRD algorithm requires estimated distortion values associated with each truncation point (coding 
passes) [9]. The distortion estimation for a truncation point depends on the sample values and their 
distribution among coding passes, a factor that cannot be simply pre-calculated. 

We designed a novel hardware module for distortion estimation that uses one fractional bit (in 
comparison to five fractional bits as used by Kakadu). Our simulation results show that this results in 
average 0.02-dB PSNR degradation for a given target rate (in comparison to Kakadu’s reported 
architectures, which achieve an average 0.3-0.7 dB PSNR degradation [10]). 

Implementation Results 
Figures 7 and 8 show simulation waveforms of our system. The following points in time are of 
particular interest: 

1. 82,100 ns: Sample DMA finishes. 

2. 82,200 ns: Register file access asserts operating parameters and starts system. 

3. 82,400 ns: Bit plane reorganization started. 

4. 132,550 ns: Register file access checking status and reading compressed data bytes. 

5. 132,500 ns: Onwards demonstrates normal operation with BPC providing contexts to the AC. 
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Figure 7. The Simulation Flow Showing BC-Avalon Bus Transfer 

 

Conclusion 
The profile of the pure software implementation justifies our decision to provide dedicated hardware for 
the BPC and DWT, as these functions are at the top of the profile list. The Nios II processor provides an 
ideal platform for integrating dedicated hardware, as it provides the ability to include both custom 
instructions and peripherals. Our implementation results show that the inclusion of a DWT step 
instruction will improve the speed by a factor of 1.04, while the inclusion of dedicated block coding 
hardware can improve speed by a factor of 2.6. It is interesting to note that providing multiple BCs in 
parallel provides only minimal improvement over a single hardware BC as a consequence of Amdahl's 
law. 
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Figure 8. Simulation Flow Showing DMA Transfer in Place between Bit-Plane 
Reorganizer & BPC 
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