
 Embedded Network MP3 Playing System

 37

Second Prize

Embedded Network MP3 Playing
System

Institution: Southern Taiwan University of Technology

Participants: Cai Suwei, Xiao Xingjie, Zhang Jiahao

Instructor: Dr. Wei Zhaohuang

Design Introduction
We designed an embedded Netware MP3 player system that consolidates both software and hardware,
and is based on system-on-a-programmable-chip (SOPC) design principles. The product finds use in the
following applications.

Public Broadcasting System
Many public audio-broadcasting systems have transmitted audio signals that suffer from weak audio
quality and complicated cabling, and are confined to individual or limited area broadcasts. In contrast,
our system broadcasts MP3 audio via Ethernet to solve these problems. Our design not only improves
the broadcasting quality, but also extends the life of the broadcasting device, reducing installation and
maintenance costs for the entire system.

CD Audio Player
In music stores and supermarkets, customers are provided with preset audio CD players on which they
may sample the music. Frequent customer usage can cause the CD players to malfunction.
Additionally, the CD audio content must be updated manually. Using our design, you can download
MP3 archived audio from a server into the system. This approach needs no mechanical operation and
the MP3 server can update the audio data at any time.

Recently, the electronics industry has been shifting away from PC-centric devices to multi-functional
Internet appliance (IA) applications, leading to a boom in rapid market development of multimedia and
consumer electronics such as MP3, DVD players, TV game consoles, consumer electronics devices, and
mobile phones. This trend complicates the system design and shortens the product development cycle.
Therefore, using FPGAs has helped product designs become powerful, multi-featured, consistent, low

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

38

power, and highly integrated. Programmable logic devices greatly assist designers in planning and
customizing the systems they want to build. FPGAs help keep costs down and reduce marketing time,
important factors in the electronic industry. Also, programmable logic components play a key role in
system integration.

Figure 1 shows the SOPC hardware platform used in our system design. The SOPC hardware features
The Altera® 32-bit Nios® II processor, which is the intellectual property (IP) that can be embedded into
many FPGA devices. This design approach enables the developer to build systems without worrying
about development costs. Using the FPGA, we implemented a serial port, timer, boot ROM, Avalon®
bus bridge, and PIO, which connects these interface devices.

Figure 1. Internal Architecture of SOPC Development Platform

A
va

lo
n

B
us

The Nios II CPU can be optimized in three ways:

■ For maximum system performance.

■ For minimum logic use.

■ For a mix of system performance and logic use.

Because the program machine codes for all these optimized CPUs are 100% compatible, designers can
easily modify the CPU performance according to changes in system requirements. The 32-bit RISC
embedded processor has been designed specifically for the FPGA architecture, and features a
performance of greater than 200 MIPS (Dhrystones 1.1). Additionally, the development costs are low
when you use an Altera FPGA, making it a good choice for consumer electronics applications that
demand low price and mass production.

The Nios II processor continues to use the Avalon bus structure introduced by the first-generation Nios
processor. This structure provides a set of pre-defined signal types, which can be used to connect more
than 60 peripherals, including Ethernet, USB, and memory controllers. SOPC Builder and related tools,
such as the Altera Quartus® II software, generate the Avalon bus structure logic automatically. The
structure includes data channel reuse, address decoding, waiting period generation, dynamic bus size,

 Embedded Network MP3 Playing System

 39

and interrupt assignments. Designers can use the SOPC Builder Import Guide to integrate their own IP
modules with other peripherals into the Nios II project.

The Avalon bus structure provides flexible interconnection, simultaneously permitting multiple cores
(CPU and accelerator) to communicate on dedicated channels while reading/writing data. This design
scheme helps increase the volume of system data transmission. Therefore, the hardware accelerator
often used in network communications to compute cyclic delay code can increase its performance two-
fold, compared to software processing. For instance, using software, we need millions of clock cycles to
process a 64-kilobyte data block. If we used Nios II custom instructions, this could be accomplished
with hundreds of thousands of clock cycles. Using the hardware accelerator, it takes only tens of
thousands of clock cycles.

Unlike the Nios processor, the Nios II processor does not restrict you to five custom instructions, and
allow you to use unequal clock cycles. Furthermore, the Nios II processor supports a maximum of 256
user-defined instructions with fixed or variable frequency period operations. Designers can use these
instructions to accelerate the program code and meet an application’s strict timing requirements.
Additionally, they can implement large and complex algorithms and call them as subroutines in the C
language.

Altera provides the Quartus II software, a complete software development tool for the Nios II processor,
which includes a Compiler, integrated development environment (IDE), JTAG debugger, and TCP/IP
protocol stack:

■ Nios II IDE—The Nios II IDE is an Eclipse project that opens with the original code and provides a
complete C/C+ software development kit, including a compiler, project manager, building tools,
debugger, and flash programmer complying with Common Flash Interface (CFI). The IDE supports
connection with target hardware via the JTAG port, and supports a connection between the Nios II
instruction set simulation and Mentor Graphics’ ModelSim hardware simulation tools.

■ IP TCP/IP protocol stack—A lightweight IP TCP/IP protocol stack provides a Berkeley socket
application program interface (API), supporting IP, ICMP, UDP, TCP and RTT estimation, fast
recovery, and fast re-transmission.

Function Description
The system comprises an MPEG-1 Layer III (MP3) archive server, MP3 decoder, and Ethernet
connection. The design is implemented using software and hardware with an embedded SOPC platform,
and uses the embedded uClinux as its real-time operating system (RTOS). The system design principles
and detailed description are described in the following sections.

MPEG-1 Layer III Coder Architecture
The MP3 coding principle should be understood before creating the MP3 decoder. Its coding
architecture is shown in Figure 2, which includes a psychoacoustics model, hybrid filter bank, and
quantization/Huffman coding. Quantization and distortion-free code are mainly used for the rate and
distortion control loop in the MP3 architecture.

Taking monophonic data as an example, one MP3 frame contains 1,152 sound samples (a frame equals
two granules, a granule contains 576 sound samples); each sample is 16-bits of data. Using the filter
bank analysis, the originally entered 16-bit PCM audio is transformed into 32 sub-band signals with the
same bandwidth. Then, each sub-band signal is subdivided into 18 hypo-band signals using the
modified discrete cosine transform (MDCT). Next, bit assignment and quantization coding are made for
each sub-band signal according to the signal-to-mask ratio (SMR) provided by the psychoacoustic
model II. At last, this coded data emerges in bit serial mode defined by MPEG-1.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

40

MP3 Decoder Architecture
Figure 3 shows the MP3 decoding architecture. The MP3 bitstream uses a demultiplexer to perform the
header and side information decoding. It then implements Huffman Decoding, a descaler, and a
dequantizer using the header and side information. Next, it performs the inverse modified discrete
cosine transform (IMDCT) using dynamic windows and outputs PCM data through the filter group.

Figure 2. MP3 Decoding Data Stream

Figure 3. MPEG-1 Layer III Coding Architecture

MP3 Archive Description
Related information about archive decoding should be obtained before implementing the MP3
decoding. This data will be used in the corresponding encoding. You need to know the data’s bitstream
format, frame format, header file format, and side information format.

Bitstream Format
The MP3 bitstream is composed of many frames, with the slot size as its basic unit. The MP3 standard
defines a slot size as 1-byte of data, and therefore, the whole bitstream is made up of slots of integer
numbers. Every frame contains a great deal of decoding information. The starting point of each frame is
a set of sync words, and the ending point is before the sync word of the next frame. All frame sizes are
1,152 samples, although their frame length may vary. The length varies because Huffman decoding is

 Embedded Network MP3 Playing System

 41

used during MP3 decoding, which results in a non-identical decoding length and a variable frame
length.

Frame Format
The MP3 frame is composed of four parts: the header, the cyclic redundancy code (CRC), side
information, and the main data (see Figure 4). The header contains sync words and other important
system information used to detect the new frame’s starting point, such as layer, bit rate, sampling
frequency, and number of channels. The CRC is used in error correction and is 16-bits of data. The side
information includes information needed for main data decoding, and the main data section contains
data that is needed during Huffman decoding and scale factor rebuilding.

Figure 4. MP3 Frame Format

Scale Factor Huffman Code

Frame 0 Frame 1 Frame 2

Header
(32 Bits)

CRC
(0 or 16 Bits)

Side Information
(136 or 256 Bits)

. . .

Main Data Granule 0 Main Data Granule 1

Left Channel Right Channel

Header Format
The first 32 bits of a frame hold the header file information, which is divided into 13 fields, and which
records important frame information (see Figure 5).

Figure 5. MP3 Header Format

A sync word identifies the start of the frame and detects the frame length, i.e., the distance between the
sync word and the next group of sync words (also referred to as a frame). Sync words comprise 12-word
groups of 1s. However, ID information is used to tell the decoding end which algorithm needs to be
adopted to decode the current bitstream. The decoding end should use this algorithm to decode while
the ID field is indicated using a single bit. When the ID is ‘1’, it indicates the adopted algorithm to be
the MPEG-1 audio standard (ISO/IEC11172-3); when the ID is ‘0’, it indicates the algorithm to be the
MPEG-2 audio standard (ISO/IEC 13818-3). The layer field is shown in two-bit format, and indicates
which layer of the audio standard is used. The protection bit indicates whether or not there is an added
16-bit CRC in the bitstream.

The output bit rate index indicates the bit rate of the bitstream with 4 bits. Layer 3 ranges from 32 kbps
to 320 kbps. The MPEG-1 audio defines three kinds of sampling rates: 48, 44.1, and 32 kHz. Two bits

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

42

are used to indicate the sampling frequency in the header files, while another two bits are used to
support four channel modes and indicate the channel mode of the bitstream in the header files. When the
mode is set at “01” it is in the joint stereo channel mode. Therefore, the joint stereo processing step
must be added to the decoding. Additionally, the two flags—copyright and original—indicate whether
the MP3 archive owns copyright or is original, respectively.

Side Information Format
Side information records the information needed in audio data decoding. It is 17 bytes long in a single
channel frame and 32 bytes in dual channel or stereo channel (see Figure 6). The starting index of the
main data in the side information indicates the starting address of the main data. The Part2_3_length
field indicates the length of the scale-factor data. The scalefac_compress[gr] table shows how many bits
need to be read each time. Because transform coding is used in MP3, it must transform according to the
window size. In addition to the long window used for a stable signal and the short window used for an
unstable signal, there are two relay windows used for when it changes from a long window to a short
window or vice versa. We use window_switch_flag to indicate which tables are being used. The
advantage of using four different windows is that frequency resolution can be added to maintain good
audio quality. The block_type field indicates which kind of window each granule uses. There are 32
Huffman tables in all, so table_select in the side information indicates which table is used to perform the
Huffman decode.

Figure 6. MP3 Side information format

MP3 Decode Operation
The MP3 decoding operation includes the Huffman decoder, dequantizer, reordering, IMDCT, and
synthesis filter bank, which are described in the following sections.

Huffman Decoder & Dequantizer
To obtain high compression rates during MP3 decoding, the spectrum coefficient transformed via the
MDCT is divided into 3 regions—the big_value region, the count1 region, and the rzero region from
low frequency to high frequency values. Data needs to be recovered from each region according to
different Huffman code tables during decompression.

Before entering data into the synthesis filter bank, the value after the Huffman decoding should be
dequantized.

Long window:

]))[*][]][][][[_*(_(

)210][_(
4
1

3
4

2*

2**)(
sfbpretabgrpreflagwindowsfbchgrlscalefacmultiplierscalefac

grgainglobal

iii isissignxr
+−

−
=

 Embedded Network MP3 Playing System

 43

Short window:

])][][][[_*_(

])][[_*8210][_(
4
1

3
4

2*

2**)(
windowsfbchgrsscalefacmultiplierscalefac

grwindowgainsubblockgrgainglobal

iii isissignxr
−

−−
=

Where iis indicates audio cable undequantized, and ixr
 represents that of dequantized; sign() takes the

positive signal; global_gain and preflag are obtained from side information.

Reordering
The MDCT adopts two block modes: the short window and the long window, which have different
spectrum types, after the MDCT transform. For greater efficiency in Huffman decoding, the short-
window spectrum is deployed prior to the Huffman decoding. This reordering step recovers the original
sorting sequence.

IMDCT
The IMDCT operation is performed on the data frame as the standard unit. There are 576 points in the
data of a frame, which are further divided into 32 sub-bands. Each sub-band has 18 points whose data
are IMDCT-transformed into 36 points. Each frame thus transforms into 1,152 points, and this value is
multiplied with appropriate window functions depending on the type of window. IMDCT definition is
(2-1) mode where N=36 in the long window and N=12 in the short window.

1 to0))12)(
2

12(
2

cos(
1

2

0

−=+++= ∑
−

=

niforkninXX

n

k
ki π

After the IMDCT transform, the synthesis filter bank data enters into the polyphase filter to synthesize
the audio signal in PCM format. The synthesis actions in the polyphase filter are remove, IMDCT, and
matrix-multiply. IMDCT transforms 32 samples to get a 64 V vector and takes 512 samples to the
synthesis filter (W window) to form the W vector (512 elements). The 512 elements are placed into 16
groups of 32 elements, whose summation of the vectors is the final rebuilt audio signal in PCM format
(see Figure 7).

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

44

Figure 7. Synthesis Filter Bank Flow

... ...

Preamble SFD DA SA LN Data PAD FCS
7 7 2/6 2/6 2 0~1500 0~46 4

■ Preamble: Synchronization function

■ SFD: 10101011, starting byte

■ DA, SA: Destination and starting address

■ LN: Data length

■ Data: At most 1500 bytes

■ PAD: Ensure one frame has at least 64 bytes

■ FCS: Error checking code

Ethernet Protocol
Ethernet uses a carrier sense multiple access/collision detection (CSMA/CD) for data transfer. It must
ensure that no online signal transfer is made before the data transfer. The data transfer needs to be
halted in case of conflict, and retried after some random delay.

Data on Ethernet is transferred in frames. The format is shown in the following section. Each frame has
64 bytes of data as the minimum frame length, and 1,518 bytes as the maximum frame length. PAD is
used to fill the packets to 64 bytes in case no data exists or the data is less than 64 bytes.

The Ethernet addressing mode is set by the DA/SA in the packet, whose value could be two bytes (for
local supervision) or six bytes (for global addressing). The first byte determines transfer to the
individual address or the group address. If all values are ‘1’, it is a multicast or a broadcast address.

 Embedded Network MP3 Playing System

 45

Using these addressing modes, the MP3 broadcaster can transfer audio to specified receivers or
multicast the data.

Data in the packet includes TCP/IP information. TCP/IP is the best protocol available today for use in
Internet or Intranet applications. The protocol is briefly described as follows.

The network protocol is built layer by layer. Each layer is responsible for a certain network function.
The TCP/IP four-layer network communications architecture includes the network application layer,
transport layer, network layer, and data link layer. Programs implemented on the application layer are
HTTP, telnet, e-mail FTP, etc; TCP and UDP are implemented on the transport layer; IP and ICMP are
carried out on the network layer; the Ethernet driver and PPP protocols are implemented in the data link
layer. Figure 8 shows the network protocol.

Figure 8. Network Protocol

Single channel mode transfers the network data with TCP/IP, whose operation for “additional Header”
in each layer is shown as follows.

The data architecture of each layer of the TCP/IP network communication is shown below. AP Data is
added in the header of each layer from the TCP segment to the Ethernet frame, and forms network
packet data. Figure 9 shows the data architecture.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

46

Figure 9. Data Architecture

Embedded Operating System Analysis & Selection
An efficient RTOS needs to be supported by the system to enable the embedded products’ multifunction
features and shorter development time. In the past, embedded systems have implemented fewer
functions and therefore did not need operating systems. However, as more and more consumer
electronics devices integrate multiple functions, many embedded systems are more complex.

Among the many available RTOS for embedded systems, the μC/OS and uClinux are the most popular,
offering excellent performance and open source code. μC/OS is suitable for small control systems
because of its high efficiency, small size, and strong scalability. For example, the smallest core of the
μC/OS can be compiled into a 2-Kbyte space. The uClinux, adapted from the standard Linux OS, is
designed according to the feature of the embedded processor. With built-in network protocols, uClinux
supports many file systems.

Comparison between the μC/OS & uClinux Embedded Operating
Systems
The embedded operating system is the control center of the embedded system software and hardware
resources. It organizes and manages multiple user needs. Task scheduling, file system support and
system migration are general tasks in embedded operating system applications. This section compares
how the μC/OS and uClinux RTOSs handle these tasks.

Task Scheduling
Task scheduling arranges the use of system resources (memory, I/O devices, and CPU). Task
scheduling—also referred to as CPU scheduling—allocates the CPU for tasks in ready status based on
two basic modes: preemptive and non-preemptive scheduling. In non-preemptive scheduling, a task is
implemented once it is scheduled, unless it gives up the CPU time and enters into wait status, in which
case the CPU is reallocated to other tasks. Preemptive scheduling identifies the current task, and is
preempted to ready status once a task with higher priority exists in ready status or the running program
has used up the specified time slice, in which case the CPU will be allocated to other tasks.

 Embedded Network MP3 Playing System

 47

Being an RTOS, μC/OS adopts preemptive real-time multi-task core, i.e., the core always runs the task
with the highest priority in ready-status. μC/OS supports a maximum of 64 tasks, which correspond to a
priority status of 0~63, 0 being the highest priority. Scheduled tasks can be divided into two parts:
search and switch, of the task with the highest priority.

Search of the task with the highest priority is performed by setting up the task in ready status. All tasks
in μC/OS have an independent stack. They also have a data structure called tcb (task control block) with
a stack index. The task scheduling module first records the tcb address of the task in ready status with
the highest priority, currently with the OStcbHighRdy variant, then invokes the os_task_sw() function
to realize the task switch.

The uClinux task scheduling adopts the traditional Linux mode. The system starts the task in certain
intervals, generates fast and periodic clock-timing interrupt, and decides when the program could
possess its time slice by using the scheduling function (timer processing function). It then makes the
related task switch by invoking the fork function with the parent task.

After the invoking the fork function in the uClinux system, the subtask substitutes the parent task to
realize the implementation. This time, an executable file is generated, even if this task is a copy of the
parent task. After the subtask has exited or executed, it awakes the parent task using a wakeup to
continue the parent task implementation.

Because uClinux does not have a memory management unit (MMU), its access to the memory is direct,
and the accessed addresses in all programs are real physical addresses. The operating system does not
protect the memory space, so all tasks actually share the same running space. In this case, data
protection needs to be made during the multi-task implementation, which may also result in the user’s
program taking up the system core space. All these problems should be addressed during the design
stage.

From the above analysis, we deduced that μC/OS is best suited our real-time system requirements.

File System
The file system handles the access and management of file information. These operations include file
creation, reading/writing, modifying, copying, and software programs that manage resources (directory
table, storage media, etc.).

μC/OS is used for medium and small-sized embedded systems. Because the core of μC/OS is only 6 to
10 Kbytes after compilation, the system itself does not support the file system.

uClinux inherits the perfect Linux file system performance. It adopts the romfs file system, which
requires less space than the general ext2 file system. The space savings is made up of two aspects. The
core needs less code when supporting the romfs file system than supporting the ext2 file system. On the
other hand, romfs file system is easier to implement, and requires less storage space when establishing
the superblock file system. The romfs file system does not support dynamic erase saving. It adopts a
virtual RAM mode to process data that needs to be dynamically saved by the system (RAM would use
ext2 file system).

uClinux also inherits the advantages of the Linux network operating system, which supports the
network file system and embeds TCP/IP protocol that simplifies development of the network embedded
devices of uClinux RTOS.

Based on the file-system support, we decided that uClinux is better suited for complex embedded
systems that need many file processes. In contrast, μC/OS is suitable for smaller control system
applications.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

48

Migration of the Operating System
The basic idea of migrating an embedded operating system is to run the OS on a certain microprocessor
or microcontroller. μC/OS and uClinux are operating systems with open original code whose structural
designs make it simple to separate processor-related segments. Therefore, they can migrate to the new
processor easily.

The target processor has to meet the following requirements to migrate μC/OS:

■ The C program compiler of the processor must generate re-settable machine code and open and
close the interrupt routine using the C language.

■ The processor supports interrupt and can generate interrupts periodically.

■ The processor supports abundant RAM (several Kbytes) as the task stack under a multi-tasking
environment.

■ The processor features instructions to read or store the stack index and other CPU registers into the
stack or memory.

When compared with μC/OS, migrating the uClinux RTOS is more complex. Generally speaking, the
target processor should also support external ROM and RAM with abundant capacity in addition to the
above-mentioned μC/OS requirements.

The migration of uClinux can be split into three hierarchies:

■ Migration of hierarchy—If the structure of the processor to be migrated is not the same as any
supported processor structure, then the relative processor structure archive in the linux/arch
directory must be modified. Although most of the machine code of the uClinux core is independent
of the processor and its architecture, the machine code in the lowest hierarchy is not the same in
different systems because of their unique interrupt process program, memory map, task process
invoking, and initialization process. These routines are in the linux/arch/directory. Because Linux
supports various architectures, to handle a new architecture, its low-level program should be
compiled by copying the architecture similarly.

■ Platform level migration—If the processor to be migrated is the branch processor of an architecture
that has been supported by uClinux, the corresponding directory must be established under a
relative architecture directory and the corresponding machine code must be compiled. For example,
the migration in this case must establish the linux/arch/nioscpu/platform/nios directory and compile
the tracking program (to realize the user program to core function interface and some other
functions), the interrupt control program, and the vector initialization program in the directory.

■ Board level migration—If the processor is supported by uClinux, then board level migration will
suffice. The board level migration needs a corresponding board directory established in the
linux/arch/platform/ directory, and it should contain the corresponding starting machine code
crt0_rom.s or crt0_ram.s and link description file rom.ld or ram.ld. The board level migration also
includes driver compilation and environment variables setup.

Comparing μC/OS and uClinux, we can see that the two operating systems have their strengths and
weaknesses. μC/OS takes up less space, implements with high efficiency, offers real-time performance,
and migrates to a new processor relatively easily. uClinux takes up more space, implements with weak
real-time performance, and migrates to the new processor in a relatively complex way. However, with
its embedded TCP/IP protocol, uClinux supports various file systems, and benefits from abundant open
Linux program resources. uClinux is stronger when used in some more complex applications.

 Embedded Network MP3 Playing System

 49

Performance Parameters
The system features the Nios II /s CPU, peripheral compact flash (CF) card, Ethernet network chip,
MP3 decoding chip, ROM, SRAM, SDRAM, and other peripherals. The hardware design is shown in
Figure 10, and the hardware resource utilization in Table 1. Figures 11 and 12 show the finished MP3
player development platform.

Figure 10. Nios II CPU & Peripheral Component Design

C k
c0
e0

Ratb
1/1
1/1

Pb(09) DC()%
0.00 S0.00

-63.00 S0.00

In ck 0 trequemcy:s0.00 MHz
Operation Mode: Normal

inck0

inst2 Stratix

c0
e0

sysck OUTPUT
PLD_CLKOUT

sdram_pll

SDRAM PLL

INPUT
VCC

PLD_CLOCKINPUT[]

delay_reset_block

clock_in delayed_reset_n
reset_n

inst1
Reset Delay: Allow PLL to Stabilize (Lock) After
Reset or Device Configuration

INPUT
VCC

PLD_CLEAR_N

clk
reset_n

linux_1s10ES

detect_n_to_the_cf

iordy_to_the_cf

iortrq_to_the_cf

INPUT
VCC

de tect_i_to_the

INPUT
VCClrtq_to_the_or
INPUT
VCClrtq_to_the_or

addr_from_the_cf[10.0]

atasel_n_from_the_cf

cs_n_from_the_cf[1..0]

data_cf_to_and_from_the_cf[15..0]

iord_n_from_the_cf

reset_n_cf_from_the_cf

iowr_n_from_the_cf
power_from_the_cf

rfu_from_the_cf

we_n_from_the_cf

OUTPUT addr_from_the_ct[10..0]
OUTPUT

atase_u_from_the_ct[1.0]OUTPUT

lowr_i_from_the_ct

atase_U_from_the_ctr

uata_cr_to_and_from_the_ct[15.0]BIDIR
UOO
OUTPUT lord_l_from_the_ct
OUTPUT

powr_from_the_ctOUTPUT

OUTPUT rn_from_the_CT
OUTPUT we_from_the_CT

ic_warnt_fill_to_the_cpu

be_n_to_the_ext_ram[3.0] be_i_to_the_ext_ram[3..0]OUTPUT

byteenablen_to_the_I an91c111[3..0] bnytee tablen_to_the_tan91c111[3..0]
OUTPUT

ext_ram_bus_address[22..0] OUTPUT ext_ram_bus_address[22..0]

ext_ram_bus_data[31..0] ext_ram_bus_data[31..0]BIDIR
UOO

ior_n_to_the_I an91c11 OUTPUT Ior_i_to_the_ta91c111

iow_n_to_the_I an91c11 OUTPUT Ior_i_to_the_ta91c111

read_n_to_the_ext_flash OUTPUT read_i_to_the_ext_taxt

read_n_to_the_ext_ram OUTPUT read_i_to_the_ext_taxt

read_n_to_the_Ian91c111
select_n_to_the_ext_flash

OUTPUT relect_i_to_the_ext_taxt

select_n_to_the_ext_flash OUTPUT select_i_to_the_ext_taxt

write_n_to_the_ext_flash OUTPUT wirtte_i_to_the_ext_taxt

write_n_to_the_ext_flash OUTPUT wirtte_i_to_the_ext_taxt

zs_addr_from_the_sdram[11.0] zx_addr_from_sdram[3..0]OUTPUT

zs_ba_from_the_sdram[1.0] zx_ba_from_sdram[3..0]
OUTPUT

zs_cas_n_from_the_sdram OUTPUT zs_cas_i_from_the_sdam

zs_cke_from_the_sdram OUTPUT zs_cke_from_the_sdam
zs_cs_n_from_the_sdram OUTPUT zs_cs_i_from_the_sdam

zs_dq_to_and_from_the_sdram[31..0] zs_dq_to_adn_from_the_sdram[31..0]BIDIR

zs_dqm_from_the_sdram[3..0] zx_dqm_from_sdram[3..0]OUTPUT

zs_ras_n_from_the_sdram zx_ras_i_from_the_sdramOUTPUT

zs_we_n_from_the_sdram zx_we_i_from_the_sdramOUTPUT

txd_from_the_uart1 txd_from_the_artOUTPUT

Blue_from_the_vga_out Blne_from_the_uga_ontOUTPUT

Green_from_the_vga_out GREEN_from_the_uga_ontOUTPUT

Horiz_Sync_from_the_vga_out Horlz_Sync_from_the_uga_ont
OUTPUT

Red_from_the_vga_out Red_from_the_uga_ont
OUTPUT

Vert_Sync_from_the_vga_out Vert_Sync_from_the_uga_ontOUTPUT

out_port_from_the_vs1001_bsync ont_port_from_the_vs1001_bsync
OUTPUT

MOSI_from_the_vs1001_control mosi_from_the_vs1001_control
OUTPUT

SCLK_from_the_vs1001_control SCLK_from_the_vs1001_control
OUTPUT

SS_n_from_the_vs1001_control ss_i_from_the_vs1001_dataOUTPUT

MOSI_from_the_vs1001_data MOSI_from_the_vs1001_dataOUTPUT

SCLK_from_the_vs1001_data SCLK_from_the_vs1001_data
OUTPUT

SS_n_from_the_vs1001_data

in_port_to_the_vs1001_dreq

MISO_to_the_vs1001_data

out_port_from_the_vs1001_reset ont_port_from_the_vs1001_reset
OUTPUT

Inst

Input
VCCIn_put_to_the_us1

GND

MISO_to_the_vs1001_control
Input
VCCIn_put_to_the_us1

rxd_to_the_uart1
Input
VCCad_to_the_us1

irq_from_the_lan91c111

GND

VCC
Imput

Inq_from_the_tab91c111

OUTPUT ENET_ADS_N

OUTPUT ENET_AEN

GND

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

50

Table 1. MP3 Chip Used by Network Player Hardware & Performance

Item Description
Function Nios II MP3 Player System

Altera EP1SF780C6ES FPGA
Hardware Device

Available Usage

LEs 10,570 6,575 *

9-Bit DSP Blocks 48 9
920,448 801,536

CPU On Chip RAM VGA On Chip Memory (Bits)
45,824 524,288 230,400

I/O Pins 427 191
Performance 61.63 MHz (fmax)

*Using the Quartus II software version 5.0 group compiling and integration; Set options together: the least logic

As for software resources, the uClinux kernel and file system take up 1,784 Kbytes and 2,417 Kbytes of
external flash ROM, respectively. The application takes up about 30-Kbytes space, and the MP3 files
are stored on the CF card.

Figure 11. Outside View of MP3 Player LCD

 Embedded Network MP3 Playing System

 51

Figure 12. MP3 Player Development Platform

Design Architecture
This section describes the project’s design architecture.

MP3 Broadcasting Network
This system architecture will be used for music audio/broadcasting or music audition (see Figure 13).
MP3 audio is provided by the MP3 broadcasting server and is downloaded to each MP3 receiver from
the Ethernet. The broadcasting server selects the audio actively, and the receiver plays or audits the
downloaded music. In this system, the broadcasting server is based on a PC because of the large hard
disk, which is easy to store, extend, and maintain. Additionally, the hard disk offers abundant operating
system support. If the system is used for business purposes, the Linux/uClinux is preferable because of
the server operating system and receiver operating system, considering system stability and costs.

Figure 13. Ethernet MP3 Broadcasting System

MP3 Broadcasting Receiver
Figure 14 shows the circuit function block of the MP3 broadcasting receiver. After receiving the
Ethernet data, the MP3 data is first prepared for processing by the Nios II CPU, which also performs

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

52

MP3 decompression. Then, the audio is output via a dual-channel amplifier. The received MP3 data can
also be stored in flash memory for playback.

Figure 14. Ethernet MP3 Receiver

Flash ROM
SRAM
DRAM

SMSC
LAN91C111

Ethernet

640 x 480 LCD
Display

Touch Panel

Control
Signals

Stereo Audio
Amplifier

Ethernet
Frame

Ethernet

MP3 File
Server

Altera
EP1S10F780

FPGA
(Nios II)

MP3
Decode

Accelerator
& D/A

Converter

CF Card

MP3
Data

Stream

MP3 Decoder
From the previous MP3 coding theory, we found that you needed a huge amount of data packet
composing or decomposing, and a great deal of repeated numerical operations in both the coding and
decoding processes. Additionally, in a real-time system, a large volume of data needs to be processed in
every clock cycle. If the processor speed is low in an embedded system, then you cannot play MP3
audio. Our system has been designed to accelerate MP3 decoding with the help of a peripheral decoding
circuit. Although the Nios II processor in an FPGA can perform the MP3 software decoding function, it
cannot reach the real-time processing speed. Therefore, the MP3 data stream decoding is implemented
using an additional decoding chip to reduce the burden on the CPU.

The system adopts a special chip to implement MP3 decoding. Other design considerations include:

■ MP3 audio play needs to be transformed into simulation signals towards the end of the process.
However, the FPGA currently cannot implement this simulation circuit; in contrast, the dedicated
chip features a simulation circuit. Taking this design approach, you can save on components of the
simulation circuit.

■ Because MP3 audio players are very popular, you can easily get cheap, reliable, and low-power
integrated circuits.

Figure 15 shows the block diagram of internal functions of the VS1001, an MP3 decoding chip
developed by VLSI Solution Oy from Finland. It features a low-power DSP chip, which could be used
to implement user programs to process special audio effects. It also operates as the MP3 decoder and
has a 16-digit dual channel digital-to-analog converter (DAC) with no phase difference and a simulation
earphone amplifying circuit. These features could significantly simplify the MP3 decoder production.

 Embedded Network MP3 Playing System

 53

Figure 15. Block Diagram of Internal Functions in VS1001 MP3 Decoding Chip

Figure 16 shows the circuit connections between this chip and the Nios II development platform. The
3.3-V working power is obtained from P17 (on the board), the controlled serial peripheral interface
(SPI) signal and MP3 data’s SPI signal are connected with to the development board at P11. The two
SPI signals are controlled by the independent SPI interface in the FPGA (see Figure 16).

The VS1001 chip uses two SPI buses, the serial data interface (SDI) that transmits MP3 compressed
data and serial control interface (SCI) that implements control instructions. By reading/writing the 16-
bit register of the SCI interface, the following operations can be implemented:

■ Operation mode control

■ Loading user program

■ Reading header data

■ Reading status information

■ Accessing decompressed digital data

■ Feed-in entry data

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

54

Figure 16. MP3 Decoding Chip Circuit

SO
SI
SCLK
CS
RESET
DREQ
SDATA
DCLK
BSYNC

TEST0
TEST1
TEST2

XT1 / MCLK
XT2

14F20
13G15
12G20
11G19
26

1
3
2
4

G14
G18
G17
H18

1
3 N.C.
5 N.C.7
9
11

N.C.
N.C.
N.C.13 N.C.

15 N.C.
17 F20
19 DGND
21 G15

G2023
25 G19
27 G14
29 G18

G1731
33 H18
35 N.C.
37 N.C.
39 N.C. N.C.

2
4
6
8

10
12
14
16
18
20
22
24
26
28

N.C.

N.C.

N.C.
N.C.
N.C.

N.C.
DGND

N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.

8
7 AGND

AGND
AGND
DGND
DGND
DGND

RCAP

RIGHT
LEFT

AVDD
AVDD
DVDD
DVDD

28DVDD
8
5
23
19

24
20

22

27
10
6
25
21
18

N.C.

10 k
R3

DVDD

21.576 MHzX1

R4

1 M

18 p

C8

18 p
C9

104

C1

VS100 1 K

U1

DVDD

RVDD

15 R1

10 �

10 �

C6
100 �

100 �
C7

R215

L

R

G

STEREO

104
C2

+ +

100 �F

C3

100 �F

C4

104

C5

DGND

L1

L2

+3 V

P17
1
3
5
7
9

11
13
15
17
19

N.C.
N.C.
N.C.

N.C.
N.C.

+3 V

2
4
6
8
10
12
14
16
18
20

RGND

P11
RES

30
32
34
36
38
40 16

17

15

The SCI instruction read/write waveforms are shown in Figures 17 and 18, respectively. The data is
read or written to at the SCK rising edge.

Figure 17. Reading of SCI Word

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 30

XCS

SCK

SI

SO

Instruction (READ)

0 0 0 0 0 0 1 1

Address

7 6 5 4 3

Data Out

Don't Care

31

15 14 1 0 X

2 1 0

High Impedance

Figure 18. Writing of SCI Word

 Embedded Network MP3 Playing System

 55

Figure 19 shows the MP3 decoding flow in the VS1001 device and its program steps are as follows:

1. MP3 data is entered through the SDI bus.The data is delivered to the bass/tenor enhancing circuit,
which is controlled by the SM_BASS of the SCI register, after MP3 decoding.

2. If A1ADDR of the SCI register is not zero, the application code set by the user is implemented. The
starting address is specified by A1ADDR.

3. The digital PCM audio data is then sent to the volume control unit. The output signal is temporarily
stored in a FIFO buffer, and is then transformed into simulation audio by the DAC for output
according to the sampling frequency. The FIFO buffer can save 512 stereo audio (2 x 16 bits).

Figure 19. VS1001 MP3 Decoding Flow

Figure 20 shows the connection of the microprocessor to the VS1001 chip. The basic settings are listed
for the microprocessor interface as follows:

■ SO and DREQ are inputs, and the rest of the signals are outputs.

■ When the SPI control is idle, the PI clocks should be set to low power.

■ If the microprocessor has no SPI signal interface, the SO, SI and SCK signals could be
implemented by the general I/O; however, the microprocessor must have a fast enough operation
speed.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

56

Figure 20. VGA Display Control Circuit

Horizontal/Vertical Synchronization
Signal Generator

Information Displays Memory

Headine in LCD Panel Displays Memory

RGB Output Signal Generator

Clock_50 MHz Horiz_Sync
Vert_Sync

OUTPUT Horiz_Sync
OUTPUT Vert_Sync

co[8..0]
now[7..0]

v_h_sync

inst2

video_on1
video_on2

WRE h_adr[9..0]
inst3
WRE

inst4
h_adr[15..9]

GND h_adr[15..0]

Ipm_add_sub0

A
dataa[15..0]

dataa[15..0]
B
A£«B

result[15..0] rd_adr[15..0]

INPUT
VCCClock_50 Mhz

c[15..0]

inst8

r[18..0]result[16..0]

Unsigned
multiplication

Ipm_mult0
datab[7..0]

datab[8..0]

row[7..0]

inst6
320

9

Ipm_constant0

inst/
Ipm_ram_dp0

61
44

0
W

or
d(

e)
R

A
M

wr_data[2..0
]

wr_data[15..0]
data[2..0]
wraddress[15..
0]
wrenwr_erb

INPUT
VCCwr_data[2..0]

wr_adr[15..0] INPUT
VCC
INPUT
VCC

wr_enb rgb1[2..0]q[2..0]rdadrress[15..0
]rd_adr[15..0]

clock

Block Type:AUTOinst5
Ipm rom1

address[13..0]
clock q[2..0]

rd_adr[13..0]
rgb2[2..0]

inst18
AND2v_on2

rgb1[0]
inst
AND2

rgb1[1]
inst1
AND2

rgb1[2]

v_on1
rgb2[0]

inst10

AND2

inst15
AND2

rgb2[1]
inst16
AND2

rgb2[2]

inst17

OR2

inst2
OR2

inst13
OR2

rgb[0] OUTPUT Blue

rgb[1] OUTPUT Rad

rgb[2] OUTPUT Green

Display Memory Address Generator

Figure 21 shows the VGA output interface circuit.

 Embedded Network MP3 Playing System

 57

Figure 21. VGA Output Interface Circuit (from Altera UP3 Development Kit)

1 R
55

7
1

k2IN
41

46

1 R
55

6
2

1
kIN

41
46

1 R
55

5
2

1
kIN
41

46

LCD Display Panel
A dot-matrix LCD controller is added to the MP3 receiver for displaying the related MP3 information
(such as MP3 file name, length, bit rate, receiving status, and play menu) on the 640 x 480-pixel LCD
panel. The panel information operation is controlled by the touch panel.

Touch Panel
Touch panels are becoming more and more popular these days. They are mainly used in environments
where there are space constraints and it is not convenient to use a normal keyboard. These applications
include operating table supervision systems, self-service meal ordering systems, PDAs, cell phones,
logistics management, and inventory management. To make it easier for the user, a four-wire touch
panel, rather than an ordinary keypad, is used in the system. Its principle is described as follows.

The basic structure of the four-wire resistive element is very simple: it is made up of two resistive films
(see Figure 22). On the X axis of the top resistive film, there are X+ and X- poles connected with the
resistive film; and another two Y+ and Y- poles connected with the bottom resistive film. A voltage is
applied interactively onto one side of the pole of the two-layer resistive film. When the two-layer
resistive film is touched, a voltage value resulting from the touch of the resistive films can be measured
via the pole on other side, which is not electrically connected, and hence the X and Y coordinate of the
touch point can be obtained. The touch panel outputs X, Y coordinates in serial mode after processing
by the interface integrated circuit. Its data format is shown in the tables following Figure 22.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

58

Figure 22. Touch Panel Diagram

X+
X-

I

Y+
Y-

I

Description Data Byte
1 2 3 4 5 Pen Up BF 00000xxx 0xxxxxxx 00000yyy 0yyyyyyy

Description Data Byte
1 2 3 4 5 Pen Down FF 00000xxx 0xxxxxxx 00000yyy 0yyyyyyy

If the first serial data character is 0xFF, the following four characters are X, Y coordinates of the
touching point of the touch panel; if it is 0xBF, the characters are the X, Y coordinates of the leaving
point of the touch panel. We have mapped the system LCD screen into 40 horizontal characters and 30
vertical characters. Therefore, the program divides the read X, Y value with 40 and 30 to determine the
touch display position of the character. Every time the panel is touched, the Nios II CPU issues a short
beep to confirm the touch command.

Ethernet Chip
We used SMSC’s LAN91C111 device as the Ethernet control chip in our MP3 receiver. The
LAN91C111 device is a 128-pin TQFP, full-duplex network chip that can be connected with 8-, 16- or
32-bit microprocessors and can work in 10/100-Mbps mode. See the following table.

Item Byte/Bit 7 6 5 4 3 2 1 0
Command code 1 C7 C6 C5 C4 C3 C2 C1 C0
X-High byte 2 0 0 0 0 0 X9 X8 X7
X-Low byte 3 0 X6 X5 X4 X3 X2 X1 X0
Y-High byte 4 0 0 0 0 0 Y9 Y8 Y7
Y-Low byte 5 0 Y6 Y5 Y4 Y3 Y2 Y1 Y0

Currently, the LAN91C111 chip used by our system network interface has two main function blocks:
the MAC and PHY. The MAC is used mainly for digital data processing and the PHY for simulation
data processing. Figure 23 shows the LAN91C111 simplified circuit diagram with the MAC and PHY
function blocks. Figure 24 shows the block diagram of the LAN91C111 device’s internal functions.

 Embedded Network MP3 Playing System

 59

Figure 23. Basic Connection Block Diagram

H
os

t S
ys

te
m

Figure 24. Basic Functional Block Diagram

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

60

The LAN91C111 device features an 8-Kbyte FIFO buffer, which is used to store the transmitted and
received data packets. The FIFO buffer can be accessed externally in DMA mode. The device uses
9,346 (64 x 16-bit EEPROM) to store resource configuration (e.g., I/O address, boot ROM base address,
and interrupt request source) and ID parameters. The chip control circuit comprises four register banks.
The first 16 registers are used for control and status, registers 16 through 23 are used for DMA data
access, and register 24 through 31 are used for chip reset. The transmitted or received data packets
range from 60 to 1,514 bytes:

Item Description Size
Destination address MAC address of target node 6 bytes
Source address MAC address of sending node 6 bytes
Length Packet length 2 bytes
Data Data 46 ~ 1,500 bytes

The transmit and receive flow of data packets are shown in Figures 25 and 26, respectively. The packet
transmission flow includes memory configuration, packet buffer writing, packet array arrangement, and
transmission.

 Embedded Network MP3 Playing System

 61

Figure 25. Data Packing Transmission Flow

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

62

Figure 26. Data Packet Receiving Flow

Start the Receiver
RCR Register =

0x0100

RCXINT Byte = 1?

Read the Receiving
Packing Packet #=

RXFIFO

Packet Receiving

Yes

Set Pointer Register =
0xE000 (RCV, RD &

AUTOINC)

Read STATUS

No

Read Byte Count

Read Receiving
Address (6 Bytes)

Read Source
Address (6 Bytes)

Read Data packing
Bytes

Read Receiving
CONTROL Register

End

Operating System
We designed the system software based on the uClinux RTOS that can be implemented on the Nios II
processor. The main functions of each task are briefly described as follows (see Figure 27):

■ Transport stream (TS) processing program—This program implements the TS input, output, and
memory management functions. It is similar to the physical layer of the communications system,
which implements transmission control of the hardware system. In general, this task stores the data
read from the FIFO buffer in different segments of SRAM, and submits the index address.
Meanwhile, the data stream to be output is read from SRAM and written to the output FIFO buffer
according to the application requirements. In special cases, the input data volume is modified
according to the input data stream rate and memory availability.

■ MP3 system layer analyzer—The MP3 information that is entered into the data stream is analyzed
according to the MP3 system layer standard. Various acquired parameters and audio information
are sorted and stored. The data is reassembled according to the simple network management
protocol (SNMP) data structure and is updated when necessary. The results are then submitted to
the trigger program of the transmission error transaction.

■ Transmission error supervision program—The program first completes the synchronization and
analysis in succession according to different priorities, and then stores the analysis results data in a
structured format to submit to the communications module. It implements a fault prompt and alarm
via the pre-designed fault mode. Too many error alarms cause an information jam; therefore, it is
helpful to be judicious in judging problems by combining it with the related errors into higher-level
alarm information.

 Embedded Network MP3 Playing System

 63

■ Communications service program—The program completes the design of Ethernet transmission
control according to TCP/IP protocol and SNMP protocol. Data output transmits the statistical
information database and the analytical database to the controller side, based on the standard SNMP
protocol. Meanwhile, control command communications are made via TCP or UDP protocols.
Semantic analysis can be made for statistical information data entered by SNMP by means of
additional analysis software. Nevertheless, the program needs to transmit local hardware timing
information as the reference, or display analysis data on the console directly. After adding the web
server function to the communications service, the analysis results can be displayed directly via a
browser.

Figure 27. Embedded Operational System Software Structure

Transmission Error
Supervision Program

Communications Service
Program

Ethernet Command
Controller

MP3 System Layer
Analyzer

TS Processing ProgramEthernet Transmission
Service Program

Optimized RTOS Core

Ethernet
Driver

TS FIFO
Buffer Timer Nios II Driver

Nios II Processor

Data Stream TS Information Control Stream

Design Methodology
The development of the system is divided into system planning, hardware circuit design, software
program design, OS migration, and system integration test.

At the beginning of system planning, we decided to perform MP3 coding by combining software and
hardware. During the testing phase, we realized that using only software programs will not work in real-
time, as they consume large amounts of time. Also, if we used MP3 coding hardware circuits along with
the FPGA, these circuits would occupy too many chip resources, and some circuits would operate
poorly. Therefore, we decided to use an additional MP3 coding chip to save the process of
implementing a simulation circuit.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

64

The hardware circuit design includes the Nios II CPU, touch pad, compact flash (CF) card, memory,
Ethernet interface, VGA display interface, and MP3 chip control interface. We developed the circuits in
VHDL, and used the SOPC Builder tool for the CPU and the peripheral design. Finally, we used the
Quartus II software to compile and compose our design.

The software program was written in the C language and compiled with the gcc compiler. For making
easy modifications to the system during development, we performed the interface circuits tests of all
using independent programs without involving the OS. This process saved us development time because
we did not have to recompile the software/hardware combination of the design.

The uClinux RTOS was downloaded to the Nios II development board. The CF card access and
Ethernet operated under the RTOS, so we did not have to write drivers.

After completing the actions and tests above, we took enough time to integrate and test the system,
using the following steps:

1. Establish the kernel project. Plan and compile the Nios II CPU system that generates the PTF file
for the establishment of the kernel (including selecting the development board whose kernel
configuration is set to the Stratix® or Cyclone™ device).

2. Establish a file system project, including the basic instructions to be performed on the OS, as well
as some application programs such as boa server, telnet, and ftp.

3. Download constructed kernel (vmlinux.bin) and file system, romfs.bin, to the flash ROM, and then
download the SRAM Object File (.sof) or Programmer Object File (.pof) of the CPU. Once the
software development kit (SDK) window changes to Nios II terminal mode, you can start the OS
and check some messages, as well as control the OS after inputting the user account and password.

4. The development of the application program must establish the write program, build the makefile,
and specify the option setting of the compilation in the integrated development environment (IDE).
The program should copy the .exe file generated by compilation to the filesystem/bin subdirectory,
rebuild the project to download to the flash ROM, and start the RTOS to test the program.

5. When testing a program, you must first start up the RTOS network connection and download the
program execution file to the CF card via ftp or telnet.

When the tested program is in an endless loop, it can skip over the execution program if the user presses
the Ctrl+C keys when testing with the SDK. However, if you press the Ctrl+C keys in the RTOS, the
program only leaves terminal mode and does not end the program.

 Embedded Network MP3 Playing System

 65

Design Features
This design project integrates the Nios II CPU, the MP3 encoder, Ethernet, the RTOS, and other
software/hardware technologies on the SOPC, and completes the embedded network MP3 broadcast
system. The system can download MP3 messages through Ethernet, which are then played directly on
the MP3 receiver. This system is applicable for use in:

■ Public places, replacing conventional loudspeaker broadcasts and providing good quality audio and
voice messages.

■ Music audio in shops, replacing CD audio players and providing the convenience of the latest MP3
technology.

The main function blocks in the system design include:

■ Nios II CPU and peripheral circuit plan

■ MP3 encoder interface circuit

■ VGA display interface circuit

■ Embedded Ethernet

■ Embedded OS uClinux

■ MP3 file server

■ SOPC software/hardware system integration

Considering the flexible design of the system software/hardware, we adopted the SOPC design
methodology to complete the system. If the system were to be implemented only using software
programs, it would be extremely difficult to process the MP3 data in real-time, or it would require a
higher performance processor, which is too costly and consumes more power. Many application
programs of the system cannot be realized in hardware circuitry, and therefore are not flexible.
Therefore, an FPGA that contains the Nios II soft processor is the best choice for this design.

Conclusion
The purpose of our design, the Embedded Network MP3 Playing System, is to make general public
announcements at selling booths and public places. These messages are played in real-time, and could
include popular music or electronic information (in MP3 file format) that can be transmitted to MP3
players by the main control room to the Internet or LAN.

The system core uses a 32-bit RISC Nios II embedded soft processor, which was released by Altera in
2004. The system OS is uClinux. The development tools, such as the SOPC Builder and the Quartus II
software version 5.0 IDE, helped us to partition the software/hardware module design, compile,
combine, program, and test, as well as to integrate the program into the Altera Stratix FPGA
development board.

The Nios II processer has three types of optimal CPU variants: one that has high system performance,
one that uses the fewest logic resources, and one that provides a balance between system performance
and logic resources.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

66

Although Altera’s development tools were good, we faced a few problems during development.

■ It was difficult to make an optimal choice because selecting the CPU, parameters of the peripheral
components, and even circuit combinations were very complicated.

■ Whether the RTOS was in use or not, the OS name was not matched during hardware development,
which we needed to change manually.

■ It was difficult to write this report because the sections were out of order and contained repeated
information. Instead, we would like to suggest the following project report sections: Motivation and
Purpose, System Architecture (including circuit diagram, program flow, and specifications for use),
Design Principle, Design Description (detailed circuit diagram and program description), Test and
Experiment Result, Conclusion, and Appendix.

The initial hardware design of the system was to select the Nios II /f CPU using SOPC Builder, and add
a user logic interface, designed by us, to connect the VGA display. At the beginning of the design, we
took more time to add a display with extra pixels, but considering the memory resources used by the
system and the size restriction of some RAM and ROM, we used the Nios II /s CPU instead, compiled it
in the Quartus II software, and implemented a full-screen display. Besides the LCD display, the system
also supports the touch screen input by the UART interface, and allows further design modifications on
the touch screen functions. The play of the MP3 decoder is controlled by two SPI interfaces. We spent a
lot of time at the beginning of the project on this aspect, due to our unfamiliarity with the
communication protocol and SPI timing, learning how the function base of the SPI is applied in the
Nios II system, and verifying using an external MP3 decoder circuit. After completing a few modules,
we still had some difficulties when integrating the uClinux RTOS, accessing the CF card, and
performing Ethernet transmission. We overcame these problems in the end.

For this kind of project, no matter how the software and hardware cooperate, or what the setting and
operation of the RTOS, each function that needs to be implemented successfully must be understood
and developed with the correct debugging procedures. You cannot wade into this design blindly and use
trial and error. That approach wastes a great deal of time and lowers your confidence. A special thanks
to our instructors for providing such great help and important suggestions about the design and
operation of this product. We thank all our college mates for their active participation and sincere
devotion during this competition. Through this competition, we learned how to design an embedded
system and perform system integration. We had a pleasant experience entering the competition, and we
hope to do even better next time.

Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks
and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the
property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and
pending applications, mask work rights, and copyrights.

	Design Introduction
	Public Broadcasting System
	CD Audio Player

	Function Description
	MPEG-1 Layer III Coder Architecture
	MP3 Decoder Architecture
	MP3 Archive Description
	Bitstream Format
	Frame Format
	Header Format
	Side Information Format

	MP3 Decode Operation
	Huffman Decoder & Dequantizer
	Reordering
	IMDCT

	Ethernet Protocol
	Embedded Operating System Analysis & Selection
	Comparison between the μC/OS & uClinux Embedded Operating Systems
	Task Scheduling
	File System
	Migration of the Operating System

	Performance Parameters
	Design Architecture
	MP3 Broadcasting Network
	MP3 Broadcasting Receiver
	MP3 Decoder
	LCD Display Panel
	Touch Panel

	Ethernet Chip
	Operating System

	Design Methodology
	 Design Features
	Conclusion

