
 Implementation of the H.264/AVC Decoder Using the Nios II Processor

 67

Second Prize

Implementation of the H.264/AVC
Decoder Using the Nios II Processor

Institution: Seoul National University

Participants: Im Yong Lee, Il-Hyun Park, and Dong-Wook Lee

Instructor: Ki-Young Choi

Design Introduction
H.264/AVC is a video standard of the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC
Moving Picture Experts Group (MPEG). This standard has been developed in response to the growing
need for higher video compression in applications such as videoconferencing, digital storage media,
television broadcasting, internet streaming, and communication. The H.264/AVC standard has been
designed to enable the coded video representation in a flexible manner for a wide variety of network
environments.1

We started our design from Joint Model Reference code. Because the design requires a lot of
computations with various sophisticated compression techniques, we needed a high-performance system
for real-time video processing. We achieved the necessary performance for a reduced frame rate using
the Nios® II Development Kit. Specifically, we used the versatile features of the Nios II configurable
processor, such as configurability of the memory hierarchy and custom instruction extensions.

Function Description
Figure 1 shows the H.264/AVC decoder block diagram.

1 ITU-T Rec. H.264(05/2003)

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

68

Figure 1. H.264/AVC Decoder Block Diagram

F1
n - 1

(Reference) MC

Intra
Prediction

T-1 Q-1 Reorder Entropy
DecodeFilterF1

n - 1
(Reference)

Inter

Intra
P

(1 or 2 Previously
Encoded Frames)

uF1
n

+
D1

n

+
X

NAL

We implemented an H.264/AVC decoder, which can decode about 12 frames per second, with Nios II
processor-based system-on-a-programmable-chip (SOPC) solution running at 90 MHz. The function
blocks, MC, Intra Prediction, and Filter were implemented as software modules, and the context-based
adaptive variable length coding (CAVLC) decoder was implemented using custom instructions. The
Inverse Integer Transform and Inverse Quantization blocks were implemented as a single intellectual
property (IP) module featuring an Avalon® slave interface. We also implemented the thin-film transistor
(TFT) LCD controller and YUV-to-RGB color space converter to display decoded pictures. An
expansion prototype connector links our TFT LCD panel to the Nios II development board.

Performance Parameters
Our performance target was to achieve quarter common intermediate format (QCIF) (176 x 144 pixel
resolution and 30 frames per second (fps)) decoding capability based on a 200-MHz SOPC solution.
With the FPGA implementation, we achieved 90 MHz maximum and we could decode about 12 fps. If
we fabricated this solution using 0.18-micron technology, we could increase the clock frequency to 200
MHz, which can process about 27 fps. So, we would still need to increase the performance by more than
10% to meet our original performance target. However, 27 fps is good enough for today's mobile video
streaming service.

Design Architecture
The Figure 2 block diagram details our design implementation. We used the Nios II/f (fast) processor’s
custom instructions for CAVLC decoding. The Inverse Quantization and Inverse Integer Transform
blocks were combined into a single IP module with an Avalon slave interface. We used three dual-port
RAM blocks for the YUV frame buffer. To transfer the frame data to the frame buffer, we designed an
interface between the dual-port RAM and Avalon bus.

Nios II Configuration & Memory Hierarchy
We chose the Nios II/f processor with a hardware multiplier using DSP blocks and a hardware divider.
This scheme gives an estimated performance of 102 MIPS (Dhrystones 2.1) at 90 MHz at most, based
on a 32-Kbyte instruction cache and 32-Kbyte data cache. The line size of the data cache is 16 bytes.
We found that the performance was saturated at this cache configuration and we could get a little
improvement by further increasing the cache size. In addition, the system has a tightly coupled data
memory of 24 Kbytes. Because the YUV frame buffer uses many M4K blocks, this configuration is
almost the maximum amount of memory blocks that can be allocated to cache and then tightly coupled
to memory.

 Implementation of the H.264/AVC Decoder Using the Nios II Processor

 69

Figure 2. Block Diagram of Implemented H.264/AVC Decoder

PLL
5 MHz

PLL
90 MHz

50 MHz
Oscillator

Inverse
Quantization

Inverse
Integer

Transform

Nios II/f

Custom
Instructions

For
CAVLC

Decoding

Generated by SOPC Builder

data[31..0]

wraddress[10..0]

wren

rdaddress[12..0]

rden

rd_addres sstall

wrclock
rdclock
rdclocken

Block Type: M512
inst4

YUV Frame Buffer

q[7:0]
TFL-LCD
Controller

with
Color Space
Conversion

TFT LCD
Module

Ipm_ram_dp_U
Avalon

To
Dual-Port

RAM
Bridge

Tightly coupled data memory handles read-only data memory (.rodata), heap memory, and stack
memory. Our design application uses about 16 Kbytes for read-only data, which stores frequently used
coefficients. The remaining tightly coupled data memory is enough for the heap and stack. We managed
to obtain about a 7% speed increase with this memory design modification.

Custom Instructions for CAVLC Decoding
The ReadCoeff4x4_CAVLC function reads an encoded bitstream using CAVLC and decodes
coefficients of a 4 x 4 macro block. Figure 3 shows the process of CAVLC decoding. Each block in
Figure 3 features 2 to 4 inputs and 1 to 2 outputs. Each of the inputs and outputs has a value ranging
from 8 to 24 bits. Each block takes several execution cycles in the best case and several hundred cycles
in the worst case. Each block is called more than several hundred times per frame. Because the result of
each block is determined by the input data and multiple execution of the following block, it is very
difficult to implement this function as a separate hardware IP module. Specifically, implementing each
block of Figure 3 as an independent hardware block would cause high data communication overhead.
By implementing these blocks as custom instructions, we can use the processor’s register to lower
overheads on data communications.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

70

Figure 3. CAVLC Decoding Process

Among the six blocks in Figure 3, five blocks (except the Level Decoding block) have the same
structure (see Figure 4). Each of the five blocks first looks up the length table to obtain information on
the bits required to be read from the bit stream. Following this, the blocks read that many bits of data
from the bit stream and compare the data with the code book. This sequence is repeated until the block
finds an exact match. Although all five blocks have the same structure as described above, they have
been implemented with different custom instructions because they have different lengths and code
tables. Because the largest table size is 3 x 17, the iteration amounts to 3 x 17, worst case.

Figure 4. Flow Chart of Each Block CAVLC Decoding

Figure 5 shows the implementation structure of each custom instruction for CAVLC decoding. By loop
unrolling and parallel comparison we managed to maximize inherent parallelism and arrived at the exact
match in 1 cycle. Using this custom instruction, we achieved about 13% increase in execution speed.

 Implementation of the H.264/AVC Decoder Using the Nios II Processor

 71

Figure 5. Custom Instruction Implementation of CAVLC Decoding

Bitstream

Data == Code

Length_Table[0,0]

Code_Table[0,0]

Length_Table[0,1]

Code_Table[0,1]

Length_Table[1,0]

Code_Table[1,0]

Code

Data

Match!

Data == Code
Code

Data

Data == Code
Code

Data

Inverse Quantization & Inverse Integer Transform2

We will skip the elaborate mathematical details and simply note that the inverse transform is given by

i
T
i WCC , where W has elements sWij ' , which are scaled coefficients computed by

⎣ ⎦62 QP
ijijij VZW ⋅⋅= .

The value of ijV for 50 ≤≤ QP is defined in the standard as shown in Table 1.

Table 1. Rescaling Factor V

QP
Positions

(0,0),(2,0),(2,2),(0,2)
Positions

(1,1),(1,3),(3,1),(3,3)
Other

Positions
0 10 16 13
1 11 18 14
2 13 20 16
3 14 23 18
4 16 25 20
5 18 29 23

Zij is the transformed coefficient which is the output of CAVLC decoding and QP is the quantization
parameter which is given by the user when he encodes raw video stream.

We implemented the functionality described above as a single IP module. Inputs to the IP module are
sixteen 8-bit data words and sixteen 16-bit data words and the outputs are sixteen 8-bit data words.
Because it requires multiple input ports and multiple output ports, we found that it is more efficient to
implement it as an IP module than as a custom instruction. The module takes in sixteen adders and

2 H.264/MPEG-4 Part 10 Tutorials at www.vcodex.com

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

72

completes operation in five cycles. Using this IP module, we have achieved about a 20% increase in
speed.

YUV Frame Buffers
Our TFT LCD controller uses a 5-MHz clock. This is the typical clock frequency to refresh TFT LCD
60 times per second. Because the TFT LCD controller runs on a clock domain different from that of the
decoding system, the YUV frame buffers must be implemented as dual-port RAM. So, we used the
parameterized dual-port RAM function altsyncram. Even though the dual-port RAM needs only 8 bits at
the output port, we configured the input port to be 32-bit wide, because the inherent structure of
altsyncram makes it efficient in terms of the data transfer rate.

Design Methodology
For design and implementation, we used various tools from Altera such as Quartus® II software, SOPC
Builder, and Nios II integrated development environment (IDE), which are seamlessly integrated and
easy to use. This complete toolset from Altera made it easy for us to develop the SOPC solution. In
addition, support for third-party EDA tools such as the ModelSim® software was very helpful to verify
the behavior of the SOPC design. Figure 6 details the overall design flow and tools we used.

Figure 6. Overall Design Flow & Tools Used

Design Features
The following are salient features of our H.264/AVC design.

■ Optimal configuration of memory design hierarchy and layout.

■ Deployment of custom instructions for CAVLC decoding.

■ Implementation of IP modules for Inverse Quantization and Inverse Integer Transform.

■ Design of TFT LCD controller with YUV-to-RGB color space converter.

 Implementation of the H.264/AVC Decoder Using the Nios II Processor

 73

■ Design of dual-port RAM for intra-communication between different clock domains.

Conclusion
The Altera Nios II design contest allowed us to design an H.264/AVC decoder targeted for Altera’s
FPGA, using Altera tools. In our opinion, we have extensively utilized the versatile features of Altera’s
Nios II configurable processor and SOPC Builder to make the video decoder process 12 QCIF frames
per second with a 90-MHz clock frequency. Altera’s Nios II development kit gave us a valuable
opportunity to experience three alternative ways of design implementation (software, custom
instruction, and hardware IP) and how to combine them in a harmonized way to optimize the design.

Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks
and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the
property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and
pending applications, mask work rights, and copyrights.

	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Nios II Configuration & Memory Hierarchy
	Custom Instructions for CAVLC Decoding
	Inverse Quantization & Inverse Integer Transform
	YUV Frame Buffers

	Design Methodology
	Design Features
	Conclusion

