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Design Introduction  
I have implemented a high resolution spectral estimation multiple signal classification (MUSIC) 
algorithm in an Altera® Stratix® FPGA. MUSIC detects signal frequencies by performing an eigen 
decomposition on the data vector covariance matrix from received signal samples. High-resolution 
spectral estimation is a major challenge of any advanced Doppler radar, cellular mobile base stations, 
etc. Eigen value decomposition (EVD) and MUSIC temporal spectra computations with a cyclic Jacobi 
processor based on a Coordinate Rotation Digital Computer (CORDIC), is the major signal processing 
being implemented using an Altera Stratix FPGA. All the digital signal processing (DSP) functions are 
based on fixed-point arithmetic and are well suited for the Stratix FPGA architecture. The feature-rich 
Sratix FPGA is armed with a Nios® II processor that has custom instruction and multi-mastering 
capabilities, as well as a powerful system development platform: SOPC Builder. The Nios II processor 
integrated development environment (IDE) has made the FPGA an attractive alternative to implement 
algebraic signal processing algorithms. 
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Function Description 
The MUSIC algorithm is a kind of directional of arrival (DOA) estimation technique based on eigen 
value decomposition, which is also called the subspace-based method. Here, we consider a unitary 
MUSIC algorithm. With this, the eigen decomposition of correlation (covariance) matrix in the MUSIC 
algorithm can be solved with real numbers only. This system achieves high performance in EVD and 
MUSIC angular spectra computation with a cyclic Jacobi processor on a CORDIC and spatial DFT 
respectively. The unitary MUSIC computational flow involves the following steps: 

1. Estimation of the correlation matrix, including unitary transform. 

2. EVD of the correlation matrix. 

3. Computation of the MUSIC spectrum. 

4. Local Maximum detection. 

I have implemented EVD via a CORDIC-based Jacobi processor. The EVD computation processor for 
MUSIC DOA uses a CORDIC-based Jacobi method. The cyclic Jacobi processor computes real 
symmetric eigenvalue problems by applying a sequence of orthonormal rotations to the left and right 
sides of the target matrix (unitary transformed K X K real symmetric correlation matrix Ryy) as: 

 

Where Wpq is an orthonormal plane rotation over an angle θ in the (p, q) plane whose elements are 
Wpp = cos θ, Wpq = sinθ, Wqp = −sin θ, Wqq = cosθ (p > q). J is the multiple rotation of Wpq’s in 
the cyclic-by-row manner of (p, q), which is called a Jacobi sweep, and the superscript T and subscript 
K denote transposition and array length, respectively. This processor employed the hardware friendly 
CORDIC algorithm for vector rotators and arctangent computers to solve the above equations, which 
were the basic processing unit. Because the fixed-point operation is applied, of course approximation 
errors exist. But when it was implemented with the above 16-bit precision, we could get reasonable 
performance. In the next section, implementation angular spectrum is computed after the EVD step. See 
Figure 1. 
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Figure 1. System Overview 
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Performance Parameters 
The estimated performance of the dominant core functions is the number of occupied logic blocks in the 
FPGA and fMAX is the maximum clock frequency at which normal operation can be guaranteed. The 
minimum computation time, tmin, is calculated by required clks * fMAX. I assumed that less than 2 
coherent/incoherent waves arrived at only 4-element uniform linear array antenna. For spectrum 
generation, 256-point radix-4 complex fast Fourier transform (FFT) was employed and the FFT with 
256 spatial data composed of N elements of the noise eigenvector and (256−N) zeroes interpolates the 
spectrum fine and smoothly. All computations were performed by fixed-point arithmetic with 12-bit 
input data from ADCs. On the other hand, the estimation accuracy of the EVD system depends on so 
many factors that the proper assessment has some difficulties in detailed analysis. For example, the 
effect of finite bit-length and bit-truncation by scaling in the fixed-point operation, the estimation errors 
caused by non-uniform discrete wavefront, and so forth. 

Design Architecture 
The EVD of the input matrix X can be performed, as illustrated in Figure 2, using the well known 
systolic array architecture. The rows of matrix X are fed as inputs to the array from the top, along with 
the corresponding element of the vector y. The R and u values, held in each of the cells once all the 
inputs have been passed through the matrix, are the outputs from the EVD. These values are 
subsequently used to derive the coefficients using a back substitution technique. 
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Figure 2. EVD of the Input Matrix 

                                                                                   

The CORDIC rotation-based algorithm is implemented in a very efficient pipelined manner using a 
triangular systolic array. The schematic is shown in Figure 3, for M = 4 antenna elements. 

Figure 3. CORDIC Rotation-Based Algorithm Schematic   
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The cells in the triangular array (A-B-C) store the elements of the evolving triangular matrix R[i], and 
the ones in the right hand column (D-E) store the elements of the updated vector u[i]. The data flow is 
from top to bottom, while the rotation angles are propagated from left to the right of the array. In this 
implementation, the array entirely consists of CORDIC processor elements (CPEs), which work 
completely synchronously, driven by a single global master clock. Because all the CPEs need the same 
amount of time to perform their computations they never get flooded with data. Thereby, the CPEs 
designated with Vec are configured to the “vectoring” mode of operation, and those labeled with Rot 
operate in the “rotation” mode. Each row performs a given rotation, whereby the rotation angle is 
determined by the CPE in vectoring mode at the beginning of the row. The rotation angle is passed to 
the rotation CPEs to the right with one clock cycle delay, thus requiring the elements of the data vector 
to be applied to the array in a time-staggered fashion, as indicated by the indices in Figure 3. To handle 
the complex data, complex CORDIC is used. As shown above, it is comprised of three CPEs 
interconnected according to figure 4b. In vectoring mode (Im(rm,m) = 0), the imaginary part of the 
complex value xm is annihilated by the Φ-CPE and subsequently | xm| is zeroed in θ-CPE1. The complex 
Givens rotation is then coded by the two sequences of rotation coefficients {σΦ,j} and {σθ,j}. By applying 
these rotation coefficients to a supercell configured to operate in the rotation mode, the incoming vector 
(Re(xin) Im(yin))

T is rotated by Φm in the Φ-CPE and subsequently the real and imaginary parts of rm,n and 
xm,n are each rotated by θm in θ-CPE1 and θ-CPE2, respectively.  
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The heart of the design is the EVD decomposer block. The hardware implementation is carried out 
directly using systolic array. I worked this out first with a kind of direct mapping, where as many 
CORDIC blocks are required. The aim was first to get the R matrix and U matrix from the given input 
of X and Y matrix. The rest of the task is taken care of by the Nios II processor. The number of logic 
elements used was very high. Also, the EVD update can be done very fast: this is not required for so 
many practical applications, for example, a radar system where the interference environment changes in 
milliseconds or hundreds of microseconds. So excess hardware utilization and achieving high speed is 
of little interest. To address this problem, the array can be mapped to a reduced number of CPEs on a 
time-shared basis. 

Complex CORDIC blocks are required, so as to implement the complex data. Each complex CORDIC 
block consists of three basic CORDIC blocks. I have implemented systolic array for four antenna 
elements. As mentioned, this approach gave satisfactory output, but the problem with the scheme is that 
it consumes too many logic elements, which is not practical. So, I have worked out another scheme 
which does the same thing with only two complex CORDIC blocks. This approach is called mixed 
mapping which consumes less logic elements. The benefit is achieved with the scheme, but latency also 
will be there. This latency is unavoidable. The scheme is practical, as resource utilization is well within 
the limits of the Stratix FPGA. This requires an additional state machine to control the operation. Out of 
the two CORDIC blocks, one is for vectoring mode and another for rotating mode of operation.  

Figure 4 is the block diagram representation of the design. 

Figure 4. Block Diagram 
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The data on which EVD is to be carried out is in bank1 and bank2. The multiplexer will select the bank 
alternately and will pass it to the input buffer. This input buffer is controlled, so when required, it is 
being read and given to the EVD. The EVD will write data alternately in the odd and even memory 
bank. This is because when Nios II is reading from one bank, the EVD will write data in the other 
memory bank. The Nios II processor communicates with the peripheral using the Avalon® bus. 

Figure 5 is a schematic representation of the EVD. The input data is 32 bit and of complex nature. The 
EVD requires two types of operations, namely boundary-cell and internal-cell operation. As we have 
used a mixed mapping approach, the scheduling of the complex CORDIC block is a must here. This is 
achieved at the cost of speed. The load enable signal initiates the EVD decomposition task. A separate 
controller generates the load enable signal when required. The output of the EVD is intentionally stored 
once in the odd memory bank and once in the even memory bank  because, for example, if the Nios II 
processor is reading from the odd bank, the EVD can write into the even memory bank and vice versa. 
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Figure 5. EVD Schematic Representation 
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Figure 6 is a simplified view of the controller responsible for generating control signals, as necessary. 

Figure 6. Controller 
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The register transfer level (RTL) view of the controller is shown in Figure 7.  

It is a finite state machine that uses a counter and mealy state machine. It generates the following 
control signals for different blocks. It is the central unit for the EVD processor. When the load_en signal 
comes, as long as high loading of the data takes place, as soon as load_en goes low, the controller acts. 
It generates: 

1. bank select signal  for switching the y memory bank data and address. 

2. vec_rot_sel signal, which is used to multiplex between the vector and rotation modes of the 
complex CORDIC. 

3. address signal for writing into the memory and reading from the memory. 

4. Done signal, which goes high when the EVD operation is over. 
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Figure 7. RTL View of Controller 
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Figure 8 shows the complex CORDIC block and the equivalent RTL is shown in Figure 9. 

Figure 8. Complex CORDIC 
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Figure 9. RTL of Complex CORDIC 
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This complex CORDIC block is the key block for EVD. It comprises three CORDIC blocks and one 
phi-CORDIC block. These blocks are used for compensating the imaginary part of the complex input, 
the two theta-CORDIC ones are for the real part and the other is for the imaginary part. Because we are 
using a complex CORDIC in a time division multiplex manner, the angles phi and theta are stored in 
vector mode and these angles are used subsequently in rotation mode. The output block is important, as 
shown in Figure 10, for storing the final result and generating the control-signal-like interrupt when 
EVD is over. It also provides all necessary addresses and bus control signals for interfacing with the 
Nios II processor. 

Figure 10. Output Block 
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CORDIC Architecture 
I have implemented CORDIC as an iterative architecture that is a direct translation from CORDIC 
equations. 

The CORDIC rotator is normally operated in one of two modes. The first mode, called rotation mode, 
rotates the input vector specified angle. The second mode, called vectoring, rotates the input vector to 
the x-axis while recording the angle required to make that rotation. 

Rotation Mode   

 

In rotation mode, the angle accumulator is initialized with the desired rotation angle. The rotation 
decision at each iteration is made to diminish the magnitude of the residual angle accumulator. The 
decision at each iteration is therefore based on the sign of the residual angle after each step. 

Vectoring Mode 

 

In vectoring mode, the CORDIC rotator rotates the input vector through whatever angle is necessary to 
align the result vector with the x axis. The result of the vectoring operation is a rotation angle and the 
scaled magnitude of the original vector (x component of the result). The vectoring function works by 
seeking to minimize the y component of the residual vector at each rotation. The sign of the residual y 
component is used to determine which direction to rotate next. 

An iterative CORDIC architecture can be obtained by duplicating each of the three difference equations 
in hardware as shown in Figure 11. The decision function, di, is driven by the sign of the y or z register, 
depending on whether it is operating in the rotation or vectoring mode. In operation, the initial values 
are loaded via multiplexers into the x, y and z registers. Then on each of the next n clock cycles, the 
values from the registers are passed through the shifters and adder-subtractors and the result is placed 
back in the registers. At each iteration, the shifters are modified to cause the desired shift for the 
operation. Likewise, at each iteration, the ROM address is incremented so that the appropriate 
elementary angle value is presented to the z adder-subtractor. On the last iteration, the results are read 
directly from the adder-subtractors. 
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Figure 11. Equations in Hardware 
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Figure 12 shows a hardware-level simulation result. Hardware-level simulations were performed by the 
direct measurements with only the DSP part of real hardware, to efficiently evaluate the validity of the 
system. I used the input data made by an offline PC in advance, and obtained the results with real 
hardware operation. With these hardware-level simulations, we could verify the function of the digital 
signal processor. In this simulation, it was assumed that 2 coherent (or fully correlated) waves were 
impinging at 4 antennas from the DOAs of -15 and 20 degrees, respectively. And two waves were the 
same power and the input SNR was 15 dB. For the spectrum computation, the FFT of 256 points, 
including 3-spatial data of the noise eigenvector’s elements (1 dimension was used for spatial 
smoothing) and 253 zeroes, was applied. The final result waveform output is shown in Figure 13, which 
shows CORDIC and EVD decomposed values. 
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Figure 12: Hardware Simulation Result of MUSIC (EVD) & Its Inverse (SNR 15 dB)  
(4 Antenna with 2 Coherent Waves at -15 & 20 Degrees) 
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Figure 13. Final Result Waveform 

  

FPGA Implementation 
As discussed earlier, I am going to develop the EVD, which is the IP for the system. It is the 
responsibility of the Nios II processor to read the values of the R and U matrix from the EVD. The 
Nios II processor is responsible for the two tasks namely: 1) reading the R and U matrix 2) back 
substitution. Back substitution involves calculating the weights and putting them back. 

I developed the software for the above mentioned tasks. It takes approximately 57 µs to accomplish the 
specified task (4 antenna elements). This information is useful to calculate the throughput of the system. 
The software part also includes the interrupt service routine such that the Nios II processor will read the 
data and do the back substitution repetitively. The duration between each interrupt is also programmable 
and in synchronization with the system clock. For the above tasks I developed two peripherals, with one 
master and one slave each. The master reads data from memory and the Nios II processor does the 
necessary calculation for generating the new weights. The slave interface, which consists of a counter, is 
generating interrupt. The processor acknowledges the interrupt after 8 µs so that is to be taken care of 
while periodically generating the interrupt. 
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The hardware-software co-simulation in the ModelSim® tool helped me to resolve the problem, and to 
estimate the time taken by the processor to acknowledge the interrupt. The program developed for the 
back substitution is not fixed for four antenna elements, but it is a general program, applicable to any 
number of antenna elements. 

The Avalon bus is a simple bus architecture designed for connecting on-chip processors and peripherals 
together into a system-on-a-programmable-chip (SOPC) solution. See Figure 14. It is an interface that 
specifies the port connections between master and slave components. Basic Avalon bus transactions 
transfer a single byte, half word, or word between a master and slave peripheral. After the completion of 
a transfer, the bus is available on the next clock cycle for any another transaction.  

Figure 14. Avalon Bus 
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Some key features of the Avalon bus are: 

■ Memory and peripherals may be mapped anywhere within the 32- bit address space. 

■ All Avalon signals are synchronized to the Avalon bus clock, which simplifies the timing behavior 
of the Avalon bus and facilitates integration with high-speed peripherals. 

■ Separate, dedicated address and data paths provide the easy interface to on chip user logic. 
Peripherals do not need to decode data and address bus cycles. 

■ The Avalon bus automatically generates chip select signals for all peripherals, greatly simplifying 
the design of Avalon peripherals. 

■ Multiple master peripherals can reside on the Avalon bus. The Avalon bus generates the required 
arbitration logic. 

■ The Avalon bus also handles the details of transferring data between peripherals with mismatched 
data widths. 

Device Utilization Summary 
Family  Stratix 
Device EP1S10F780C6ES 
Total logic elements 8,236 / 10,570 ( 77 % ) 
Total pins 34 / 427 ( 31 % ) 
Total memory bits 61,856 / 920,448 ( 6 % ) 
DSP block 9-bit elements 8 / 48 ( 16 % ) 
Total phase-locked loops (PLLs) 1 / 6 ( 16 % ) 
Total DLLs 0 / 2 ( 0 % ) 
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Test Results & Comparison 
I have undergone a full design cycle of an SOPC implementation, i.e., hardware-software co-design, 
integration of peripherals with Avalon bus, etc. A hardware-based approach is accelerating the 
performance. The new hardware-based computing will solve the bottleneck of algorithmic signal 
processing. It is discovered that, if a CORDIC block is implemented in software only, it takes 8,600 
clock cycles to complete the vectoring mode of operation as opposed to what I have achieved: 16 clock 
cycles to accomplish the same task in hardware. This result can motivate a CORDIC-based EVD. With 
respect to accuracy, if we compare the Arctan function implementation in software only, it requires 
approximately 20,000 clock cycles to achieve the same accuracy as the Arctan IP developed with a 
hardware approach. We achieved the desired functionality with the Nios II processor running at a clock 
speed of 50 MHz on a Stratix board. Our design of the EVD IP only takes 55 percent of the chip area on 
the Stratix FPGA.  

Performance Comparison 
Software Approach 

Method 
 

CORDIC (Cycles) 
 
 

CORDIC EVD (Cycles) 

Direct Equation 
 

        8,600 (172 us)     90,3000 (18 us) 

Arctan Series Expansion 
 

        20,000 (400 us)     2,100,000 (42 ms) 

 

Hardware Approach 

CORDIC (Cycles) CORDIC  EVD (Cycles) 

         
               16 

16 (EVD update latency will  
       be 16 cycles)   = 320 ns        

 

Logic Elements Utilization for EVD Decomposer 

Method Logic Elements 

Direct Mapping 34,055 
Mapping Each Row 7,811 
Mixed Mapping 4,946 
 

Design Features 
I tried different mapping architectures for optimum implementation. This section shows different 
mapping for seven antenna elements. Figure 15 shows direct mapping. 
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Figure 15. Direct Mapping 

 

Figure 16 shows mix mapping and Figure 17 shows row mapping. Round blocks indicate the vectoring 
mode of operation. Square blocks indicate the rotating mode of operation. 

Figure 16. Mix Mapping 
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Figure 17. Row Mapping 

 

Conclusion                                                      
From the above design, it is evident that for real-time implementation of computationally intensive 
algebraic signal processing algorithms, an FPGA-based SOPC solution is a promising, futuristic 
technology.  
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