Nios Il Soft Core-Based Full-Color LED Music Sight Light Control System

Third Prize

Nios Il Soft Core-Based Full-Color LED
Music Sight Light Control System

Institution: Harbin University of Science & Technology
Participants: Zhong Qiubo, Gao Junfeng, and Liu Xiaoping
Instructor: Dong Huaiguo

Design Introduction

Lighting sources have evolved beyond incandescent lamps. After the launch of the China Green Lights
Program, new LED lighting products have attracted wide attention in the lighting and decoration
industry with their energy savings, extended life, wide application, flexible control, brilliant color, and
environmental efficiency. Our design is a musical landscape lamp control system with high-level
simulation software, which transfers data and MP3 files to the control system through a compact flash
(CF) card. Our design also includes a series of steps including lamp installation, layout, scenario data
editing, simulation, preview, and so on. The product has applications in city beautification, lighting, and
music integration in public places.

Controlled by a control panel or a dedicated computer, traditional landscape lamps feature only seven-
color changes, in a simple way. The speed of the dedicated computer is limited: its hardware pulse
width modulation (PWM) generally has only three to six paths, and can only be expanded with software
modifications. Therefore, a traditional system cannot meet the requirements of high-speed data transfer.
Additionally, traditional systems cannot display a smooth gradient and the jumps are noticeable with the
naked eye. Therefore, we need a powerful processor to implement a soft gradient with jumps that cannot
be seen by the naked eye. Considering the cost, we adopted one controller to handle several lamps. We
also implemented a packet-control mechanism to handle a large number of lamps by communication
between computers.

The embedded 32-bit Nios® II soft core processor helped us create a highly integrated landscape lamp
control and MP3 playing system. The computing power of the Nios II processor enables simultaneous
LED lamp operation based on different scenarios and music. Further, algorithms can be developed on
PC using C and can be migrated to the Nios II processor, which shortens the development cycle of the
whole system. Altera’s SOPC Builder can help to create and deploy users’ Nios II instructions, and add
customized intellectual property (IP) cores to create a more powerful system-on-a-programmable-chip

89

Nios Il Embedded Processor Design Contest—Outstanding Designs 2005

(SOPC) system. Combined with the Cyclone™ FPGA, the designed product delivers a high
price/performance and promises good market prospects.

Function Description

This section provides our design’s functional description.

Major System Functions

Our LED musical landscape lamp control system controls 10 LED lamps (which can be increased in
number, if needed). At least 256 color changes are realized through RGB color mixing and you can
change five different parameters to achieve the desired effect: static, gradient, dim, bright, and flicker.
You can change the duty cycle of the PWM to control a scene made up of changes to 10 lamps, form a
scenario with several scenes, and then create an animation effect by playing these scenarios
continuously. Simultaneously, you can play MP3 files, creating a dynamic scenario in which light
changes with the rhythm of music.

System Components

The system includes a display unit, drive unit, control uni,t and data communications unit, which are
controlled by the uC/OS real-time operating system. The control unit has three tasks:

B Read lamp control data and MP3 data from the computer to the CF card memory.

B Get and analyze data from memory, and send analyzed lamp control data to the LED lamp drive unit.
Then, the multi-path PWM display unit implements the LED lamp scenarios.

B Send MP3 data to the decoder for decoding and play via serial peripheral interface (SPI) SPI bus.

Figure 1 shows the system hardware design diagram (see the “Design Architecture” section). We used
the FS embedded file system for data management, based on the real-time and multi-tasking features of
uC/OS real-time operating system (RTOS). The drive unit is a self-customized, full color lamp-control
intellectual property (IP) core, each controlling a lamp via PWM circuit. We use the lamp-control data
to display scenario changes through the PWM port. The timer provides 10-ms interrupts, after which
scenario-data analysis is carried out. The module drawn in dashed lines can be modified. Several Nios II
control systems can be used for control, based on multi-computer communications, when you need to
handle a large number of landscape lamps. Then, only one control module needs MP3 functionality, and
the other modules may not need it. This functionality can be programmed in the SOPC Builder tool to
save development costs.

Display Unit
The tricolor LED chip is the core component of the display unit. The LED is the most widely used lamp

in electronic components, and tests have proven that three basic colors (red, green, and blue) can be
mixed in different combinations to obtain other colors.

Control Unit

In the control unit, the uC/OS RTOS runs tasks by means of semaphore. The lamp control task software
flow chart is shown in Figure 4 in the “Design Architecture” section.

90

Nios Il Soft Core-Based Full-Color LED Music Sight Light Control System

Display Drive Principle

Generally, there are two ways to control LED brightness: by changing the current flowing through LED
or by controlling the on/off period of the LED by the PWM. Controlling the LED working current
allows for a wider range of LED brightness control. However, current control is difficult to realize in
software; therefore, it is unsuitable for digital control. In contrast, the PWM method is widely adopted
in digital circuits because it can be implemented easily in software. According to Talbot’s law:

_ lT
L=— | L(tdt
T!()

in which, Z is the visual brightness of cyclic change sensed by the eyes and T is the cycle. When
-t
brightness function L(?) is a constant L, the visual brightness changes into L =? L, when PWM

actually controls the working time of the LED by changing the working time in a cycle periodically to
change LED brightness.

Continuously changing the LED’s working time in a cycle continuously changes the LED brightness
and grey scale. Dividing cycle T by n equal periods results in n grey scales of LED. To ensure that the
brightness transition is not perceived by human eyes when the LED grey scale changes (i.e., no flicker),
the on-and-off frequency LED should be larger than critical frequency, and the cycle should not be
longer than 0.1 - 0.2 s. Tests have shown that when the LED grey scale is 256, the mix of three basic
colors will not create transitions, and human eyes can perceive the color gradient. The PWM cycle of
this system is 2 ms and grey scale is 256. We can generate 256 colors controlling the three basic LED
colors, and use fragment delay to control the duty cycle. The basic colors are mixed according to a
certain brightness ratio, which is a certain grey scale. Different grey scales correspond with different
duty cycles and different LED working time cycles.

Display Drive Unit

The display drive unit design for the 10 self-customized system peripherals is shown in Figure 2. The
diagram features the design of a 30-path output port with 10 PWM controllers, respectively, for scenario
changes of 10 LED lamps. The PWM circuit has two caches, back and front. The control arithmetic unit
sends data that needs to be stored to the back cache of The PWM. The PWM checks whether the back
cache has data to be updated, if not, it continues to read the PWM value from the front cache. We check
the back cache each time playing finishes, and if data is updated, we move the data from the back cache
to the front cache, and play the new data. If the PWM value is 255, the output waveform is at high logic
level; if PWM value is 0, the output waveform is at low logic level. If the PWM is between 0 and 255,
output is made according to the relevant duty cycle based on the fixed cycle. Figure 5 shows the
software design flow.

Data Communications Unit

The data communications unit transfers lamp control data and MP3 music files from the computer to the
control system via the CF card. If there are several control systems, multi-computer communications
with an RS-485 serial port can be used.

91

Nios Il Embedded Processor Design Contest—Outstanding Designs 2005

Performance Parameters

The design’s performance parameters are as follows:
m The Nios II frequency required by the system is 85 Hz and the peripheral PWM’s cycle is 2 ms,
which is divided into to 256 parts. This scheme enables the lamp control data display using interrupt

data processing that is performed every 10 ms.

B The system relies on the pC/OS II RTOS to handle multiple tasks and makes it possible to
simultaneously execute landscape lamp scenario display and MP3 music play operations.

B The landscape lamps can support a 256-color display and five operation modes: static, gradual
bright, dark, change, and flicker.

B During a gradual change, jump phenomenon cannot be observed by the naked eye. Instead, multiple
colors and gentle gradual change is displayed.

B Fluent and clear MP3 play.
A combination of the self-defined IP core and the Nios II processor greatly accelerates operation and

processing. Also, using the Nios II soft core, you can set the cycle of PWM at 2 ms and enable
simultaneous operations of MP3 play and landscape lamp scenario display.

Design Architecture
Figures 1 and 2 show the hardware design. Figures 3 through 7 show the project software flows.

Figure 1. Hardware Design

92

U

U

g U i

Avalon Bus

| LED Lamp LED Lamp LED Lamp [RS485 |
! 1 2 10 | Controller |
| —_———— —
| J N

| [

| [
] | | -5
| [Full Color Full Color Full Color _ I serial !

[Timer | |

i | Lamp Control || Lamp Control Lamp Control | Port

| 1P Core 1 IP Core 2 IP Core 10 L '

| 4

|

|

|

|

|

|

|

U

i

I

i

|
|
|
|
i Memory . CF Card
|
i Controller Nios Il CPU Controller SPI
|
|
i II II 777“7‘»7777F7P7G767
F S
L D | CF Card MP3 Decoder
A R
S A
H M

Nios Il Soft Core-Based Full-Color LED Music Sight Light Control System

Figure 2. Full Color Lamp Control IP Core Hardware Design

R
Pre-Cache
- = Post- G
Scenario Data Control Unit Analyzed Data —
———2— —— | Cache B
PWM1 |——
! R
Post- Pre-Cache G
g
© Cache B
® PWM 2
[
e
[
N
>
©
C
<

Pre-Cache [=—
Post- re-Cache [~

Cache

W

PWM 30

93

Nios Il Embedded Processor Design Contest—Outstanding Designs 2005

Figure 3. Timed Interruption Software Design Flow

Reset the Lamp
Number

All Lamps Are Judged?

A Lamp Scenario Is
Broadcasted?

All Scenarios Are Found

Counter Accumulation of
Scenario Lasting Time

The Scenario Is
Broadcasted

Evaluate the New
Scenarios of All Lamps

+

Each Lamp Gets the First
Data of New Scenario

+

Scenario Data Is Sent to
the Self-Defined IP Core
for Analysis

+

Minus 1 for the Value of
all the Lamp Scenarios

Get the Next Scenario
Data

|

Scenario Data Is Sent to
the Self-Defined IP Core
for Analysis

|

The Scenario Number of
a Lamp Is Degressive

|

Evaluate the Counter of
Scenario Lasting Time

|

Accumulation of Lamp
Number

+

Evaluate the Lasting Time
f all Lamp Scenarios

94

Nios Il Soft Core-Based Full-Color LED Music Sight Light Control System

Read Scenario
Data

Sear the Table of
Corresponding Relation
Between RGB & PWM

Judgement
Change Type

Flick

Compute the Output
Times
Compute the Interval
Time of Output
Evaluate Counter

Figure 4. Software Design Flow Diagram

Gradually Change
Bright & Dark & Static

Compute the Output
Times

4

Compute PWM Output
Increment

T

| Evaluate Counter |

T

Output the Value of
PWM to Corresponding
PWM Control Unit

Output Times Are
Degressive
Output Is Finished

Y

End

Control Unit

@ :
Y
Output the PWM Value to Counter Is
Corresponding PWM Degressive

+

PWM Value = PWM
Value + PWM Increment

%

Counter is
Degressive

Output Times Are
Degressive

95

Nios Il Embedded Processor Design Contest—Outstanding Designs 2005

Figure 5. Peripheral PWM Software Design Flow Diagram

Start

Clock Ascending

Redout = 0;
H Along With

Greenou
Blueout = 0;
count 256 = 0;
count 664 =0

Reset Signal
Is Received

Chip Select Signal Is
Received

Write Signal
Is Received

count 664 = 663

count 664 =0

count e256++;
count 664 = 0

red_in data = write data[23:16];
green_in data = write data[15:8];
blue_in = write data[7:0]

count 256 = 0;

count 664 = 0;

red_out data = red_in data;
green_out data = green_in data;
blue_out data = blue_in data

]

96

‘ Start ’

Redout = 0;
count 256 = 0;
count 664 =0

Clock Ascending
Along With

Reset Signal
Is Received

Chip Select Signal Is
Received

Write Signal
Is Received

red_out data >= count 256

red_out=1

Nios Il Soft Core-Based Full-Color LED Music Sight Light Control System

Figure 6. MP3 Design Flow Diagram

IC Initialization (SPI Is
Set In FPGA)

STA013 Reset
Identify STA013

Does STA013 Exist?

Y

Write the Configuration
Files

Configure STA013

Set Tone & Prepare
Compression

Detect STA013 REQ

Data Is Sent from SDRM to
STA013

Is Data Sent?

Y
‘ End j

97

Nios Il Embedded Processor Design Contest—Outstanding Designs 2005

Figure 7. CF Card Read Software Design Diagram

Detect the Initialized CF
Card
Does CF Card Exist?
Y

Read the Basic Information
of CF Card File System

Search the File to Be
Opened
Does the File Exist?
Y

Read the Basic Information
of CF Card File System

!

Distribute Space for
Files is SDRAM

Is the Distribution
Successful?
{ v

| Read Files to SDRAM |

[

Design Methodology

We adopted a design methodology that blends nicely with the self-defined peripherals option in the
SOPC Builder tool. The system displays the landscape lamp scenario and plays MP3 files under the
semaphore control mode of uC/OS-II RTOS in the Nios II integrated development environment (IDE)
after download. Our design comprises two modules: hardware and software.

Hardware Design

We extended the system hardware by adding the STA013 MP3 decoder and D/A converter for playing
MP3 files on the Altera® Cyclone II EP2C3. We implemented the lamp control on the UP3 development
board to promote the application of Cyclone II FPGA, which is the most cost-effective device that offers
the best price-performance ratio among competing devices. We implemented all system functions on the
EP2C3 device. Additionally, we applied the ULN2803 power drive to control the voltages used in the
LED lamp display (see the Appendix for the circuit schematic).

98

Nios Il Soft Core-Based Full-Color LED Music Sight Light Control System

Full-Color Lamp Control IP Core Design

We used Verilog HDL to design the self-defined peripheral full-color lamp control IP core’s control unit,
which implements a 10-lamp, self-defined IP core controller with 30 PWM circuits. The software design

flow is shown in Figure 5. The cycle of PWM is set to 2 ms, as shown in Figure 8.
Figure 8. PWM Timing Diagram

2ms

Function Simulation
After PWM design, we carried out functional simulation as shown in Figure 9.

Figure 9. PWM Functional Simulation

Simulation Waveforms

Mazter Time Bar:l 0 ps J_’l]’omter: |-__5_3_7 nz Interval i 537 n=z Start:l End: ‘
1 i1 ID.Q bl ZD.Q ns 30.@ TS 40 q bl SD.Q ns :11] Q bl 70 q b1
Hame 7=
1]
| 4 cllke | L
-!}7 Write
; resetn
E chipselect
_E-:: writedata 00000000 % 00000001 W 00000002 % 00000003 Y 00000004 W 00000005 W OO000O0E @
5 connterfid [¢ [} Y o0z 3 003 Y 004 b 005 Y [v no7
:5 counter?56 000
; red_out
E green_out
E blue_out

The simulation variables in the oscilloscope display are described as follows:
B clk: clock signal.

B resetn: PWM reset signal.

B chipselect: PWM chip select signal.

B write: PWM write signal.

B writedata: data written to PWM.

B red_out: red corresponding output signal in PWM.

B green_out: green corresponding output signal in PWM.

B Dblue_out: blue corresponding output signal in PWM.

99

Nios Il Embedded Processor Design Contest—Outstanding Designs 2005

B counter256: one cycle is divided into 256 parts for computing the duty ratio of each PWM cycle.

B counter664: each part comprises 664 clock cycles for computing whether the count is over or
not.

MP3 Design

We used the I’C bus to control the STA013 device. In this way, we were able to transfer MP3 data from
SDRAM to STA013 through SPI, which is set using the SOPC Builder tool as shown in Figure 10. We
added four PIO interfaces in SOPC Builder to connect with the SDA, SCL, DATA_REQ, and RESET
pins. The PIO connected with SDA is set as a bidirectional port.

Figure 10. SPI Setting

hasterSlave

= Master

Generate |1 | select (S5_n) signals. One for each slave.

SPI Clock (SCLK) Rate: | 400 |kHz =]

Actual Rate = 387 196kHz Errar: -0.7%
Actuzl Delay = 2.5us

[Specify Delay 25 [ns =]
Delay granularity (172 SCH) = 1.258us

Drata Register

Width |8~ hits

Shift direction: + MSBEfirst LSBEfirst
Timing

Clock Palarity: R Ol |

Clock Phase: [T |
YWaveforms
S5_n L [
SCLK 2.5us
MOS| mse o (T sB—

Figure 11 shows the MP3 decoding circuit.

Figure 11. MP3 Decoding Circuit Schematic

STA013
Ic7
Spsy 3.3V ; VDD_1 O_G/RR g? MP3-DATA_REQ
S ,
o 2] vss T !
g (MPTSDA>—2|SDA -RESET gg MP3RESET
Z MP3-SCL 4SCL SCANEN S CRY3 C3447p
aE MP3-SDI &|SDI -TESTEN @
T MP3-SCKR e gﬁ'KEN V0S4 153 ‘3{3\/ arol 1M
MP3VCC IC8 CS4334 ~ 8| sro Nt x A2 =514.318MHz
8 1AOUTL SDATAH——21SDO xTo 2 1y ry.
R60 L9 \—6 VA SCLK [5——191 SCKT FILTS c35
267 k“ 5 AGND LRCK I LRCKT PVSS 17 R731k P
HF70ACB321611 AOUTR MCLK 1&jock PvobHZ
“}714 Vs 2 VpRg3Ess C35 ==C37 s
33 3.3V |-Hvpp_2 3 l T470 p—p77nFR74 2 .
MP3VCC 23y c38
267 J&—{
267 k h o2 T3 TC3 7CT | c3 g 13
« 0 1 2 3
% T %o 104 T 104 T 104 T 104

100

Nios Il Soft Core-Based Full-Color LED Music Sight Light Control System

SOPC Builder Configuration

After finishing the IP core design and simulating, we used the SOPC Builder tool to configure the whole
system. The settings are shown in Figure 12.

Figure 12. SOPC Builder Settings

- Target - f Clock (MHz)
Board: [Mios Development Board, Cyclone | (EP2C35) _:_l clk 50

Uze Idodule Mame Description Clack Eage End IRG

2 cpu 0 Mioz Il Processor - Altera Corporation clk 0x01000000) O:010007FF €y &)
v ext_ssram_bus Avalon Tri-State Bridoe clk |

v SEram Cypress CYTC1380C SSRAM & 0:x02000000 0x021FFFFF

4 ext_flash_bus Avalon Tri-State Bridge clk

ivd flash Flazh Memory (Common Flash Interface) & 0x00000000) 0x00FFFFFF

ird jtag_uart JTAG LART clk 0x010008F0) 0x010008F7|[1

i sysclk Interyval tirer clk 0x01000840, (0x0100085F|[0

v ddr_sdram |DDR SDRAM Controller MegaCore Function - Altera ... |clk & 0:x04000000| Ox0SFFFFFF]

v of JcompactFlash Interface (True IDE Made) clk

ird pio_0 |PIC) (Parallel 1i0) clk 0x01000890| 0x0100039F

i pio_1 iPIO (Parallel 112 clk 0x01000840) 0:x0100034F

v pio_2 |PIC (Parallel 110 clk 0x01000800| 0:x010003DF

ol pio_3 o (Parallel 1) clk 0x010008E0| 001 0003EF

v spi_0 ISPI (3 Yvire Serial) clk 0x01000860 0x0100057F|[4
ird hust_avalon_pwm_0 !hust_avalon _Fvin clk 0x010008F8) (0x010003FE

v hust_avalon_pwm_1 |hust_avalon_pn clk 0x010008FC| 0:x010008FF

vl hust_avalon_pwm_2 ihust_avalonjwm clk 0x01000900 001000903

v hust_avalon_pwm_3 |hust_avalon_pram clk 0x01000904, 001000307

ird hust_avalon_pwm_4 ihust_avalon _FIvim clk 0x01000908) 0x01000908

i hust_avalon_pwm_% |hust_sevalon_pwen clk 0x0100090C| 0:x0100030F |
ivd hust_avalon_pwm_& ihust_avalonjwm clk 0x01000910{ 001000913

v hust_avalon_pwm_7 |hust_avalon_pram clk 0x01000914, 001000317

¥ |Mhust avalon owm 8 !hust avalon mwm clk 0x01000918! 0x0100051E L!

Compiler

After configuring all the required system parts, the SOPC Builder tool assigns pin definitions with the
Quartus” 1T development tool and then compiles. See Figures 13 through 17, which show the Compiler
output.

101

Nios Il Embedded Processor Design Contest—Outstanding Designs 2005

Figure 13. Compiler Analysis Report

/project2/project - project - [Compilation Report - Ana 0 Dlli
@ File Edit ‘“iew Project Assignments Processing Tools ‘Window Help E ﬁllﬂ
u e - C g
JJD BHE(S| s 2R || Nl eo@w olrw »@|;|@|®\
ﬁ project.bdf i @ Compilation Repart - Analysis & Spnthesis Summ... |
B3 Compilation Repart Analysis & Synthesis Summary
BB Legal Notice
B Flow Summary
- EHER Flow Settings
BB Flow Elapsed Time
S B Flow ng) hnalysis & Synthesiz Status Suecessful - Fri Sep 09 10:11:54 2005
883 2.!‘35'5&5"”“35'5 Quartus IT Versioa 5.0 Build 188 08/22/2005 SF 104 ST Full Yersicn
= Revizion Hame project
[Jgg Szu::E,g'sF“ES nead Top-lewel Entity Name project
Family Cyelone IT
éﬁ Resource Usage Summary
é% Resource Ltilization by Entity Total combinational functions 4169
é% RAM Surmary Total r.egisters 3397
- (EHE DSP Black Usage Summary Total ping 225
[]..@D State Machines Total wirtual pins 0
[#-&3(0 Optimization Results Total memory bits 48, 126
[]"ér‘_—l Parameter Settings by Entity Instance Embedded Multiplier 9-bit elements 4
-] LPM Parameter Settings Total FLLs z
- & Equations
2 5} Messages
&S5 Fitter
L]--%D Assembler
-] Timing Analyzer
< |+
Ready ' W= | Idle [Jum | 4

Figure 14. Assembler Report

‘project2 /project2/project - project - [Compilation Report - As . = |E||5i
@ File Edit Wew Project Assignments Processing Tools Window Help 1= |ﬁ'|5|
|[D=E (8| ime|o o8 o X 2@ [T > w2 80|
ﬁ project bdf i @ Compilation Report - Assembler Summary |
@a Compilation Report Assembler Summary
BB Legal Notice
- ESHFE Flow Summary
- ¢5EE Flow Settings
- SHEE Flow Elapsed Time
&HB Flow Log
L]--%D Analysis & Synthesis
-0 Firter
= Assembler
S
gg s::;:::? i tanbley St Successful — Fri Sep 09 10:23:15 2005
é@ Generated Files Revizion Hame project
é% Device Options: E:fproject2fproject2/proje T°Pfleval Exccbaienciin o ser
5&# Messages Family Cyclone IT
L]..éa Timing Analyzer Dlevice EP2C35FRT2CE
4 | |
Ready & W= | Idle [[| 4

102

Nios Il Soft Core-Based Full-Color LED Music Sight Light Control System

Figure 15. Fitter Report

@Eile Edit Wiew Project Assignments Processing Tools Window Help

=10l]
=B8] x|

jpsa|8|ine|o =

k2

| roject

RGBT R |9

ﬁ praject bdf

i @ Compilation Repart - Fitter Summary |

%E‘j Compilation Report
~&ZhB Legal Notice
2P Flow Surmary

- =HE Flow Settings
=B Flow Elapsed Time
2B Flow Log

- &H0 Analysis & Synthesis
= &5 Fitter

S Summary
SHER settings

SHBR Device Options
SHER Metlist Optimizations
Shwh Equations
S Pin-Out File
&1 Resource Section
éf‘y Messages

[+ @Cl Assembler

H @Cl Timing Analyzer

T

Feady

Fitter Status
Auartus IT Verszion
Revision Hame
Top-level Entity Hame
Family

Device

Timing Models

Total logic elements
Total pins

Total wirtual pins
Total memory bits

Suceessful - Fri Sep 09 10;22:59 2005
5.0 Build 168 0B/22/2005 5P 1.04 ST Full Version

project
project
Cyclone IT
EFECISFETZCH

Freliminary

5,051 / 33,216 (15 %)

221/ 475 (46 %)

]

48,128 /483,840 (9 %)

Embedded Multiplier 9-bit elements 4 /70 (5 %)

Total FLLs 254 (80%)

‘ |2
[W | [[

Figure 16. Flow Report

@Eile Edit View Project Assignments Processing Tools ‘Window Help

=0l x]
=181 x|

DEH S|) e

K7

?

[projest

XKs@GRB D rWwr k|88

ﬁ project. bdf

@S Compilation Report
B Legal Notice

ST Flow Summary
SHER Flow Settings
B8 Flow Elapsed Time
EHB Flow Log

[+ %r_'l Analysis & Synthesis
-3 Fitter

- &Eh] Assembler

#-&EH] Timing Analyzer

Ready

I @ Compilation Report - Flow Summary |

Flow Status

Auartus IT Version
Revision Wame

Top-lewel Entity Hame
Family

Device

Timing Models

Met timing requirements
Total logic elements
Total registers

Total pins

Total wirtual pins
Total memory bits
Embedded Multiplier S-bit elements
Total FLLs

Successful - Fri Sep 09 10:23:23 2005
5.0 Build 188 0B,22/2005 3F 1.04 5T Full Yersion

project

project

Cyelone IT
EF2C35FRTZCE
Preliminary

Tes

5,051 / 33,216 (15 %)
3397

221 475 (46 %)

0

48,128 [483,840 (9 %)
4570 (5%
2F4(50%)

% =% |

Idle

-

T

103

Nios Il Embedded Processor Design Contest—Outstanding Designs 2005

Figure 17. Timing Analyzer Report

%, Quartus II - E:/project2/project2/project - project - [Compilation Report - Timing Analyzer Summary| i =10 %]
@ File Edt Wew Project Assignments Processing Tools Window Help Jilﬂ
[oze|a)ime]s - e A% s2% o n &0
ﬁ project baf i @ Compilation Feport - Timing Analyzer S ummary |
@ﬁ@mp\letion Report g Analyze d
~EhE Legal Motice Type lerk | Beauired
(BT Flow Summary Tine
-2 Flow Settings L | Worst-case tsu Bk Hone
é% Flow Elapsed Time 2 | Morst-case teo 1.798 ns|6.000 ns
é FlawLag 3 | Worst-case tpd Bk Hone
- &3] Analysis & Synthesis 4 | Yorst-case th Bk Hone
Eléﬁl Fitter 5 | Clock Setup: ' ddr pll_cycloneii:inst?|altpll:altpll_compenent |_clk2’ (0,756 ns|85.01 MHz [par
Eléﬁl Assembler B | Clock Setup: 'ddr pll_cycloneii:inst?|altpll:altpll_compenent | _clkl’ [7.289 ns|85.01 MHz [pa
& Timing Anlyzer T | Clock Setup: " altera internal jtag TCHUTAF WA [None
am 8 | Clock Setup: " ddr_dqs[1] WA Home
B ettngs 3 | Clock Setup: " ddr_dqs[0] WA Home
B Clock Setings Sunmary 10] Clock Setup; * alters_internal jtag CLEDRUSER WA Home
éﬂ Clock Setup: 'ddr_pll_cyclonei:inst2| altpl: alpl_component|_clk1' U Clock Setup: ' sltera internsl jtag IPIATEUSER Bh Hone
B Cocksetups 4 ol_rydone retzlakpliatel_comporent] k2 12| Clock Hold: *ddr_pll_cyeloneii:inst?|altpll: sltpll_component|_clk?’ |0.500 ns|85.01 MHz (per
B Codk Setups 'sheranternel_tagnUPDATELSER' 13| Clock Hold: *ddr_pll_cycloneii:inst?|altpll: sltpll_component|_clkl’ |3.548 ns|85.01 MHz (per
éﬂ Clock Setup: ‘altera_internal_jtag~TCKUTAR' 14] Totel nunber of failed paths
2 éﬂ Clock Setup: 'ddr_das[0]
2 éﬂ Clock Setup: 'ddr_das[1]
2 éﬂ Clock Setup: ‘alera_internal_jtag~CLKDRUSER'
2 éﬂ Clock Hold: 'ddr_pll_cyclaneiitinst2|altpll: altpll_compaonent] _clkl*
2 éﬂ Clock Hold: 'ddr_pll_cyclaneiitinst2|altpll: altpll_compaonent] _clka'
éﬂ tsu
éﬂ teo
B =L
1 éﬁ th
2 éﬂ D05 (Read strobe to core register delays)
i éﬁ Ignored Timing Assignments
. é/‘y Messages LI_' LI
Ready & me%| Ide [R[4

Software Design

The basic design of the software module is to send out the play and data read tasks accurately and in a

timely manner using the uC/OSII RTOS.

The first task is to read the CF card and send its data and MP3 files to SDRAM for the next two tasks.
In our design, we used the Quartus II version 5.0 compact flash core as the interface between the CF
card and the Nios II processor. This routine uses two pointers, ¥“MP3data and *pwmdat, to assign space
for data and MP3 files on the SDRAM. We designed a small file allocation table (FAT) file system for

CF card reading. This system:
B Does not support long file names.
B Does not support the FAT12 file format.

B Sets data and MP3 files in the root directory of the CF card.

B Does not support writing into the CF card (the data in CF card can be written from by PC with

reader/writer).

We defined three data structures: BPB, file directory entries, and FAT. The specific definitions are as

follows:

typedef struct

{
unsigned char Type; // file format type
unsigned char StartLBA; //BPB start sector

104

Nios Il Soft Core-Based Full-Color LED Music Sight Light Control System

unsigned char SectorsPerCluster; //sectors per cluster

unsigned char LShift; //shift number of SectorsPerCluster
unsigned short SectorsBeforeFAT; // reserved FAT number

unsigned char FATS; //FAT number

unsigned short FAT16RootEntries; // number of root directory entries
unsigned long TotalSectors; //total sector number

unsigned short SectorsPerFAT; //sector number per FAT

unsigned long FAT32RootStartCluster; //start cluster of root directory when the
file format is FAT32

} FS_TBPB;
typedef struct
{

unsigned long StartLBA; //start sector of file allocation table
unsigned char LShift; // shift number of file format type
unsigned long DataStartLBA; //start sector of data area

} FS_TFAT;

typedef struct
{

unsigned char Attrib; //file attributes
unsigned long StartCluster; //file start cluster
unsigned long StartLBA; //file start sector
unsigned long CurrentCluster; //current cluster
unsigned long CurrentLBA; //current LBA
unsigned long Offset; //system reserved
unsigned long Length; //file length

} FS_TFile;

Refer back to Figure 6 for a detailed software flow.

At system initialization, we invoke CF card initialization function IDE_initialize() to determine whether
the CF card exists or not. If the CF card exists, we read the basic information of the FAT file system,
such as the file format the CF card has adopted, start sector of root directory, and data area. We invoke
the FS_SearchFile (char *FName, FS_TFile *R, unsigned char dir) function to search the file to be read
and then assign a buffer for the file with a pointer. Because SDRAM has enough space, the file data can
be totally read into SDRAM, which is the file size in SDRAM. One sector is read each time until all
data is moved into SDRAM. The key to FAT file system design is to get data of the next cluster after
reading the current one. In this design, we defined the function, FS_GetNextCluster(unsigned long
Cluster). We read the whole cluster chain into an array when opening a file. Although this routine
occupies some space on the SDRAM, the search of cluster in future will not read the FAT table. This is
because the function slows down system speed.

The second task is to display the scenario file and to receive the scenario data of different lamps as well
as search the PWM values R, G, B binary-coded according to Table 1. This task judges the changing
modes, such as gradual change, bright, dark, and static, in the same control mode. The flicker mode is
handled differently.

Formatting of scenario data comprises five bytes: the last byte indicates the address information and the
first four bytes are shown as follows:

[Front color | Back color | D15D14 D13 D12 D11 D10 D9 D8 | D7 D6 D5 D4 D3 D2 D1 DO |

Front color and back color separately occupy one byte; D15 in the third byte is the marker bit of FLICK,
following two situations that may occur in terms of D15’s value:

B D15=0, gradual change, bright and dark as well as static, D14........ DO indicate the lamp on lasting
time.

105

Nios Il Embedded Processor Design Contest—Outstanding Designs 2005

m DI15=1, flick mode, D14........ D9 indicate the flicker time, DS......... DO indicate the lamp flicker
lasting time.

For gradual change, bright, and dark as well as static, the data increment PWM_D sent to PWM per
cycle is computed using the following formula:

PWM_D =(PWM_BACK_COLOR - PWM_FRONT_COLOR) / (LASTING_TIME/10ms)
PWM_FRONT_COLOR PWM value of front color

PWM_BACK_COLOR PWM value of back color

LASTING_TIME lasting time of scenario

10 ms is the cycle period time of the PWM.

Interrupt time scenario is TIMES = LASTING_TIME /10ms, in which the increment of static mode is 0.
Accordingly, based on the principle that PWM_D sends TIMES to PWM per 10 ms, we can achieve the
control of gradual change, bright and dark as well as static.

FLICK (flicker), the lasting time of such a scenario can be obtained in terms of the following formula
LASTING_TIME:

LASTING_TIME=FLICK_TIMES*FLICK_TIME
FLICK_TIMES flicker times
FLICK_TIME flicker lasting time

Thus, this routine delivers PWM_FRONT_COLOR and PWM_BACK_COLOR by turns to PWM
using FLICK_TIME as the interval, and after delivering FLICK_TIMES, ends the control of flicker
function.

Table 1. Look-up Table of RGB Binary Value & Corresponding PWM Value

Value R PWM G PWM B PWM
000 0 000 0 00 0
001 36 001 36 01 85
010 72 010 72 10 170
011 108 011 108 11 255
100 144 100 144
101 180 101 180
110 216 110 216
111 255 111 255

When the 10-ms interrupt is received, the processed scenario data is delivered to the self-defined
peripherals for display (the design flow is shown in Figure 3). All lamps are judged in the interrupt
cycle to determine whether the system needs to play a scenario completely. If the present scenario is
totally played out, data for the next scenario is collected and delivered to the control unit of the self-
defined IP core for analysis and processing. If the scenario is still incomplete, the interrupt routine

returns.

The third task is to play MP3 format music. To fulfill this task, tone quality has to be taken into account.
It is interesting to observe how landscape lamps appear to change with anamorphic music, and therefore
we adopted a secure hardware based decoding solution. We have used the STAO13 decoding chip and

the CS4334 D/A converter. Refer back to Figure 6 for the detailed design flow.

When the task is activated, it first initializes the I'C bus, and then invokes the sta_Init() function to
initialize STAO13. This initialization includes resetting STAO013, verifying ST013, and writing the
configuration files, which are loaded in STA013_UpdateData[] array. The following operation
configures STAO13 and set tone as well as prepares data for compression. We start by invoking the
decode control function sta_SendToDecoder (unsigned short len, unsigned char MP3_data[]) for

106

Nios Il Soft Core-Based Full-Color LED Music Sight Light Control System

decoding. When the DATA_REQ pin of STA013 is high, it indicates that STAO13 needs new MP3 data
to compress and play. By querying the sixth bit of the status register in SPI core we judge whether status
register TXDATA requires new data (or whether previous data was delivered to STAO013); if this bit is
low, we write new MP3 data to TXDATA. The received data from STAO13 is decoded and played.

The difficult problems in the above routines are in the decoding time sequence setting and phase-locked
loop (PLL) configuration. The data input/output accords a certain standard of time sequence. For
instance, here we set the SPI frequency clock to 400 kHz so that the music can be played smoothly. If
this frequency is too high or too low, it will affect the tone quality and music rthythm. An improper
setting can even cause cacophony. The PLL may impact the operating clock of the on-chip components.
Therefore, we had to be careful with the PLL setting, because a wrong setting of PLL may generate
sampling drift and consequently cause anamorphic music.

Design Features

The system uses the Nios II soft core combined with an FPGA to control LED lamps. At least 256 lamp
colors can be displayed in our system with full dynamic effects based on five changing modes: static,
gradual changing, bright, dark, and flicker. Simultaneously, we can change the lamps’ colors along with
MP3 music thythm. Our system can be used in applications that integrate decoration lamps with music
in public places. Because of the nearly 200 MIPS capacity of the Nios II soft core, no color leap appears
in the gradually changing LED color. By deploying the user-defined peripherals, the system can quickly
perform data analysis of lamp control, and allows for easy expansion of peripherals. Using the SOPC
Builder tool, it was easy for us to delete and add the MP3 expansion circuitry and the user-defined
peripherals. By taking full advantage of the FPGA, we were able to develop PWM IP core, expand
multi-PWM circuits in peripherals based on the design requirement. After optimization of a design, the
system’ logic units are much reduced when compared with the purely traditional embedded, bus-based
designs.

Conclusion

With more than two months of learning, we have been able to appreciate the Quartus II tool’s powerful
design functions and flexibility. The system provided us with many common IP cores in SOPC Builder,
which helped in our design work and enabled us to add our self-defined IP cores and commands to meet
the customer specific requirements. This approach made our design more flexible, especially the self-
defined commands, which when added to existing 256 colors, are sufficient to meet most customer
requirements. Additionally, the Quartus II software provided the functions from the start of the design to
completion. These functions are easy to handle in the GUI. As for software development, the Quartus II
software also integrates the Nios II IDE. We were able to finish the program design and download the
final design using the Nios II IDE GUI.

Additionally, when we compared Quartus II version 4.2 and Quartus II version 5.0, we noticed that with
Quartus II version 5.0 we can save system compilation time. Previously, even a small design
modification needed the whole system to be recompiled. However, the Quartus II software version 5.0
provides optimized compilation, which only compiles the modified parts each time. As for the system
design, we know about the advantages of FPGA and soft core design methods, especially during product
development. With these methods, we can shorten the development cycle, reduce development risk, and
get the early-to-market advantage. The Quartus II tool provided us with abundant materials for
development, which are easy to understand, and each user reference emphasized a design principle by
illustrating it with diagrams and code samples. By studying these materials, we were able to develop our
own systems easily and wrote programs based on our requirements.

107

Nios Il Embedded Processor Design Contest—Outstanding Designs 2005

Appendix

Schematic Circuit of LED Lamp

24
3
A A
Red] Rei? Red3 Redt Red§ Redg
Ay & % % s & %
TR 1 21 21 21 21 21 2
B B
o, @ @, o, as @,
o T T N 21 2 N
24
3
L ®, ®, b s, ®,
B [T TN 21 I N

5 Tile D
Size Number Revision
A4
| T fﬁ“i?ﬁ’.’{“ﬂn[T gt P
| 2) z
Schematic Circuit of LED Drive
J vee vce
J vee, Ji7
vee IC1 ULN2803 Hile reVCC 1804 iam g g pak
-+ F1 Al I 1 — 1 1
18 % — 1C 18 3
1 = 1C 18 2l] 7l 28 2|2
2 J ¢ 2818 2 I 3C 38 5
3 [3C 38 g 4 I 4C 4B 6|4
4 ac 4B = 2|
- vece 5C 58 7 [410 pqoVCC 5C 58 Ji
=1 516C 6B 8™
2T 13]6C 68 gl [i—= I917¢ g S [[1
2 1178) 1012 53¢ 88 10112
z Erake SBi Al FL0com anofS | 113
= 12| L2 VC =)
ol vee |[€¢ G0 FigVee ULnzsos 13|99
= F3 Ear 151[1
5 —= 1C2 ULN28! 1’112 1518 Bz
e el e 7 gl 18| |4
7 L] 20 L7
4 vee 101 F1Se 5 20 |42
‘{ = 1 = 4c 48 21
= 2] 56 58 2212
3 K] 55 6C €8[9 55
131 2 % mlE 24
b F5 VCC ik 20 con GNui 125|421
Z vee ULN2803 2
3 3
VCC 12
F6 122
IC6
§ 1c3 ' 1
< 18 -1 18
3 & L% il
VCC J15 Fi5 a6 ag J23
ML T = 415 o T
2 — 13] ‘ 15]6C 68 2
3 ic 1818 iR & i3 3
s] FIOiES &5 L]
vece H8lcom ann J F16VCC i 4
F8 L Ml—e—m T vee = =
?%J vee N 1 ULN2803 1
3 3 3
P 4 4

-
(=1

8

o
‘ mm»wm—nowm\nmmaww—xo‘”m*‘J’U’*‘*w'\’—"}\1]

Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks
and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the
property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and
pending applications, mask work rights, and copyrights.

	Design Introduction
	Function Description
	Major System Functions
	System Components
	Display Unit
	Control Unit
	Display Drive Principle
	Display Drive Unit
	Data Communications Unit

	Performance Parameters
	Design Architecture
	Design Methodology
	Hardware Design
	Full-Color Lamp Control IP Core Design
	Function Simulation
	MP3 Design
	SOPC Builder Configuration
	Compiler

	Software Design

	Design Features
	Conclusion
	Appendix

