
 3-D Accelerator on Chip

Altera Corporation 109

Third Prize

3-D Accelerator on Chip

Institution: Donga & Pusan University

Participants: Young-Hee Won, Jin-Sung Park, Woo-Sung Moon

Instructor: Sam-Hak Jin

Design Introduction
Recently, consumers are becoming interested in cellular phones and portable game devices that play 3-
dimensional (3-D) games. It is difficult for mobile device processors to compute 3-D graphic operations
because they require a lot of arithmetic operations and most mobile device processors cannot process
them. To solve this problem the processor chip must incorporate 3-D accelerator units to reduce the
computing time. In this project, we developed a 3-D graphic display system that quickly computes 3-D
graphic operations by including a hardware 3-D accelerator in the chip, and creating applications in it.

Using the Nios® II processor to develop 3-D graphic displaying system makes it possible to integrate the
main processor and 3-D accelerator in one chip. The system is smaller, faster, and more stable than
when using a hard-core processor chip and a separate 3-D accelerator chip.

Our 3-D graphic display system is based on OpenGL ES version 1.1, which is a royalty-free, cross-
platform application programming interface (API) for full-function 2-D and 3-D graphics on embedded
systems, including handheld devices, appliances, and vehicles. It is a well-defined subset of desktop
OpenGL, creating a flexible and powerful low-level interface between software and graphic
acceleration. OpenGL ES Pipeline is based on OpenGL 1.3 Pipeline, which includes geometry
processing, rasterization, fragment processing, and frame buffer operations. Programmers who have
used the desktop OpenGL can easily develop application programs for OpenGL ES. Therefore, our
system can also be used to develop 3-D graphics applications, such as 3-D games.

Function Description
Our system is based on OpenGL ES version 1.1; therefore, the system offers same interface. If the
application program makes vertex data by using offered functions, it computes the 3D operations, such
as rotation or transfer 3-D vertexes, lighting, clipping, and so on. Additionally, the software makes final
vertex data that is viewed by the camera set to see the 3-D world. See Figure 1.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

110 Altera Corporation

Figure 1. Pipeline Flow of OpenGL ES in the System

Application
Program

Vertex Data

Evaluators

Per-Vertex
Operations &

Primitive
Assembly

Rasterization

Per-Tragment
Operation

Software
Program
In the Nios II
Processor

Hardware Logic
In User Peripheral
(3-D Accelerator)

Frame Buffer
(SDRAM)

OpenGL ES

The software part of the 3-D graphic processing function delivers the positions of the three points of the
triangles and the color of polygons to the 3-D accelerator, which is the hardware part of the 3-D graphic
processing function. The 3-D accelerator makes the x, y, and z positions of the inside of the polygons to
fill up it. It also writes the color data of points to the exact address of the frame buffer, which is placed
in SDRAM. The thin-film transistor (TFT)LCD controller module independently reads the frame buffer
and displays the 3-D graphics on the TFT LCD repeatedly. The application programmer programs the
applications using the OpenGL ES library and the system displays the 3-D graphic output of
application.

Performance Parameters
The most important performance parameter of a 3-D graphic display system is the speed of computing
and displaying a frame of 3-D graphics. The general unit of 3-D graphic display speed is frames per
second (fps). We tested the speed of our system displaying a cube spinning on an x, y diagonal axis, as
shown in Figure 2.

 3-D Accelerator on Chip

Altera Corporation 111

Figure 2. Test Display

Design Architecture
Figure 3 shows the top-level block diagram. The Nios II processor connects to ext_ram_bus, 3-D
accelerator, 7-segment controller, SDRAM controller, TFT-LCD controller, and so on. The
ext_ram_bus module is a tristate Avalon® bus bridge that connects the Nios II processor to flash
memory and SRAM, which are the instruction memory and data memory, respectively, used to run the
Nios II processor.

Figure 3. Top-Level Block Diagram

Flash
Memory

SRAM

Ext_ram_bus

Flash Memory
Controller

SRAM
Controller

Nios II
Processor

3-D
Accelerator

SDRAM
Controller

7 Segment
Controller

TFT LCD
Controller

SDRAM

TFT LCD

7
Segment

Avalon Bus 1

Avalon Bus 2

Avalon Bus 3

Avalon Bus 4

FPGA

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

112 Altera Corporation

The 3-D accelerator (Renderer) is a slave of Avalon bus connected to the Nios II master (see Figure 4).
The Renderer receives the polygon data and starts rasterization. After rasterization, the outline pixel
position data of the triangle of polygon is restored in the span buffer, which uses the Altera® FPGA’s
internal memory. The structure of the span pixel data is x (8-bit integer) and z (32-bit fixed-point real
number), and the address is y (9-bit integer).

Figure 4. Block Diagram of Rendering Module

Avalon
Slave Rasterization

Draw Pixel
with

Z Buffering

Avalon
Master

Span Buffer
320 * 2 * (8 + 32) Bit

Z Buffer
240 * 320 * 32 Bit

Avalon Bus 3Avalon Bus 1

Color

position

After rasterization, the position data of y, the right side of x, the left side of x, and the z position of each
side is delivered to the draw pixel module. This module makes the x and z position data of the pixels
between the received pixel of the right side and left side and loads the z position data of that (x, y)
position to compare the depth that is drawn and to draw. If the pixel to draw is closer to the camera than
the pixel drawn previously, the module writes color data of the pixel to the frame buffer in SDRAM
through the Avalon bus connection and the z position data to the z buffer. If it is further than the
currently drawn pixel, it is ignored. See Figure 5.

Figure 5. The Rasterization Process

The LCD Control module displays the data of the frame buffer to the screen of the TFT LCD. It
receives the base address of the frame buffer from the Nios II processor. The SDRAM Control module,
a master of Avalon bus synchronized to the VGA Controller’s sync signals, repeatedly reads data from
the frame buffer in SDRAM. See Figure 6.

 3-D Accelerator on Chip

Altera Corporation 113

Figure 6. LCD Controller Block Diagram

Avalon
SlaveAvalon Bus 1

Avalon
Master

SDRAM
Controller Line

Buffer

VGA
Controller

vsinc
hsinc

TFT LCDAvalon Bus 4

Base Address
of Frame Buffer

While the software operates, it uses a custom instruction to multiply or divide fixed-point real number
type data.

The software is very complex and can be changed by the application program. We developed the
OpenGL ES library by modifying the details of open-source OpenGL ES code to fit into our system.
The functions have same interface with OpenGL ES that the well-defined subset of desktop OpenGL
has. Therefore, an application program using our functions operating in the system processes the 3-D
graphic operations as shown in Figure 1, in software and hardware.

Design Methodology
We developed the LCD Controller first and displayed a sample image to the TFT LCD with a simple
software program. Next, we developed the OpenGL ES software library by modifying the open-source
code. We reprogrammed the process of writing pixel data to the frame buffer because our system uses
memory differently. We changed computations using floating-point numbers to fixed-point numbers,
and some functions, including those concerning lighting, were changed to fit our system.

After we checked the 3-D graphic frame displaying of our test application without the 3-D accelerator,
we developed the 3-D accelerator module. We changed the software functions to deliver data to
hardware instead of computing it with the main processor.

We used a 50-MHz system clock to reduce compilation time. After we checked the system’s operation,
we set a phase locked loop (PLL) to generate a 100-MHz clock to run the final system.

The main CPU is the Nios II processor. The design uses the Nios II /f processor, flash memory, and
RAM controllers, which are connected to the Nios II processor by a tristate Avalon bridge,
ext_ram_bus. Additional modules, such as a timer, JTAG UART, etc., run and debug the Nios II
processor. The 7-segment PIO Controller displays the system speed.

We wrote the 3-D accelerator module (Renderer) in VHDL with Avalon bus slave and master signals.
We used the New Component menu option in SOPC Builder to add the VHDL code. The slave side of
the module connects to the Nios II processor, and the master side connects to the SDRAM controller, as
shown in Figure 7.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

114 Altera Corporation

Figure 7. SOPC Builder System

We used the New Component menu option in SOPC Builder to include the LCD Controller module
and specify its signals. The signals between the LCD Controller and Avalon bus became the pins of the
Nios II module. The slave side of the module is connected to the Nios II processor and the master side is
connected to the SDRAM controller. We developed the LCD Controller module in VHDL, created a
Symbol File of it, and connected it to the Nios II module. See Figure 8.

Figure 8. Top-Level Circuit

Figure 9 shows the LCD Controller block association in the Quartus® II software. We created each
block in the LCD Controller module using VHDL, and used the Quartus II MegaWizard® Plug-In
Manager to develop the line buffer, which uses the FPGA’s internal memory.

 3-D Accelerator on Chip

Altera Corporation 115

Figure 9. LCD Controller Block Diagram

We also used the Quartus II MegaWizard Plug-In Manager to create the 3-D accelerator line span
buffer, and the multiplication and division operations.

While the software operates, it performs many multiplication and division operations of fixed-point real
numbers. These numbers are defined as:

#define __GL_X_MUL(a,b) ((__gl_x)((((__gl_ll)(a))*(b))>>__GL_X_FRAC_BITS))
#define __GL_X_DIV(a,b) ((__gl_x)((((__gl_ll)(a))<<__GL_X_FRAC_BITS)/(b)))

Where __gl_x is a 32-bit, fixed-point read number, __gl_ll stores 64-bit data, and
GL_X_FRAC_BITS means the bits under point, defined as 16. We created custom instructions for
these numbers as shown in Figures 10 and 11.

Figure 10. Fixed-Point Division Custom Instruction

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

116 Altera Corporation

Figure 11. Fixed-Point Multiplication Custom Instruction

We used the Quartus II MegaWizard Plug-In Manager to create the multiplication and division
processors and added these modules to the design as custom instruction with the definition:

#define __GL_X_MUL(a,b) (__gl_x)__builtin_custom_inii(0, a,b)
#define __GL_X_DIV(a,b) (__gl_x)__builtin_custom_inii(1, a,b)

Using custom instructions makes the system faster because the custom instruction only uses 1 clock
cycle instead of more than 2 required without the custom instruction.

Design Features
We developed the 3-D graphic display system with the Nios II processor and our 3-D accelerator in one
chip. This design makes it possible for small devices, such as cellular phones or portable game devices,
to display 3-D graphics faster in a smaller device.

Because the 3-D accelerator is in the same chip as the main processor, the system size is smaller than
the same functional system using a hard-core processor chip, separate 3-D accelerator chip, the signal
connections between the two chips, power sources, memories, and so on.

The design is also faster than using variable chips, because the access to SDRAM is controlled by the
Avalon bus without complex control signal protocols. Additionally, custom instructions make it more
capable. The system has reduced wires and power source regulators by using a synchronized clock from
the PLL blocks. Therefore, the system can run without noise or clock sync errors, making it much more
stable than using variable chips.

Conclusion
We developed the 3-D graphic display system with the Nios II soft-core processor and our designed 3-D
accelerator in one chip. This system allows small devices, such as cellular phones or portable game
devices, to display 3-D graphics faster in a small size. Although the system is not currently fast enough
for a consumer product, we could develop additional hardware modules for various operations and
change the software processes to hardware processes to divide the processing loads in each section of
pipeline, thereby increasing the computing speed.

The Nios II processor is very useful for embedded system engineers. With it, we were able to integrate a
processor and our designed hardware in one chip, making the system smaller, faster, and more stable. In
particular, using Nios II custom instructions makes the system much more efficient than using hard-core
processors or only FPGAs.

 3-D Accelerator on Chip

Altera Corporation 117

The Avalon bus was very easy to create and use to connect blocks in the FPGA. For example, with just
a few mouse clicks in SOPC Builder made it possible to connect blocks, even several master blocks
accessing several slave blocks. In our system, the Nios II processor, 3-D accelerator, and LCD
controller are all masters of the SDRAM controller, and using the Avalon bus makes the operation
smooth, without error or crossing data.

The Quartus II software, which includes SOPC Builder and MegaWizard Plug-Ins, made it very easy to
include and connect several current designs. It reduced our development period and made the design
process less complex.

Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks
and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the
property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and
pending applications, mask work rights, and copyrights.

	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

