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Design Introduction 
Information security has assumed a significant importance in today’s world, especially because minor 
breaches can lead to major risks in the fields of national security and other e-commerce applications and 
transactions. This necessitates implementing cryptographic algorithms in hardware to achieve better 
security and faster response as opposed to any software implementation. A promising solution 
combining high flexibility with the speed and physical security of traditional hardware is the FPGA. 

Implementing cryptographic algorithms requires the generation of random numbers that can be then 
used in any algorithm to derive the keys for carrying out a secure transmission. Keeping this in mind, a 
design was created implementing a multi-board architecture using two Altera® boards. One board 
constantly generates random numbers using a data encryption standard (DES) random bit generator and 
at the same time keeps polling its input port for requests by another program designed to receive 
random numbers. The second board contains a design that implements the RSA algorithm and 
incorporates the reception of random numbers on the fly by means of hardware interrupts. On receiving 
the random number, the second board sends an acknowledgement back to the first board to continue the 
process. The designs (implemented as peripherals) on each board make use of a Nios® embedded 
processor for communicating and exchanging data between the driver program and the peripheral. 

The FPGA device family chosen for implementing the RSA algorithm is Altera’s APEX™ 20KE device 
family. APEX devices are high-density FPGAs that allow complex designs to be implemented on a 
single device. The target device was an APEX 20K EP200EFC484-2X and the design files were written 
in Verilog HDL, while compilation, synthesis, fitting, placement, and routing was carried out using the 
Quartus® II software. The Nios development board provided a hardware platform to immediately start 
developing embedded systems based on Altera APEX devices. The Nios development board was 
preloaded with a 32-bit Nios embedded processor system reference design.  
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The highlight of this project is the efficacious use of interrupts for inter-board communication and the 
use of numerous custom peripherals for both random number generation and implementing the RSA 
algorithm and hardware acceleration. 

Functional Description 
The functional description of this project is depicted through the flow diagram below. It is essentially 
comprised of two flows. One flow is the generation of the random number using the DES-based random 
bit generator. See Figure 1. 

Figure 1. DES-Based Random Bit Generator 
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The flow diagram for the RSA implementation is as follows: 

1. A request is sent from the RSA module to fetch a random byte. 

2. On receipt of a request, a random byte is sent by the DES random bit generator that continuously 
polls a designated port for the request for random bytes. 

3. It also signals READY after sending the random byte, and indicates readiness to accept the next 
request from the device (FPGA running RSA). 
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Figure 2. Handshaking Between RSA Module & DES Random Bit Generator 

 

Performance Parameters 
The performance parameters entail results obtained for the random number generator as well as for the 
RSA implementation. 

Random Number Generation 
A comparative overview of the results obtained for all nine designs implemented during the course of 
this project is tabulated below: 

■ Resource Requirements 

■ Session Yield 

■ Bit Generation Speed/Throughput 

■ Lines of Verilog HDL Code 

Resource Requirements 

Number Item Logic 
Elements 

(LEs) 

Pins Memory 
Bits 

Phase-
Locked 
Loops 
(PLLs) 

1. Maximum available resources on  
Altera APEX 20K EP200EFC484-2X 8,320 376 106,496 2 

2. Resources utilized by the standard Nios 
processor with essential peripherals 2,641 111 26,496 0 

 
Resource Utilization per Design 

Number Design LEs Pins Memory 
Bits 

PLLs 

1. PLL-Based TRBG 4,737 113 26,496 2 

2. Ring Oscillator-Based TRBG 2,772 119 26,496 0 

3. Modified LILI-II PRBG 4,114 111 26,496 0 

4. Nonlinear Combiner Model-Based PRBG 7,419 111 26,496 0 

5. Nonlinear Combiner Model (Enhanced With Memory) 8,312 111 26,496 0 

6. Nonlinear State Filter Model-Based PRBG 8,312 111 26,496 0 

7. DES-Based PRBG 4,969 111 26,496 0 

8. DES-ALFG-Based PRBG 8,043 111 26,496 0 

9. BBS-Based PRBG 6,449 111 26,496 0 
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Session Yield  

Number Design Yield per Session 
1. PLL-Based TRBG 362 bits 

2. Ring Oscillator-Based TRBG  > 246 Kbits 

3. Modified LILI-II PRBG > 40 Kbits 

4. Nonlinear Combiner Model-Based PRBG > 2 Mbits 

5. Nonlinear Combiner Model (enhanced with memory)-Based PRBG > 2 Mbits 

6. Nonlinear State Filter Model-Based PRBG > 40 Kbits 

7. DES-Based PRBG  > 526 Kbits 

8. DES-ALFG-Based PRBG > 1.87 Mbits 

9. BBS-Based PRBG > 40 Kbits 

 

 Although the session yield of the true random bit generator is based on the PLL and implemented as the 
Nios peripheral appears to be low, it is conjectured that it will perform far better as a stand-alone device. 
Moreover, 362 bits per session may be considered adequate for session key initialization vector 
requirements. 

Bit Generation Speed/Throughput 
The bit generation speed/throughput shown below has been worked out in terms of the clock cycles 
taken to generate one random bit, based on the implemented algorithm. Its translation into throughput 
has been done for a clock speed of 33.3 MHz. 

Number Design Clock Cycles per 
Random Bit 

Throughput for 
a Clock at 33.3 

MHz 
1. PLL-Based TRBG  < 3 > 11.1 Mbps 

2. Ring Oscillator-Based TRBG - 0.59 Mbps 

3. Modified LILI-II PRBG 5 6.66 Mbps 

4. Nonlinear Combiner Model-Based PRBG 3 11.1 Mbps 

5. Nonlinear Combiner Model (Enhanced with 
Memory)-Based PRBG  3 11.1 Mbps 

6. Nonlinear State Filter Model-Based PRBG 4 8.325 Mbps 

7. DES-Based PRBG 140 7.611 Mbps 

8. DES-ALFG-Based PRBG Initially 140 subsequently 
amortized to < 140 > 7.611 Mbps 

9. BBS-Based PRBG 520 64.038 Kbps 
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Lines of Verilog HDL Code 

Number Design Lines of Verilog HDL 
Code 

1. PLL-Based TRBG  275 

2. Ring Oscillator-Based TRBG 275 

3. Modified LILI-II PRBG 177 

4. Nonlinear Combiner Model-Based PRBG 189 

5. Nonlinear Combiner Model (Enhanced with Memory)-Based PRBG  322 

6. Nonlinear State Filter Model-Based PRBG 324 

7. DES-Based PRBG 1,143 

8. DES-ALFG-Based PRBG 1,191 

9. BBS-Based PRBG 601 

 

The RSA algorithm was implemented as separate peripherals performing the following operations: 

■ Random number receiver 

■ Multiplicative inverse calculator 

■ Modular exponentiation calculator 

 
After implementing these peripherals, all were combined to form a RSA integrated design working 
through a C driver program, which passed inputs and outputs between the various peripherals, in order. 
Due to the paucity of the space on the FPGA in terms of the number of LEs, only a 32-bit RSA 
integrated algorithm was implemented. Space on FPGA (number of LEs) permitting, this design can 
easily be scaled up.  

Random Number Receiver 
The random number receiver was implemented to receive one byte of random number through the 
external pins on the board. The peripheral consumed the following resources. 

Family  APEX 20KE 

Device APEX 20K EP200EFC484-2X 

Total LEs 2,783/8,320 (33%) 

Total Pins  121/376 (32%) 

Total Memory Bits 26,496/106,496 (24%) 

Total PLLs 0/2 (0%) 

 

The total time taken for compilation, synthesis, fitting, placement, and routing of this peripheral was 4 
minutes and 42 seconds.  
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Multiplicative Inverse 
This peripheral was implemented to compute the secret key using an extended Euclidean algorithm. 
Since the algorithm implemented required division operations to compute the remainder and quotient at 
every step, it consumed a lot of resources. In simulation, this algorithm was tried and tested up to 128 
bits, but in hardware, it could be implemented only up to 48 bits. Total time taken for compilation and 
synthesis, fitting, placement, and routing was 12 minutes, 31 seconds. The compilation report for this 
peripheral was: 

Family APEX 20KE 

Device APEX 20K EP200EFC484-2X 

Total LEs 6,524/8,320 (78%) 

Total Pins 111/376 (29%) 

Total Memory Bits 26,496/106,496 (24%) 

Total PLLs 0/2 (0%) 

 

As can be seen from the compilation report, a 48-bit implementation itself consumes 6,524 
LEs. Hence, if used along with other peripherals such as the exponentiator and the random number 
receiver, no other peripheral would be able to fit on the FPGA. Therefore, only a 32-bit implementation 
was used in the RSA integrated implementation. 

Exponentiator 
This peripheral was implemented to carry out the following tasks: 

■ Primality check using Fermat’s Theorem 

■ Encryption 

■ Decryption 

The algorithm implemented was the Montgomery exponentiation algorithm, which in turn uses the 
Montgomery multiplication algorithm for the intermediate steps. The modular multiplication was 
implemented using the systolic array architecture, which is quite resource efficient. In simulation, a 
512-bit exponentiation was implemented, however, in hardware only a 128-bit exponentiation was 
possible. The total time taken for compilation, synthesis, fitting, placement, and routing was 11 minutes, 
36 seconds. The compilation report for this peripheral was: 

Family APEX 20KE 

Device APEX 20K EP200EFC484-2X 

Total LEs 6,971/8,320 (83%) 

Total Pins 111/376 (29%) 

Total Memory Bits 26,496/106,496 (24%) 

Total PLLs 0/2 (0%) 
 

The peripheral consumed 6,971 LEs, hence a higher implementation such as 256- or 512-bit 
exponentiation was not possible, despite a resource-efficient architecture. The 256-bit exponentiator 
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itself required 10,277 LEs, while a 512-bit exponentiator required 17,459 LEs. In the RSA integrated 
implementation, only a 32-bit exponentiator was included, since two other peripherals, the random 
number receiver and the multiplicative inverse, were also required to be fitted on the same chip. 

RSA Integrated 
The RSA integrated peripheral implements the complete RSA algorithm primitive, which includes the 
following operations: 

■ Receiving random numbers. 

■ Primality checking 

■ Computation of multiplicative inverse. 

■ Computation of modular exponentiation. 

 
All of the above operations were implemented as separate peripherals and fitted on the same chip. A C 
driver program then interacts with all the peripherals and passes appropriate values between them. This 
requires that all the peripherals are instantiated correctly in the C program. The total time taken for 
compilation, synthesis, fitting, placement, and routing was 13 minutes, 8 seconds. The compilation 
report for this integrated design was: 

Family APEX 20KE 

Device APEX 20K EP200EFC484-2X 

Total LEs 6,984/8,320 (84%) 

Total Pins 121/376 (32%) 

Total Memory Bits 26,496/106,496 (24%) 

Total PLLs 0/2 (0%) 
 

The RSA integrated implementation of 48 bits, excluding the random number receiver and the primality 
checker, consumed 8239 LEs, which is almost 99% of the total available LEs on the board. Hence the 
final implementation was scaled down to 32 bits to accommodate the random number and the primality 
check peripherals. 

Execution Time & Throughput 
The RSA algorithm has been implemented with a modulus of 32 bits, with a multi-board architecture 
also included to receive the random numbers on the fly. However, this makes the measurement of the 
execution time difficult since it involves an interrupt-driven mechanism. By simulation, the execution 
time and the throughput for only the encryption/decryption can be approximated for a clock speed of 33 
MHz. In the case of RSA, the encryption and decryption is carried out by modular exponentiation, and 
for a modulus of 32 bits, it took 1,555 clock cycles, which gave a throughput of 0.68 Mbps.  

Design Architecture 
The system architecture entails two parts, namely:  

■ Generation of random numbers using the DES random bit generator 
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■ Implementation of RSA using the random number generated by the above method 

PRBG Based on Block Cipher Techniques 

This section describes how the random numbers were generated. 

DES Random Bit Generator 
The data encryption standard (DES) was developed by an IBM team around 1974 and adopted as a U.S. 
national standard in 1977. Since that time, many cryptanalysts have attempted to find shortcuts for 
breaking the system. It is defined by the American standard FIPS 46-2. We wish to encipher a 64-bit 
plaintext message block under the 56-bit key, to produce a 64-bit ciphertext message block c=Ek(m). 
Decipherment, or recovering plaintext from ciphertext, is denoted m = Dk(c).The plaintext message 
block m is subjected to an initial permutation P, and the result is broken into two 32-bit message halves, 
m0 and m1. Intermediate message halves,m2,...m17 are then created in sixteen rounds according to the 
procedure described below. Finally, the 64-bit ciphertext c is generated by applying the inverse 
permutation IP^{-1} to the two message halves m17 and m16.)  

The plain text and intermediate message halves m{0},m{1},m{1},...,m{17} are related as follows:  

 m{i+1} = m{i-1} XOR f(k{i},m{i}) , i= 1, 2,...,16 

Here k is the secret 56-bit key and i is the number of the round (from 1 through 16). Also, k{i} (round 
key) is a selection of 48 bits from the 56 bits of k. This selection, or key schedule, depends on the round 
number i. Now we describe the substitution function f. There are eight S-boxes, S{1},...,S{8} described 
in the standard. Each S-box is a table lookup, using six bits as input and providing four bits as output. 
For each S-box, say S{j}, six consecutive bits are selected from the 48 bits of k{i}, namely bits 6j - 5, 6j 
- 4, ...,6j. Also, six consecutive bits are selected from m{i}, namely bits (4j - 4, 4j - 3,..., 4j + 1) mod 32. 
The mod 32 is shorthand for the convention that for j = 1, the bits are 32, 1, 2, 3, 4, 5, and for j = 8 the 
bits are 28, 29, 30, 31, 32, 1. Two adjacent S-boxes share two message bits. For instance, S{1} uses 
message bits 32, 1, 2, 3, 4, 5, while S{2}, uses message bits 4, 5, 6, 7, 8, 9, and they share bits 4 and 5. 
(Key bits are not shared among S-boxes on one round.) S{8}, and $S{1}, are considered to be adjacent 
because they share message bits 32 and 1. The six key bits and the six message bits are XORed together 
bitwise, and the resulting six bits are used as input for a table lookup.  

That is, the six inputs to S-box S{j} at round {i} are: 

m{i}[4j -4 ] XOR k{(i)}[6j -5], 

m{i}[4j -3 ] XOR k{(i)}[6j -4], 

m{i}[4j +1 ] XOR k{(i)}[6j] 

or, written another way,  

[4j - 4, 4j - 3, 4j - 2, 4j - 1, 4j, 4j + 1]XOR k{i}[6j - 5, 6j - 4, 6j - 3, 6j - 2, 6j - 1, 6j]. 

Each of the eight S-boxes implements a different table, each with 26 entries of four bits each. These 
tables are described in the standard. The eight S-boxes together put out 8 x 4 = 32 bits. These bits are 
permuted according to a permutation P that is fixed for all rounds i. The resulting 32-bit quantity is the 
value of f(k(i)},m{i}).  
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In summary, the 64-bit message undergoes a permutation IP to produce two 32-bit message halves 
m{0} and m{1}. Then we compute the 32-bit quantity f(k{(1)},m{1}) and XOR that quantity with 
m{0}, to produce m{2}. We use this new quantity m{2} to compute f(k{(2)},m{2}) and XOR that 
quantity with m{1}, to produce m{3}. We continue in a like fashion until m{16} and m{17} have been 
computed. These two message halves are interchanged and then subjected to the permutation IP^{-1}, 
to produce the ciphertext c. Decryption is easily accomplished by a user in possession of the same key 
k. First, one applies the permutation IP to c, to produce the message halves m{17} and m{16}. Next, 
one computes f(k{(16)}, m{16}) and XORs that quantity with m{17} to recover m{15}. Recalling that 
m{17} = m{15} XOR f(k{(16)}, m16), we have m{17} XOR f(k{(16)}, m{16}) = [m{15} XOR 
f(k{(16)}, m16)] XOR f(k{(16)}, m16) = m{15}, because of the identity (A XOR B) XOR B = A. 
Similarly, one computes m{14} = m{16} XOR f(k{(15)}, m{15}), and continues in like fashion until 
one has computed m{1} and m{0}. Applying IP^{-1} to the pair (m{0}, m{1}), one recovers the 
plaintext message m.  

DES RBG Design 
DES was implemented in ECB mode for any arbitrarily selected IV, using a secret key. The ciphertext 
emerging after each round of encryption was thereafter used as the key for the next round of encryption, 
while simultaneously incrementing the plaintext once in counter mode. This fundamental operation is 
iteratively executed for the desired number of times, with an interrupt being raised after each execution. 
The random bits are read back by the driver as 32-bit words, and the next iteration by the hardware is 
triggered as per the interrupt service routine. 

Implementation Details 
The design entry was created in Verilog HDL. Quartus II software was used for the compilation, 
analysis, synthesis, fitting, assembling, and timing analysis. The random bit generator was designed as a 
peripheral device to the embedded Nios processor. A device driver written in C was used to control the 
peripheral device. Further, the DES RBG was adapted to serve as the random bit generator for the RSA 
implementation created by a colleague. The DES RBG continuously polls a designated port for the 
request for random bytes. On receipt of the same, it generates a 64-bit word of random bits and sends 
the lower order byte to the requesting device. It signals "ready" after doing so, indicating readiness to 
accept the next request. The implementation performed as a multi-board design and the checking for 
primality of the generated random number is done at the distant end. 

The statistical performance of both generators fails to impress. The DES-ALFG generator is an absolute 
flop, while the DES generator is scarcely much better against this benchmark. At a pinch, the DES 
generator could be used—in spite of a little bias in its output, it exhibits no periodicity—but the ALFG 
as a primitive for cryptographic random number generation does not pass any statistical test other than 
block-frequency. In summary, the block cipher-based approach, for the primitives selected, has yielded 
disappointing results. 

RSA Design 
The design for RSA includes the design for random number generation, multiplicative inverse, and 
modular exponentiation.  

Random Number Generation 
The RSA algorithm requires that two random prime numbers of n/2 bits be generated, where n is the 
number of bits in the modulus. These random prime numbers are then tested for primality before they 
are used in the algorithm proper. Since there is a separate project on \emph{Random Number 
Generation} being implemented, no random numbers were generated as part of this project. However, a 
peripheral module to receive the random numbers generated by an external program on a different board 
was implemented and incorporated in the main RSA algorithm. 
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Architecture of Random Number Receiver 
The project has been implemented on Altera’s APEX 20K EP200EFC484-2X board, which has a space 
limitation as far as the number of LEs is concerned. Also, the board has been manufactured in such a 
way that it does not permit daisy-chaining architecture to overcome the above limitation. Hence, the 
only method available is to use the external pins on the board, connect those to another board, and 
exchange data between the two. This, however, has certain limitations, such as the numbers of bits that 
can be exchanged, the timing issues between the two independent programs, and the requirement of 
exchanging signals between the boards to facilitate communication as per specific requirements. A 
multi-board architecture was realized to exchange data between two boards connected through external 
pins. Due to the limitations mentioned above, a peripheral module for handling random numbers of 16 
bits each was implemented. This design is completely scalable and, hardware permitting, can receive 
any number of bits from another board. 

This peripheral module has the following components: 

■ Random number receiver module 

■ Driver program, which receives the random numbers from the random number receiver module 

■ Primality check module, based on Fermat's Theorem and utilizing the exponentiator peripheral 

Random Number Receiver Module 
This is a module written in Verilog HDL and it resides on the hardware (FPGA). To receive the random 
numbers and to communicate with another board, 10 external pins have been mapped with this module. 
On eight of these external pins, the module receives the random numbers, one byte at a time. Of the 
other two pins, one is used to send a \emph{start} signal to the other board and the other to receive the 
\emph{done} signal from it. A common ground is necessary for this type of data exchange. On 
receiving the \emph{done} signal from the second board, this module transfers the byte received on the 
external pins, first to an internal register and thereafter to the driver program. After sending that byte to 
the driver program, it is ready to receive the next byte. The number of bytes to be received can be set at 
the beginning of the data exchange. On completion, it hands over control to the driver program for 
further processing of these random numbers received. 

Random Number Receiver Block Diagram 
The random number receiver has been implemented as a peripheral and shown in the figure given 
below. The block diagram also shows the random number generator peripheral implemented on a 
different board. Both these peripherals exchange data and signals through the external pins of the Altera 
board. As explained earlier, these pins have been mapped on to the inputs and outputs of the peripherals 
in the FPGA. 

Driver Program 
This program has been written in C and it interacts with the random number receiver module through 
the Nios processor. With each hardware interrupt, it activates its hardware handler subroutine and 
captures the byte sent into an array. It then combines two bytes at random and then sends it to the 
primality check module. If the primality check is positive, this driver program stores that 16-bit random 
prime number to be used subsequently in the RSA algorithm, else it discards that number. The same 
process is repeated until it gets at least two prime numbers of 16 bits each. These two prime numbers 
eventually make p and q for the RSA algorithm. After obtaining p and q, it also computes n = pq, which 
is the modulus, and phi = (p-1)(q-1)}, which is phi(n).  



Nios II Embedded Processor Design Contest—Outstanding Designs 2005 

 

128   

Primality Check Module 
This module is based on the Fermat's Theorem, which states that for any integer a, and any prime 
number n, if n is prime then 

a^{n} mod n = a 

If a^{n} mod n ,n eq a, then n is not prime. By testing sufficient number of a's, all composite a's can be 
excluded and all primes can be retained. Another variation of Fermat's Theorem that can also be utilized 
to carry out a primality check is Euler's Theorem. It states that, if a is any integer and p is prime, such 
that gcd(p,a) = 1, then 

a^{p-1} mod p = 1 

This is possible only if p is prime. The existing modular exponentiation architecture can be utilized to 
carry out the exponentiation required by Fermat's theorem or Euler's theorem to determine whether the 
number is prime or not. If the number is prime, then, the driver program retains that number to be 
further handed over to the main RSA driver routine. 

Multiplicative Inverse 
The multiplicative inverse of a number, over a modulus, is computed based on the Extended Euclidean 
algorithm. The algorithm needs to do integer division twice for that which the module calModulus 
makes use of. This is by far the most time consuming, as well as resource consuming, operation in RSA. 
The Altera APEX 20K EP200EFC484-2X board is able to accommodate the algorithm for computing 
the multiplicative inverse only up to 48 bits. The design incorporates two modules: 

■ Extended Euclidean module 

■ Modulus 

Extended Euclidean Module 
This is the top-level module, which takes as input the value of exponent e and the value of phi. Based on 
the value of e, it goes through the various steps of the Extended Euclidean algorithm. For each step, it 
sends the dividend and divisor values to the modulus for performing the integer division. The modulus 
returns the remainder and quotient after the division operation. Finally, the inverse value is returned 
after ascertaining that the last non-zero remainder is one, and the algorithm is executed for two steps 
beyond the Euclidean algorithm. 

Modulus 
This module is based on the non-restoring division method of calculating the modulo. It takes two 
inputs, the dividend and the divisor. After division, it returns the remainder and quotient back to the 
Extended Euclidean module. The multiplicative inverse computed by this peripheral is based on the 
value of phi generated, as well as the value of exponent e chosen. The value of e chosen is actually the 
public key and the multiplicative inverse computed is the secret key or d. This value of d is then used 
during the decryption phase for computing the original plaintext. 

The module for computing the multiplicative inverse has been implemented as a peripheral on the 
FPGA. The driver program sends the exponent value and the phi value to this peripheral through the 
Nios processor. The peripheral computes the secret key or the inverse value of the exponent with 
respect to phi and returns it via the Nios processor to the driver program. 
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Modular Exponentiation 
An architecture for modular exponentiation proposed by Thomas Blum and Christof Paar was chosen 
for implementation. It is based on the Montgomery exponentiation and Montgomery modular 
multiplication for radix 2. It is a resource-efficient architecture suitable for implementation in FPGAs. 
Its design is based on an exponentiator, which handles the exponentiation and feeds values to a systolic 
array that computes the modular multiplication. The architecture essentially consists of two basic units, 
the exponentiator and the systolic array. 

Exponentiator 
This is the top-level module and is based on the Montgomery exponentiation algorithm. It takes as input 
the following parameters: 

■ Modulus m 

■ Message x 

■ Exponent e 

■ Number of bits in exponent 

■ Precomputation factor R^{2} mod m 

The precomputation factor and A are fed as inputs so that all values in the intermediate stages of 
exponentiation are in Montgomery domain carrying a factor of 2^{n+2}, where n is the number of bits 
in the modulus. This module first feeds the values of x and R^{2} mod m to the systolic array for 
computation of widetilde{x}. Thereafter, it first checks the exponent bit and then feeds appropriate 
values to the systolic array for multiplication. At the end it feeds the result and value 1 again to the 
systolic array to obtain the final result, thereby getting rid of the additional factor of 2^{n+2}. The final 
result so obtained is either the ciphertext or the plaintext depending upon whether it is encryption or 
decryption. In case of encryption, the exponent used is 65537, while in the case of decryption it is the 
secret key or d computed as the multiplicative inverse earlier. 

Systolic Array 
The systolic array computes the modular multiplication based on the Montgomery modular 
multiplication algorithm. A systolic system comprises a set of interconnected cells, each capable of 
performing a specified operation. The cells and operations performed by them are usually identical. The 
time taken for processing by each of the cells is identical. Individual cells are connected only to their 
nearest neighbors. The flow of data between the cells is rhythmic and regular. Except those at the 
boundary of the array, the cells do not communicate with the outside world. Systolic architectures are 
essentially suited for implementing computationally bound operations. The following arithmetic 
operation is required to be implemented. 

S_{i+1} = (Si + q_iM)/2 + a_iB, q_i, a_i {0,1} 

The above equation can be modified into 

S_{i+1} = (S_i + q_iM + 2a_iB)/2, q_i, a_i {0,1} 

Instead of using two adders for computing the addition required in the above step, the sum 2B + M is 
precomputed and stored in a register. A single adder is sufficient to add 0, 2B, M or 2B + M to S_i, 
depending on the values of a_i and q_i. The same adder can also be used to precompute 2B + M. The 
systolic array has the following inputs and outputs: 
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Inputs: 

■ modulus: Modulus value sent by exponentiator 

■ var1: First variable to be multiplied 

■ var2: Second variable to be multiplied 

■ clk: Clock for synchronization 

■ reset: Reset signal 

Outputs:  

■ result: Result of the modular multiplication 

All the processing elements get instantiated in this module. The signals and the data exchanged between 
the processing elements are declared as wires in the systolic array module. During each clock cycle, 
each processing element computes u bits of S_{i+1} = (S_i + q_iM + 2a_iB)/2. Now, during the clock 
cycle I, the processing element1 computes u bits of S_{i}. During clock cycle i+1 processing element2 
computes the next u bits of S_i. To compute u bits of S_{i+1} the processing element1 requires the LS 
bit of S_{i}, computed by processing element2. This is on account of the division by two required in 
step S_{i+1} = (S_i + q_iM + 2a_iB)/2. Thus, clock cycle i+1 is unproductive for processing element1. 
Therefore, each unit of the systolic array stays idle in every alternate clock cycle. To achieve parallelism 
each processing element computations during one cycle and remains idle in the next clock cycle. This 
alternate clock cycle computation ensures parallelism and a complete utilization of all its units. 

To compute S_{i+1} = (S_i + q_iM + 2a_iB)/2 where M = \sum_{i=1}^{n-1} {m_i2^i}, m_i {0,1\} 
and B = \sum_{i=1}^{n} {b_i2^i}, b_i {0,1\}, n/u + 1 units are needed. The unit n/u + 1is used to 
process the most significant bit of part b and has no part mod inputs. There are two buses each for 
loading the M and B. The M even bus and B even bus are connected to units processing element1, 
processing element3, .....processing element(n/u + 1). The M odd bus and B odd bus are connected to 
units processing element2, processing element4}, processing element(n/u) 

The s1 out output of processing element1 is connected back to its input. This is required for subsequent 
passes through the loop. The carry generated in each addition is also propagated to units in the left 
through the use of c_out and c_in pins. The s0 out is connected to the s0 in the pin to the right in order 
to send the LS bit of the left shifted S_i(division by 2). The result bits are pumped backwards to 
\emph{processing\_element1} through the use of the res _out and res_in pins as only processing 
element1 is connected to external modules. 

Operation: 

1. Initially, the values M and 2B are fed to all the units and saved in registers. 

2. The computation of S_{i+1} = (S_i + q_iM + 2a_iB)/2 begins by initialization followed by giving 
the a_i input at the a_i_In pin of processing_element1}. 

3. At the end of computation, the result is pumped across the units to processing_element1. 
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Processing Element  
At the heart of the processing element is a u bit Adder. The result of the adder is latched into S_Reg 
(including the carry). An extra S_Reg_2 is required to introduce the one clock delay before the result is 
fed back as input for the next pass through the loop after it is left-shifted. The LS bit of the shifted input 
comes from the neighboring unit from S0_In pin. Registers B_Reg, M_Reg, and BMSum_Reg are used 
to save 2B, M, and B + M. Multiplexer Mux_B is used to selectively input B_Reg with the B_In or the 
S_Reg. Multiplexers Mux_1 and Mux_2 select the appropriate inputs for the adder. Mux_Res 
selectively outputs the result of the adder or Result_In from the neighbor. Control_Reg and qa_Reg are 
used to latch the values before passing it along to their neighbors. Each processing element of the 
systolic array computes u bits of modular multiplication. Each processing element has the following 
inputs and outputs. 

Inputs: 

■ res_in: Result bits from the (left) neighboring unit 

■ qa_in: q_i,a_i bits 

■ c_in: Carry bit from (right) neighbor 

■ s0_in: LS bit of S_I from (left) neighbor required on account of division by 2 of S_i 

■ part_b: u bits of 2B fed externally at the start for saving and precomputation of 2B + M 

■ part_mod: u bits of M fed externally at the start for saving and precomputation of 2B + M 

■ clk: Clock signal for synchronization 

■ reset: Reset signal 

■ start: Start signal from exponentiator to begin computation 

■ flush: Flush signal from the exponentiator to flush all the registers before the next multiplication 

Outputs: 

■ res_out: Result bits computed by the unit 

■ s0_out: LS bit of result for the (right) neighbor 

■ qa_out: q_i,a_i bits for the (left) neighbor 

■ c_out: Carry bit generated by the addition 

■ s1_out: 2nd LSB required as q_i input for unit 1, can be taken from the LSB of res_out, also 

■ next: Next signal for the neighbor to start computation 

Modular Exponentiator Block Diagram 
The modular exponentiation has been implemented as a peripheral comprising all of the modules 
mentioned above. The top-level module in this peripheral receives the exponent value, modulus value, 
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correction factor, message, and the number of bits in the exponent from the driver program via the Nios 
processor in 32 bits each. The peripheral then computes the value of the exponentiation and returns it 
back to the driver program. 

Design Methodology 

RSA Implementation 
Altera’s APEX 20KE FPGA family was chosen for implementing the RSA algorithm. APEX devices 
are high-density FPGAs that allow complex designs to be implemented on a single device. The target 
device was an EP20K200EFC484-2X. The design files were written in Verilog HDL, while 
compilation, synthesis, fitting, placement, and routing were carried out using Quartus II software. 

Design Flow 
The complete implementation of the RSA in FPGA was performed in the following stages: 

4. Design entry 

5. Compilation and synthesis 

6. Fitting, placement, and routing 

7. Interaction with the C Driver program 

Design Entry 
The designs for the project were specified by using the Verilog HDL. The Verilog HDL files are 
essentially the source files, giving the structural description of each of the sub-units. 

Random Receiver 
This contains the design file random_receiver.v, which receives the random numbers on the output pins, 
generated on the other board. A total of 10 external pins were used to collect the random numbers one 
byte at a time. The balance of the two pins was used for synchronization purposes. This Verilog file 
contains the mechanism of raising hardware interrupts and throwing out the byte received to the driver 
program for further processing. 

Multiplicative Inverse 
This contains the following design files:  

■ calModulus.v—This module performs the division operation, given the dividend and divisor, and 
returns the remainder and quotient after the division operation. The size of the inputs and outputs of 
this module are parameterized to facilitate easy scalability. 

■ topInverse.v—This module implements the extended Euclidean algorithm for calculating the 
multiplicative inverse. It instantiates the calModulus.v module for performing the division 
operation. The inputs and outputs of this module are also parameterized. 
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Modular Exponentiation 
This contains the following design files: 

■ processing element.v—This gives the structural description of the processing element of the 
systolic array. The word size of the processing element is parameterized and can be altered. Each 
processing element computes the sum as per the algorithm. 

■ systolic_array.v—This module instantiates a series of processing elements and specifies the 
interconnections between them in terms of inputs and outputs. It returns the result of a 
multiplication to the exponentiator module, based on the Montgomery modular multiplication 
algorithm. 

■ monty_expo.v—This is the top-level module that implements the Montgomery exponentiation 
algorithm as a series of modular multiplications with the help of the underlying systolic array 
module. 

Compilation & Synthesis 
The design files form the input to the compilation and synthesis tool (i.e., Quartus II development 
software). The design files are first included in the project standard_32 directory within Quartus II 
software. Thereafter, a new peripheral is created for each top-level module with the help of the SOPC 
builder. The SOPC builder is then generated to build the user-defined peripherals along with the design 
files of the standard_32 directory. The operating frequency and the target devices are selected at the 
time of opening a new project. Finally, the whole project is compiled and synthesized. 

Fitting, Placement & Routing 
Quartus II development software is also used for this purpose. The netlist file generated during the 
compilation and synthesis forms the input to it. The fitter in Quartus II software assigns each logic 
function to the best logic cell location for routing and timing. It also selects appropriate interconnection 
paths and pin assignments. The final output is the standard.sof file, which contains the complete routed 
application. 

Interaction with C Driver Program 
The design files implemented in the hardware are actually peripherals to the Nios processor and work 
through the Avalon® bus signals. To write/read data to/from the peripheral, a C driver program is used. 
This C program is loaded in \cpu_sdk\src project subdirectory within standard_32. The nios_build and 
nios_run utilities are then used to compile the C program and run it on the design files already 
downloaded to the FPGA. The C program includes the nios.h, which in turn includes all the header files 
required for compilation. Also, the peripheral created in the SOPC builder is instantiated in the C 
program along with its IRQ number. The handler function in the C program then performs the functions 
mentioned inside the handler in the event of the peripheral raising an interrupt. The data is written to the 
peripheral through the writedata Avalon signal while the reading of data from the peripheral is done 
through readdata. Both writedata and readdata work for specific addresses that need to be mentioned in 
the C program. 

Implementation Issues 
This section describes the implementation issues for this project. 

Use of External Pins 
For peripherals involving use of external pins, the additional pins used are marked as export, before 
generation in the SOPC Builder. After generation, physical assignment of each and every pin is carried 
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out using the assignment editor within Quartus II software. The external pins to be assigned are selected 
through the Nios development manual. The balance of the operations is similar to that described in 
earlier sections. This configuration and implementation was carried out for the random_receiver module 
and peripheral. 

16-Bit Implementation 
Handling large numbers (1024 bit) makes debugging and functional verification very difficult. Also, the 
time taken by the software tools, especially the placement and routing (fitter) and simulator, is 
extremely high. Therefore, a 16-bit exponentiate was built and tested thoroughly as a first step. The 
exponentiate was then scaled up from 16 bits to 512 bits. 

Modular Design 
The design of the exponentiate is modular with the processing element and the systolic array being 
independently implemented and tested. Finally the modules were then integrated together and tested. 
Same is the case for the other peripherals like multiplicative inverse and the random number receiver. 
The peripherals have been designed in such a manner that all inputs and outputs are parameterized and 
can be changed easily without affecting any other part of the module. 

Design Scalability 
The exponentiator and the multiplicative inverse peripherals scale linearly and therefore require little 
effort.  

Testing & Verification 
The test cases for testing were given using the C driver program to the Verilog HDL design file and 
then reading back the results in the driver program. Initial simulation and testing was carried out using 
iverilog, being faster. The testing and verification in the hardware takes time owing to time taken for 
compilation, synthesis, fitting, placement, and routing by the Quartus II software. 

Processing Time 
An important issue associated with the implementation is the processing time associated with Quartus II 
software. For the exponentiator, multiplicative inverse, and the random number receiver, the time taken 
for compilation, synthesis, and fitting is about 12 to 15 minutes.  

Software Implementation 
A software implementation of modular exponentiation algorithm, multiplicative inverse, modular 
multiplication, generation of random numbers, and multiplication of large integers was implemented in 
C and Java to verify the correctness of the results obtained. The Montgomery multiplication algorithm 
was also implemented to verify the correctness of the intermediate results during exponentiation. This 
was necessary since the intermediate results carry the additional factor of 2^{n+2} at each stage. 

Design Features 
The highlights of our design features that we implemented were: 

■ Interboard communication between two Nios processors using interrupts. This entailed interrupt 
handling. 

■ Use of peripherals around the Nios core. This facilitated quick prototyping at the design and trial 
stage. 
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■ The most significant advantage that is accrued by modeling the design as an Avalon bus peripheral 
of the Nios processor is that Altera allows control of the input to and the output from the 
peripherals through a device driver that can be written in C language. This fact allows verification 
of the cryptographic algorithm once burnt into the hardware, even after simulation is complete. 

Conclusion 
The entire course of this design was a period of cumulative learning and enrichment of our knowledge 
regarding the Nios processor and the FPGA. The most satisfying part of this project was the multi-board 
architecture implemented to make use of two boards simultaneously and realizing an asynchronous 
system. The use of minimal pins and LEs (as discussed in Part III) to achieve this cryptographic 
algorithm was one of the achievement of this project. Coupled to this was the fact that a hardware 
acceleration was achievable, as was hardware reusability. 
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