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Design Introduction 
Real-world processes generally produce observable outputs, which can be characterized as signals. The 
signals can be discrete in nature (e.g., characters from a finite alphabet, quantized vectors from a 
codebook), or continuous in nature (e.g., speech samples, temperature measurements, music). The 
signal source can be stationary (i.e., its statistical properties do not vary with time), or non-stationary 
(i.e., the signal properties vary over time). The signals can be pure (i.e., coming strictly from a single 
source), or can be corrupted from other signal sources (e.g., noise) or by transmission distortions, 
reverberation, etc.  

A problem of fundamental interest is characterizing such real-world signals in terms of signal models. 
There are several reasons to be interested in applying signal models. First, a signal model can provide 
the basis for a theoretical description of a signal processing system, which processes the signal to 
provide a desired output.  

A second reason why signal models are important is that they are potentially capable of letting us learn 
a great deal about the signal source (that is, the real-world process that produced the signal) without 
having the source available. This property is especially important when the cost of getting signals from 
the actual source is high. In this case, with a good signal model, we can simulate the source and learn as 
much as possible via simulations.  

Finally, signal models are important because they often work extremely well in practice, and enable us 
to realize important practical systems (such as prediction systems, recognition systems, identification 
systems, etc.) in a very efficient manner. There are several possible choices for the type of signal model 
used for characterizing the properties of a given signal. Broadly, one can dichotomize the types of signal 
models into the class of deterministic models and the class of statistical models.  

Deterministic models generally exploit some known specific properties of the signal (e.g., that the signal 
is a sine wave or a sum of exponentials). In these cases, specification of the signal model is generally 
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straightforward; all that is required is to determine (estimate) the values of the signal model parameters 
(e.g., amplitude, frequency, phase of a sine wave, amplitudes and rates of exponentials, etc.).  

The second broad class of signal models is the set of statistical models in which one tries to characterize 
only the statistical properties of the signal. The underlying assumption of the statistical model is that the 
signal is characterized as a parametric random process, and that the parameters of the stochastic process 
can be determined (estimated) in a precise, well-defined manner. The Hidden Markov Model (HMM) 
falls in this second category.  

In simple terms, a HMM is a model used to create another model about which we know nothing except 
its output sequence. The HMM is trained to produce an output that closely matches the available output 
sequence, and can be assumed to model the unknown model with sufficient accuracy.  

Speech recognition systems have been developed for many real-world applications, often using low-cost 
speech recognition software. However high-performance and robust isolated word recognition, 
particularly for digits, is still useful for many applications, such as recognizing telephone numbers for 
use by physically challenged persons. This formed the motivation for taking up this project. 

Efficient implementation of a complete system on a programmable chip (SOPC) got an impetus with the 
advent of high-density FPGAs integrated with high-capacity RAMs and the availability of 
implementation support for soft-core processors such as the Nios® II processor. FPGAs enable the best 
of both worlds to be used gainfully for an application—the microcontroller or RISC processor is 
efficient for performing control and decision-making operations, while the FPGA efficiently performs 
digital signal processing (DSP) operations and other computation intensive tasks.  

We aim to produce an efficient hardware speech recognition system with an FPGA acting as a 
coprocessor that is capable of performing recognition at a much faster rate than software. 
Implementation of systems using an Altera®-based system on a programmable chip enables time-critical 
functions to be implemented on hardware synthesized with VHDL/Verilog HDL code. The soft-core 
Nios II processor that is part of the FPGA can execute the programs, written in a high-level language. 
Custom instructions enable the feasibility of implementing the whole system on an FPGA with better 
partitioning of the software and hardware implementation of the speech recognition system.  

Our project aims at developing a HMM-based speech recognition system with a vocabulary of 10 digits 
(digits zero to nine). We trained the system for three users for all the mentioned digits with a 
recognition accuracy of nearly 100%. Energy and zero crossings-based voice activity detection (VAD) 
was used for segmentation of the input samples and removing background noise. We used linear 
predictive coding (LPC-10) analysis, followed by cepstral analysis for feature vector extraction from 
speech frames. HMM was used for training the speech models and Viterbi decoding for recognition. 
Vector quantization (VQ) was used for reducing the memory requirement. We used direct parameter 
averaging of the HMM parameters during training, which has several advantages over Rabiner’s 
approach, such as a lower data requirement, higher detection accuracy, and less computation 
complexity. 

We implemented the feature extraction, training, and other preprocessing stages of HMM in software 
(C++/MATLAB) in the offline mode and the recognition process, including floating-point 
multiplication operation of the Viterbi decoding process, as custom hardware in hardware 
implementation and as an online process. 

Functional Description 
The aim is to design a system that will recognize an uttered digit from the recorded speech samples 
(recorded as .wav files and converted to text files using MATLAB). The digits have to be from a 
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predetermined vocabulary set for which the system is trained. The design can be split into software and 
hardware partitioning to exploit the facilities present in the Nios II processor. The overall design can be 
divided into two functional parts: training and recognition.  

Training involves iteratively fine-tuning the parameters of the HMMs with digits from the given 
vocabulary set until it converges. The sequence of steps in training are: 

■ Preprocessing 

■ Codebook generation 

■ Generating models for individual digits using a combination of the Forward algorithm, the 
Backward algorithm, and the Baum-Welch algorithm. 

Recognition involves testing the given digit with each of the available digit HMMs, finding the model 
that gives the maximum probability, and concluding that the result corresponds with the digit uttered. 
The sequence of steps in recognition are: 

■ Preprocessing 

■ Finding the best fitting model using maximum likelihood algorithm, the Viterbi decoding algorithm 

Preprocessing  
Preprocessing involves the following steps: 

1. Recording—Record the speech at a sampling frequency of 8 KHz with 16-bit quantization. 

2. VAD—Using the endpoint detection algorithm, the starting and ending points are found. The speech 
is sliced into frames 450 samples in length. The energy and number of zero crossings of each frame 
is found. A threshold energy and zero crossing value is determined based on the computed values, 
and only frames crossing the threshold are considered. This removes most of the unnecessary 
background noise. A small vestige of frames beyond the starting and ending frames are included so 
as not to leave the starting and ending parts of the speech that do not cross the threshold but that 
may prove important in recognition. 

3. Pre-emphasis—The digitized speech signal s(n) is put through a low-order LPF to spectrally flatten 
the signal and to make it less susceptible to finite precision effects later in the signal processing. 
The filter is represented by H (z)=1-az-1   where we have chosen the value of “a” as 0.9375. 

4. Frame blocking—Speech frames are formed with durations of 56.25 ms (N = 450 sample length) 
and with an overlap of 18.75 ms (M=150 sample length) between adjacent frames. The overlapping 
is performed so that the resulting LPC spectral estimates correlate from frame to frame and are 
quite smooth. 

xq(n)=s(Mq+n) n=0 to N-1; q=0 to L-1 where L is the number of frames. 

5. Windowing—Each frame with a Hamming window is windowed to minimize signal discontinuities 
at the beginning and end of the frames. 

x’q(n)=xq(n). w(n) 
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Where  

w(n)=0.54=0.46 cos (2 n/ N-1 ) 

6. Autocorrelation analysis—Perform autocorrelation analysis for each frame and find P+1 (P=10) 
autocorrelation coefficients. 

 N-1-m 

7. rq(m)=      ∑         x’q(n)x’q(n+m)          m=0,1,…..P 

 n=0 

8. The zeroth autocorrelation coefficient is the frame’s energy, which was previously used for VAD. 

9. Perform LPC analysis by employing Levinson and Durbin’s algorithm to convert the 
autocorrelation coefficients to LPC parameter set. 

E(0) =rq(0) 

L-1 

Ki={ rq(i) – {  ∑  αj

(i-1). rq(|i=j|) } }/E(i-1)      1≤i≤P 

j=1 

αi

(i) = ki 

αj

(i) = αj

(i-1) - ki. α(i-j)

(i-1) 

E(i) = (1- ki

2) E(i-1) 

Where αm

10   1≤m≤P are the LPC coefficients. 

10. LPC parameters to cepstral coefficient conversion: The cepstrum coefficients are a more robust and 
reliable feature set than the LPC coefficients. 

c0=ln σ2 where σ is the gain of the LPC model. 

m-1 

cm= αm +    ∑  (k/m) . ck. αm-k     1≤m≤P   

k=1 

m-1 

cm=   ∑  (k/m) . ck. αm-k     P<m≤Q 

k=1 
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11. Parameter weighing—Sensitivity of the lower order cepstral coefficients to overall slope and the 
higher order coefficients to noise has necessitated weighing of the cepstral coefficients by a tapered 
window to minimize these sensitivities. We have used weighing by a band pass filter of the form  

wm=[1+ (Q/2). sin ( m/Q)]       1≤m≤Q 

12. Temporal cepstral derivative—Temporal cepstral derivatives are an improved feature vector for 
forming the speech frames. They can be used with the cepstral derivative in case the cepstral 
coefficients do not give acceptable recognition accuracy. 

Vector Quantization 
A codebook of size 128 is obtained by the VQ of the weighted cepstral coefficients of all reference 
digits, by all users. The advantages of VQ are: 

■ Reduced storage for spectral analysis information 

■ Reduced computation for determining similarity of spectral analysis vectors. 

■ Discrete representation of speech sounds. By associating phonetic label(s) with each codebook 
vector, the process of choosing a best codebook vector to represent a given spectral vector becomes 
equivalent to assigning a phonetic label to each spectral frame of speech. This makes the 
recognition process more efficient. 

One obvious disadvantage of VQ is the reduced resolution in recognition. Assigning a codebook index 
to an input speech vector amounts to quantizing it. This results in quantization error, which increases 
with decrease in codebook size. 

There are two commonly used algorithms, the K-Means algorithm and the Binary Split algorithm. The 
K-Means algorithm describes the way in which a set of L training vectors can be clustered into M (<L) 
codebook vectors with: 

1. Initialization—Arbitrarily choose M vectors as the initial set of code words in the codebook. 

2. Nearest neighbor search—For each training vector, find the code word in the current codebook that 
is closest and assign that vector to the corresponding cell. 

3. Centroid update—Update the codeword in each cell using the centroid of the training vectors 
assigned to that cell. 

4. Iteration—Repeat the above two steps until the average distance falls below a preset threshold. 

The Binary Split algorithm is a more efficient method than the K-Means algorithm because it builds the 
codebook in stages. First, it designs a 1-vector codebook, then uses a splitting technique on the code 
words to initialize the search for a 2-vector codebook, and then continues the splitting process until the 
desired M-vector codebook is received. 

1. Design a 1-vector codebook, which is the centroid of the entire training set and hence needs no 
iteration. 

2. Double the size of the codebook by splitting each current codebook yn according to the rule 

yn

+ = yn(1+e) 
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yn

- = yn(1-e) 

where n varies from 1 to the codebook size and e is the splitting parameter. 

3. Use the K-Means iterative algorithm to obtain the best set of centroids for the split codebook. 

4. Iterate the above two steps until the required codebook size is received. 

Hidden Markov Model 
Recognition is achieved by maximizing the probability of the linguistic string, W, given the acoustic 
evidence, A. For example, choose the linguistic sequence W such that  

P(W’ | A) = max P(W | A) 

                     W 
An HMM is characterized by the following: 

■ N, the number of states in the model. Although the states are hidden, for many practical 
applications there is often some physical significance attached to the states or to sets of states of the 
model. The states are interconnected in such a way that any state can be reached from any other 
state (e.g., an ergodic model); however other possible interconnections of states are often used by 
restricting the transitions. We denote the individual states as S = {S1,S2,… SN}, and the state at time 
t as qt. 

■ M, the number of distinct observation symbols per state, i.e., the discrete alphabet size. The 
observation symbols correspond to the physical output of the system being modeled. We denote the 
individual symbols as V={V1,V2,….VM} 

■ The state transition probability distribution A = {aij} where aij=P[qt+1=Sj | qt=Si]    1≤i,j≤N 

■ The observation symbol probability distribution in state j, B = {bj(k)},  

where bj(k) = P[ vk at t | qt = Sj ]   1≤j≤N,  1≤k≤M 

■ The initial state distribution   = { i} where  i=P[q1=Si]  1≤i≤N 

Given appropriate values of N, M, A, B, and  , the HMM can be used as a generator to give an 
observation sequence O=O1 O2 O3 …OT  (where each observation Ot, is one of the symbols from V, and 
T is the number of observations in the sequence). 

Three Basic Problems for HMM 
Given the form of HMM, there are three basic problems of interest that must be solved for the model to 
be useful in real-world applications. These problems are as follows: 

■ Problem 1, the scoring problem—Given the observation sequence O = { O1 , O2 , . . . OT } and a 
model λ = (A, B, π ), how to efficiently compute P(O/A), the probability of the observation 
sequence, given the model? The algorithm normally used to solve this is the Forward-Backward 
algorithm  

■ Problem 2, the matching problem—Given the observation sequence O = { O1 , O2 , . . . OT }, and 
the model λ, how to choose a corresponding state sequence Q = q1 q2 . . . qT which is optimal in 
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some meaningful sense (i.e., best “explains” the observations)? The algorithm normally used to 
solve this is the Viterbi algorithm  

 
■ Problem 3, the training problem—How to adjust the model parameters λ = (A, B, π ) to maximize 

P(O/A)? The algorithm normally used to solve this is the Baum-Welch Re-Estimation Procedures. 

Solution to Problem 1 
One of the most straightforward and highly inefficient methods to solve this problem is to enumerate all 
the possible state sequences of length T and finding the sum over all such state sequences to find the 
required probability. The forward-backward is a more efficient algorithm, which can be explained as 
follows: 

Consider the forward variable αt(i) defined as 

αt(i)=P[O1, O2, O3,  Ot, qt=Si | λ ] 

That is, the probability of the partial observation sequence, O1, O2. . . Ot and state Si at time t, given the 
model λ. We can solve for αt(i) inductively, as follows: 

1. Initialization: 

α1(i)= πi. bi(O1) 1≤i≤N 

2. Induction: 

       N 

αt+1(j)=[ ∑ αt(i).aij ] bj(Ot+1)  1≤t≤T-1; 1≤j≤N  

      i=1 

3. Termination: 

          N 

P(O| λ)=  ∑ αT(i) 

         i=1 

In a similar manner we can solve for the backward variable βt(i) iteratively as follows: 

1. Initialization: 

βT(i)= 1  1≤i≤N 
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2. Induction: 

              N 

βt(i)=    ∑ βt+1(j).aij. bj(Ot+1)    T-1≥t≥1; 1≤i≤N   

       j=1 

Solution to Problem 2 
Unlike Problem 1, for which an exact solution can be given, there are several possible ways of solving 
Problem 2, namely finding the “optimal” state sequence associated with the given observation sequence. 
The difficulty lies with the definition of the optimal state sequence; i.e., there are several possible 
optimality criteria. To implement this solution to Problem 2, we define the variable 

γt(i)=P(qt=Si | O, λ) 

γt(i) = αt(i). βt(i) / P(O | λ)  

                        N 

=   αt(i). βt(i) / ∑ αt(i). βt(i) 

                       i=1 

Because αt(i) accounts for the partial observation sequence O1,O2….Ot, and state Si at t , while βt(i) 
accounts for the remainder of the observation sequence Ot+1, Ot+2, …OT given state Si at t. 

Viterbi Algorithm 
To find the single best state sequence, Q = {q1, q2, . . . qT }, for the given observation sequence 
 O = (O1, O2, … OT}, we need to define the quantity 

δt(i) =       max             P[q1,q2,…qt = i, O1, O2 . . . Ot/λ]  

q1,q2,…..qt 

That is, δt(i) is the best score (highest probability) along a single path, at time t, which accounts for the 
first t observations and ends in state Si. By induction we have 

δt+1(j) = [max δt(i) aij ] . bj(Ot+1). 

To retrieve the state sequence, we need to keep track of the argument that maximized, for each t and j. 
We do this via the array ψt(j). The complete procedure for finding the best state sequence can now be 
stated as follows: 

1. Initialization: 

 δ1(i)= πi bi(O1), 1 ≤  i  ≤ N  

 ψ1(i)=0 
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2. Recursion: 

 δt(j)= max [δt-1(i)aij ] bj(Ot) ,     2 ≤ t ≤ T ;        1 ≤ j ≤ N 

 ψt(j)= argmax  [δt-l(i)aij],   2 ≤ t ≤ T ; 1 ≤ i≤ N ;    1≤ j ≤ N 

3. Termination: 

 P* = max    [δt(i)] 

 1≤i≤N 

 qT* =  argmax [δt(i)] 

 1≤i≤N 

4. Path (state sequence) backtracking: 

 qt*= ψt+1(qt+l*), t = T - 1, T - 2, .. 1. 

The lattice (or trellis) structure given in Figure 1 efficiently implements the computation of the Viterbi 
procedure. 

Figure 1. Lattice Structure 

. . .

 

Solution to Problem 3 
The third, and by far the most difficult, problem of HMMs is to determine a method to adjust the model 
parameters (A, B, π) to maximize the probability of the observation sequence given the model. There is 
no known way to analytically solve for the model, which maximizes the probability of the observation 
sequence. In fact, given any finite observation sequence as training data, there is no optimal way of 
estimating the model parameters. We can, however, choose λ = (A, B, π) such that P(O | λ) is locally 
maximized using an iterative procedure such as the Baum-Welch method. 

To describe the procedure for re-estimation (iterative update and improvement) of HMM parameters, 
we first define ξt(i,j), the probability of being in state Si at time t, and state Sj, at time t+1, given the 
model and the observation sequence,  
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ξt(i,j)= P(qt=Si,qt+1=Sj | O, λ). 

We can write ξt(i,j) in the form  

ξt(i,j) = P(qt=Si,qt+1=Sj,O | λ)/ P(O| λ) 

    = αt(i) aij bi(Ot+1) βt+1(j)/ P(O| λ) 

 

                                                      N        N 

          = αt(i) aij bi(Ot+1) βt+1(j)/ [   ∑       ∑    αt(i) aij bi(Ot+1) βt+1(j)] 

                                                     i=1     j=1 

We have previously defined γt(i) as the probability of being in state Si at time t, given the observation 
sequence and the model; hence we can relate γt(i) to ξt(i,j) by summing over j, giving 

                         N   

             γt(i)=   ∑  ξt(i,j) 

                        j=1 

If we sum γt(i) over the time index t, we get a quantity that can be interpreted as the expected (over 
time) number of times that state Si is visited, or equivalently, the expected number of transitions made 
from state Si (if we exclude the time slot t = T from the summation). Similarly, summation of ξt(i,j) over 
t (from t = 1 to t = T - 1) can be interpreted as the expected number of transitions from state Si to state 
Sj. That is,  

              T-1   

 ∑ γt(i) = expected number of transitions from Si 

              t=1 

               T-1 

 ∑  ξt( i , j ) = expected number of transitions from Si  to Sj in O. 

               t=1 

Using the above formulas (and the concept of counting event occurrences), the method for re-estimation 
of the parameters of an HMM is as follows: 

Π’j = expected frequency (number of times) in state Si at time (t = 1) = γ1(i) 

a’ij = expected number of transitions from state Si to state Sj / expected number of transitions from state 
Si 
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          T-1             T-1 

     =    ∑ ξt(i,j) /    ∑ γt(i) 

          t=1             t=1     

b’j(k)= expected number of times in state Sj and observing symbol vk / expected number of times in state 
Sj 

            T                           T 

       =  ∑ γt(i)                 /  ∑ γt(i)        

            t=1                       t=1 

such that Ot=vk 

Based on the above procedure, we iteratively use λ’ in place of λ and repeat the re-estimation 
calculation, to improve the probability of O being observed from the model until some limiting point is 
reached. The result of this re-estimation procedure is a maximum likelihood estimate of the HMM. We 
use a terminating condition of λ’ not varying by more than a certain fraction (say 10%) from λ. 

Training  
Training the HMM for each digit in the vocabulary is done using the Baum-Welch algorithm. The 
codebook index will be the observation vector for the HMM. 

Recognition 
Recognition of the uttered digit is found by employing the maximum likelihood estimate such as Viterbi 
decoding algorithm. This implies the model with the maximum probability will be the uttered digit. 

Performance Parameters 
This section describes the performance parameters for the project. 

Recognition Accuracy  
100% recognition accuracy for a three–user dependent system implemented with input from the trained 
vocabulary alone. 

Design Implementation Times 
Total design run time for recognition: 

■ 96.53 s (full software implementation) 

■ 93.936 s (with floating-point multiplication operation of the Viterbi decoding process block 
implemented as custom block and the rest as software) 

Implementation time for the recognition process (excluding preprocessing step) and finding the 
probability for the input digit for all models using the Viterbi block in software: 5.48 s. 
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Implementation time for a floating-point multiplication operation of the Viterbi decoding process block 
implemented as a custom block: 0.5 ms (Refer to Snapshot 4 in the Appendix). The Viterbi block uses 
4810 such multiplications, so the estimated run time of the whole Viterbi process using the custom 
block is 2.405 sec. 

Implementation time for a floating-point multiplication operation of the Viterbi decoding process block 
implemented as software: 5.7 ms (Refer to Snapshot 5 in the Appendix). 

Speed-up factor achieved by using custom block: 11.4 times. 

Design Metrics 
Memory requirement—M4Ks (Refer to Snapshot 1 in the Appendix): 

■ Whole design: 9 out of 20 

■ Custom block alone: 2 out of 9 

Logic area used: 4,233/5,980 logic elements (LEs).  

Design Architecture 
Figure 2 shows the software block diagram. 

Figure 2. Software Design Block Diagram of Front-End Feature Analysis for HMM 
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LPC Feature Analysis 
Observation vectors are obtained from speech samples by performing VQ of LPC coefficients. The 
overall system is a block processing model in which a frame of NA   samples is processed and a vector 
for each frame is computed.  
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The steps in the processing are as follows: 

1. Pre-Emphasis—A first-order digital network processes the digitized speech signal to spectrally 
flatten the signal. 

2. Blocking into Frames—Sections of NA consecutive speech samples are used as a single frame with 
the overlap between adjacent frames being MA. 

3. Frame Windowing—Each frame is multiplied by an NA sample hamming window w(n) to  
minimize the adverse effects of  chopping an NA-sample section out of the running speech signal.  

4. Autocorrelation Analysis—Each windowed frame of speech samples is autocorrelated with a lag of 
10. 

5. LPC/Cepstral Analysis—The LPC coefficients (Q) of order 10 are computed from the 
autocorrelation coefficients using Durbin’s recursion method, and LPC derived cepstral vectors are 
computed.  

6. Cepstral Weighting—The Q-coefficient cepstral vector Cl(m) at time frame ‘l’ is weighted by a 
window WC(m) of the  form. 

WC(m)= 1+ (Q/2) sin(Πm/Q),    1≤ m ≤ Q 

to yield the weighted cepstral coefficient as 

C’l(m)=Cl(m) . WC(m) 

7. VQ—For a HMM with discrete observation symbol density, VQ is required to map each continuous 
observation vector into a discrete codebook index. Once the codebook of vectors has been obtained, 
the mapping between continuous vectors and codebook indices becomes a simple nearest neighbor 
computation, that is, the continuous vector is assigned the index of the nearest (in a spectral 
distance sense) codebook vector. Thus, the major issue in VQ is the design of an appropriate 
codebook for quantization. We have taken codebook size as 128.  

Figure 3 shows the hardware design block diagram. 
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Figure 3. Hardware Design Block Diagram 
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The Hidden Markov Model (HMM) 
Recognition is achieved by maximizing the probability of the digit W, given the acoustic evidence, A, 
that is, choose the digit W such that  

P(Ŵ|A)=max P(W|A) 

    w 

Elements of a Discrete Hidden Markov Model 
N is the number of states in the model  

M is the number of distinct observation symbols per state. We denote the individual symbols as 

 

A = {aij}, the state transition probability distribution where  

 

qt is the state of the HMM at time t 

B is the observation symbol probability distribution in state j, B = {bj(k)}, where 
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π is the initial state distribution  π ={ πi } where  

 
 

Given appropriate values of N, M, A, B, and π, the HMM can be used as a generator to give an 
observation sequence 

 

where each observation Ot is one of the symbols from V, and T is the number of observations in the 
sequence. A complete specification of an HMM requires specification of two model parameters (N and 
M), specification of observation symbols, and the specification of the three probability measures A, B, 
and π. 

Design Methodology 
We used an Altera UP3 board using a Cyclone™ EP1C6Q240C8 FPGA with a Nios II soft-core CPU. 
The board has 128 Mbytes of SRAM and 8 Mbytes of SDRAM, and we used both memories for our 
design. The SDRAM is particularly important because the SRAM alone cannot handle our data and 
program (Refer to Snapshot 6 in the Appendix). We used a PLL for clock input to the SDRAM for clock 
skew minimization. The PLL was generated using the Altera MegaWizard® Plug-In Manager. 

Design Flow in Training 
First, the input speech samples were preprocessed to extract the feature vectors. Then the codebook was 
built, serving as the reference code space with which we compare the input feature vectors. We have 
worked with both K-Means and Binary split algorithms and we decided to use the Binary split algorithm 
in our final design since it is more efficient. Then for training the HMMs, the same weighted cepstrum 
matrices for various users and digits are compared with the codebook, and their corresponding nearest 
codebook vector indices are sent to the Baum-Welch algorithm for training a input index sequence 
model. The Baum-Welch model is an iterative procedure and we have kept the iteration limit as 20. We 
now have three models for each digit corresponding to the three users in our vocabulary set, and we 
average the A, B, and π matrices over the users to generalize it. For the design to recognize the same 
digit uttered by a user for whom the design has not been trained, the zero probabilities in the B matrix 
have been replaced by a low value so that on recognition it gives a non-zero value. This overcomes the 
problem of less training data to some extent. Training is done in software and we have included the 
speech samples required for the software design as arrays. See Figure 4.  
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Figure 4. Training 

Preprocessing

  Appending the weighted cepstrum 
for all digits in vocabulary

Weighted Cepstrum Coefficients

Speech 
Samples 

  Compressing the vector space by 
vector quantization

  Finding the index of the nearest 
code book (in an Euclidian sense) 
vector for each frame (vector) of the 
input speech

Training the HMM for each digit for 
each user and averaging the para 
meters viz A, B, p over all the users

Trained Models for Each Digit
 

Design Flow for Recognition 
The input speech sample is preprocessed to get extract the feature vector. Then the index of the nearest 
codebook vector for each frame is sent to all the digit models out of which the model giving the 
maximum probability is chosen. Viterbi is computation intensive, so the processing steps in it have been 
ported to the FPGA for better speed of execution. After the soft-core processor has completed all the 
preprocessing steps, the required data is passed to the hardware to do the rest of the processing. Data is 
through the dataa and datab ports and the prefix port used for the control operations. (Refer Snapshots 
2a and b in the Appendix.) See Figure 5. 



Nios II Embedded Processor Design Contest—Outstanding Designs 2005 

 

152   

Figure 5. Data Processing 

Preprocessing
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Implementation Summary 
Number of states of the HMMs, N: 10 

Codebook size, M: 128 

Order of LPC, P: 10 

Number of weighted cepstrum coefficients per frame vector, Q: 11 

Number of digits: 0 – 9 

Speech sampling rate: 8 KHz, PCM encoded 

End point detection (VAD): short-time energy-based thresholding 

Feature analysis: LPC analysis 

HMM training for multiple observation sequence: ensemble training (direct parameter averaging) 

Design Features 
Performance comparison of hardware and full software implementation could be done with the help of 
the facility to measure the running time of the code (Refer to comparison Snapshots 4 and 5 in the 
Appendix). 

The HMM is rich with mathematical structure as the training of the model uses the Baum-Welch 
algorithm and the recognition decoding employs the Viterbi algorithm. Hence, these algorithms can be 
efficiently implemented using FPGAs. 
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The Nios II processor enables the optimum sharing of hardware and software implementations by 
executing more computation intensive tasks in hardware and the remaining algorithm blocks in 
software. 

Implementation issues include:  

■ The Viterbi design was too big to be implemented as such in the Cyclone device. So we decided to 
implement only the main processing part (i.e., the floating point multiplication) in hardware. We 
included the synthesis report of the whole Viterbi block alone using the LeonardoSpectrum™ tool 
using another APEX™ FPGA (Refer to Snapshot 3 in the Appendix). 

■ Scaling. As T becomes sufficiently large, the range of the multiplication factors starts to reach 
exponentially to zero. The basic scaling procedure is used is to multiply these factors by a scaling 
coefficient so that they do not exceed the precision range of the machine. Over and above this, 
since all the values in the Baum-Welch and Viterbi algorithms are probabilities, maintaining is of 
utmost importance for proper results. Therefore, we have used a floating-point data format in the C 
program with a structure (mantissa and exponent) and used a normalization function, which 
removes the leading zeros and accordingly adjusts the exponent whenever it is called.  

■ Initial Estimates of HMM Parameters. There is no simple or straightforward answer to the above 
question. Either random (subject to the stochastic and the nonzero value constraints) or uniform 
initial estimates of the π and A parameters have to be used. However, for the B parameters, good 
initial estimates are helpful in the discrete symbol case. We have used uniform initial values for A 
and B and random values for π. 

■ Insufficient Training Data. The observation sequence used for training is finite. Thus there is often 
an insufficient number of occurrences of different model events (e.g., symbol occurrences within 
states) to give good estimates of the model parameters. One solution to this problem is to increase 
the size of the training observation set, which is often impractical. A second possible solution is to 
reduce the size of the model (e.g., number of states, number of symbols per state, etc) at the 
expense of the recognition rate. For the design to recognize a digit in the vocabulary uttered by a 
user for whom the design has not been trained, the zero probabilities in B matrix have been 
replaced by a low value so that on recognition it gives a non-zero value. This implementation 
overcomes the problem of less training data to some extent. 

Conclusion 
We learned that the Nios II processor is powerful enough to implement a full speech recognition 
process. Its memory and logic capabilities enabled us to implement the design. We implemented the 
whole design in C++ in a PC environment to check the functionality. We then ported it to the FPGA 
environment. That gave us a good knowledge of the issues involved in porting a software code to the 
SoC environment. Finally, we learnt how to include custom block in a design, how to communicate with 
it from the soft-core processor, what the problems are that may crop up in such a process, and how to 
solve them. 

Probable Future Improvements 
■ Implementing floating point vector dot product as custom block in the short term. 

■ Optimizing the Viterbi part so that it can be fitted into the Cyclone device. 

■ Implementing other computation intensive tasks in the design like LPC processing in hardware to 
improve recognition time. 
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■ Using Bakis model, which is claimed to model speech signals better. 

■ Using flash memory for using file read/write functions in the soft-core processor itself. 

■ Accessing SDRAM from software and hardware to pass large data, which is our requirement.  

Results 
The hardware and software results were verified and were found to match. The process of 
software/hardware co-design using SOPC is much different than conventional methods such as using 
microprocessor-based software routines alone or ASIC/FPGA-based full hardware implementation 
alone. It helped us to achieve the best of both worlds. The ability to include our hardware as a custom 
design in the FPGA and calling it from the software using custom instructions provided added flexibility 
to our design. We identified the computation intensive blocks in the design and were able to port it to the 
hardware for better speed. The soft IP cores helped us speed up our design time. We learned to pass data 
from the soft core to the hard core processor and tackling the issues in the process helped us to gain 
better understanding of the Nios II processor. 
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Appendix: Implementation Snapshots 
Snapshot 1. Fitter Summary for Custom Block  
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Snapshot 2a. Recognition Process for Digit 7 Uttered by User 1 as Input  
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Snapshot 2b. Recognition Process for Digit 7 Uttered by User 1 as Input 

 

Snapshot 3. Synthesis Report of Whole Viterbi Block Implemented in 
EP20K1000EFC896 Device 

Info: Attempting to checkout a license to run as LeonardoSpectrum Level 1 Altera 
Info: License passed 
Session history will be logged to file 'C:/Exemplar/LeoSpec/v19991j/bin/win32/exemplar.his' 
Info, Working Directory is now 'C:\Exemplar\LeoSpec\v19991j\bin\win32' 
->set _xmp_enable_renoir FALSE 
FALSE 
Info: system variable EXEMPLAR set to "C:\Exemplar\LeoSpec\v19991j" 
Info: Loading Exemplar Blocks file: C:\Exemplar\LeoSpec\v19991j/data/xmplrblks.ini 
Messages will be logged to file 'C:/Exemplar/LeoSpec/v19991j/bin/win32/exemplar.log'... 
LeonardoSpectrum Level 1 Altera - v1999.1j (build 6.108, compiled Apr  6 2000 at 12:57:38) 
Copyright 1990-1999 Exemplar Logic, Inc.  All rights reserved. 
 
-- 
-- Welcome to LeonardoSpectrum Level 1 Altera 
-- Run By ecad@VLSI-33 
-- Run Started On Fri Sep 23 12:13:10 India Standard Time 2005 
-- 
No constraint for register2register 
No constraint for input2register 
No constraint for input2output 
No constraint for register2output 
->set register2register 1073741824.0 
1073741824.0 
->set input2register 1073741824.0 
1073741824.0 
->set register2output 1073741824.0 
1073741824.0 
->set input2output 1073741824.0 
1073741824.0 
->_gc_read_init 
->_gc_run_init 
->set input_file_list { "D:/nios_modelsim/viterbi_ver4.v" } 
 "D:/nios_modelsim/viterbi_ver4.v"  
->set part EP20K1000EFC896 
EP20K1000EFC896 
->set process 1 
1 
->set flex_use_cascades TRUE 
TRUE 
->set chip TRUE 



Nios II Embedded Processor Design Contest—Outstanding Designs 2005 

 

158   

->set macro FALSE 
FALSE 
->set area TRUE 
->set delay FALSE 
FALSE 
->set report brief 
brief 
->set hierarchy_auto TRUE 
TRUE 
->set output_file "C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf" 
C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf 
->set novendor_constraint_file FALSE 
FALSE 
->set target apex20e 
apex20e 
->_gc_read 
-- Reading target technology apex20e 
Reading library file `C:\Exemplar\LeoSpec\v19991j\lib\apex20e.syn`... 
Library version = 1.6 
Delays assume: Process=1  
-- read -tech apex20e { "D:/nios_modelsim/viterbi_ver4.v" } 
-- Reading file 'D:/nios_modelsim/viterbi_ver4.v'... 
-- Loading module viterbi_ver4 
-- Compiling root module 'viterbi_ver4' 
"D:/nios_modelsim/viterbi_ver4.v",line 92: Info, Enumerated type _STATE_NAME_ with 28 elements encoded as onehot. 
Encodings for _STATE_NAME_ values 
        value    _STATE_NAME_[27-0] 
=================================== 
       _STATE_0  ---------------------------1 
       _STATE_1  --------------------------1- 
       _STATE_2  -------------------------1-- 
       _STATE_3  ------------------------1--- 
       _STATE_4  -----------------------1---- 
       _STATE_5  ----------------------1----- 
       _STATE_6  ---------------------1------ 
       _STATE_7  --------------------1------- 
       _STATE_8  -------------------1-------- 
       _STATE_9  ------------------1--------- 
      _STATE_10  -----------------1---------- 
      _STATE_11  ----------------1----------- 
      _STATE_12  ---------------1------------ 
      _STATE_13  --------------1------------- 
      _STATE_14  -------------1-------------- 
      _STATE_15  ------------1--------------- 
      _STATE_16  -----------1---------------- 
      _STATE_17  ----------1----------------- 
      _STATE_18  ---------1------------------ 
      _STATE_19  --------1------------------- 
      _STATE_20  -------1-------------------- 
      _STATE_21  ------1--------------------- 
      _STATE_22  -----1---------------------- 
      _STATE_23  ----1----------------------- 
      _STATE_24  ---1------------------------ 
      _STATE_25  --1------------------------- 
      _STATE_26  -1-------------------------- 
      _STATE_27  1--------------------------- 
 
"D:/nios_modelsim/viterbi_ver4.v",line 164: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 215: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 248: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 307: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 285: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 307: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 343: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 378: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 440: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 417: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 440: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 417: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 440: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 487: Error, static loops are not allowed in implicit state machines. 
No constraint for register2register 
No constraint for input2register 
No constraint for input2output 
No constraint for register2output 
->_gc_read_init 
->_gc_run_init 
->set input_file_list { "D:/nios_modelsim/viterbi_ver4.v" } 
 "D:/nios_modelsim/viterbi_ver4.v"  
->set chip TRUE 
->set macro FALSE 
FALSE 
->set delay FALSE 
FALSE 
->set hierarchy_auto TRUE 
TRUE 
->set output_file "C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf" 
C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf 
->set sdf_write_flat_netlist TRUE 
TRUE 
->set target apex20e 
apex20e 
->_gc_read 
-- Reading target technology apex20e 
Reading library file `C:\Exemplar\LeoSpec\v19991j\lib\apex20e.syn`... 
Library version = 1.6 
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Delays assume: Process=1  
-- read -tech apex20e { "D:/nios_modelsim/viterbi_ver4.v" } 
-- Reading file 'D:/nios_modelsim/viterbi_ver4.v'... 
-- Loading module viterbi_ver4 
-- Compiling root module 'viterbi_ver4' 
"D:/nios_modelsim/viterbi_ver4.v",line 92: Info, Enumerated type _STATE_NAME_ with 28 elements encoded as onehot. 
Encodings for _STATE_NAME_ values 
        value    _STATE_NAME_[27-0] 
=================================== 
       _STATE_0  ---------------------------1 
       _STATE_1  --------------------------1- 
       _STATE_2  -------------------------1-- 
       _STATE_3  ------------------------1--- 
       _STATE_4  -----------------------1---- 
       _STATE_5  ----------------------1----- 
       _STATE_6  ---------------------1------ 
       _STATE_7  --------------------1------- 
       _STATE_8  -------------------1-------- 
       _STATE_9  ------------------1--------- 
      _STATE_10  -----------------1---------- 
      _STATE_11  ----------------1----------- 
      _STATE_12  ---------------1------------ 
      _STATE_13  --------------1------------- 
      _STATE_14  -------------1-------------- 
      _STATE_15  ------------1--------------- 
      _STATE_16  -----------1---------------- 
      _STATE_17  ----------1----------------- 
      _STATE_18  ---------1------------------ 
      _STATE_19  --------1------------------- 
      _STATE_20  -------1-------------------- 
      _STATE_21  ------1--------------------- 
      _STATE_22  -----1---------------------- 
      _STATE_23  ----1----------------------- 
      _STATE_24  ---1------------------------ 
      _STATE_25  --1------------------------- 
      _STATE_26  -1-------------------------- 
      _STATE_27  1--------------------------- 
 
"D:/nios_modelsim/viterbi_ver4.v",line 216: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 249: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 308: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 286: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 308: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 344: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 379: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 441: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 418: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 441: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 418: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 441: Error, static loops are not allowed in implicit state machines. 
"D:/nios_modelsim/viterbi_ver4.v",line 488: Error, static loops are not allowed in implicit state machines. 
No constraint for register2register 
No constraint for input2register 
No constraint for input2output 
No constraint for register2output 
->_gc_read_init 
->_gc_run_init 
->set input_file_list { "D:/nios_modelsim/viterbi_ver4.v" } 
 "D:/nios_modelsim/viterbi_ver4.v"  
->set chip TRUE 
->set macro FALSE 
FALSE 
->set delay FALSE 
FALSE 
->set hierarchy_auto TRUE 
TRUE 
->set output_file "C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf" 
C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf 
->set target apex20e 
apex20e 
->_gc_read 
-- Reading target technology apex20e 
Reading library file `C:\Exemplar\LeoSpec\v19991j\lib\apex20e.syn`... 
Library version = 1.6 
Delays assume: Process=1  
-- read -tech apex20e { "D:/nios_modelsim/viterbi_ver4.v" } 
-- Reading file 'D:/nios_modelsim/viterbi_ver4.v'... 
"D:/nios_modelsim/viterbi_ver4.v", line 526: Warning, system task enable ignored for synthesis 
-- Loading module viterbi_ver4 
-- Compiling root module 'viterbi_ver4' 
"D:/nios_modelsim/viterbi_ver4.v",line 93: Info, Enumerated type _STATE_NAME_ with 28 elements encoded as onehot. 
Encodings for _STATE_NAME_ values 
        value    _STATE_NAME_[27-0] 
=================================== 
       _STATE_0  ---------------------------1 
       _STATE_1  --------------------------1- 
       _STATE_2  -------------------------1-- 
       _STATE_3  ------------------------1--- 
       _STATE_4  -----------------------1---- 
       _STATE_5  ----------------------1----- 
       _STATE_6  ---------------------1------ 
       _STATE_7  --------------------1------- 
       _STATE_8  -------------------1-------- 
       _STATE_9  ------------------1--------- 
      _STATE_10  -----------------1---------- 
      _STATE_11  ----------------1----------- 
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      _STATE_12  ---------------1------------ 
      _STATE_13  --------------1------------- 
      _STATE_14  -------------1-------------- 
      _STATE_15  ------------1--------------- 
      _STATE_16  -----------1---------------- 
      _STATE_17  ----------1----------------- 
      _STATE_18  ---------1------------------ 
      _STATE_19  --------1------------------- 
      _STATE_20  -------1-------------------- 
      _STATE_21  ------1--------------------- 
      _STATE_22  -----1---------------------- 
      _STATE_23  ----1----------------------- 
      _STATE_24  ---1------------------------ 
      _STATE_25  --1------------------------- 
      _STATE_26  -1-------------------------- 
      _STATE_27  1--------------------------- 
 
"D:/nios_modelsim/viterbi_ver4.v", line 39:Info, D-Flipflop reg_si(237)(8) is unused, optimizing... 
"D:/nios_modelsim/viterbi_ver4.v", line 39:Info, D-Flipflop reg_si(238)(8) is unused, optimizing... 
"D:/nios_modelsim/viterbi_ver4.v", line 39:Info, D-Flipflop reg_si(239)(8) is unused, optimizing... 
Info: Finished reading design 
->_gc_run 
-- Run Started On Fri Sep 23 13:24:10 India Standard Time 2005 
-- 
-- optimize -target apex20e -effort quick -chip -area -hierarchy=auto 
Using default wire table: apex20e_default 
Warning, View .work.viterbi_ver4.INTERFACE needs partitioning, you may want to optimize this block in "auto 
dissolve" hierarchy mode... 
Warning, View .work.viterbi_ver4.INTERFACE needs partitioning, you may want to optimize this block in "auto 
dissolve" hierarchy mode... 
Warning, View .work.cx0.partition_vx0 needs partitioning, you may want to optimize this block in "auto dissolve" 
hierarchy mode... 
-- Start optimization for design .work.cx2.partition_vx0 
Using default wire table: apex20e_default 
              est est                                  
      Pass    LCs Delay DFFs TRIs  PIs POs    --CPU-- 
                                                min:sec 
      1       6961    106 1809    0  810 688      07:07  
-- Start optimization for design .work.cx0.partition_vx0 
Using default wire table: apex20e_default 
              est est                                  
      Pass    LCs Delay DFFs TRIs  PIs POs    --CPU-- 
                                                min:sec 
      1       8351    116 2411    0  467 545      07:43  
-- Start optimization for design .work.cx1.partition_vx0 
Using default wire table: apex20e_default 
              est est                                  
      Pass    LCs Delay DFFs TRIs  PIs POs    --CPU-- 
                                                min:sec 
      1       6087     73 1472    0  606 331      01:56  
-- Start optimization for design .work.viterbi_ver4.INTERFACE 
Using default wire table: apex20e_default 
              est est                                  
      Pass    LCs Delay DFFs TRIs  PIs POs    --CPU-- 
                                                min:sec 
      1       7435     58 1767    0    2  18      03:24  
Using default wire table: apex20e_default 
-- Start timing optimization for design .work.viterbi_ver4.INTERFACE 
No critical paths to optimize at this level 
 
******************************************************* 
 
Cell: viterbi_ver4    View: INTERFACE    Library: work 
 
******************************************************* 
 
 Number of ports :                      20 
 Number of nets :                    31206 
 Number of instances :               29214 
 Number of references to this view:     0 
 
Total accumulated area:  
 Number of GND:                         4 
 Number of I/Os:                        20 
 Number of LCs:                     28938 
 Number of Memory Bits:              7680 
 Number of VCC:                         1 
 
*********************************************** 
Device Utilization for EP20K1000EFC896 
*********************************************** 
Resource                Used    Avail   Utilization 
----------------------------------------------- 
I/Os                     20      896       2.23% 
LCs                     28938   38400    75.36% 
Memory Bits             7680    540672    1.42% 
 
----------------------------------------------- 
                        Clock Frequency Report 
 
 Clock                : Frequency 
      ------------------------------------ 
 
 clk                  : 12.1 MHz 
 
                        Critical Path Report 
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Critical path #1, (unconstrained path) 
NAME                                                        GATE              ARRIVAL              LOAD 
------------------------------------------------------------------------------------------------------- 
clock information not specified 
delay thru clock network                                                      0.00 (ideal) 
 
 
reg_i5(7)/regout                                            apex20_lcell_normal  0.00  2.30 up             1.45 
modgen_add_6752_ix86/combout                                apex20_lcell_arithmetic  4.96  7.25 up             2.05 
modgen_mux_6996_ix304/cascout                               apex20_lcell_normal  2.01  9.26 up             1.22 
modgen_mux_6996_ix306/combout                               apex20_lcell_normal  0.53  9.79 up             1.22 
modgen_mux_6996_ix310/cascout                               apex20_lcell_normal  2.04  11.83 up             1.22 
modgen_mux_6996_ix312/combout                               apex20_lcell_normal  0.53  12.36 up             1.22 
ix1500353/cascout                                           apex20_lcell_normal  2.01  14.36 up             1.22 
ix1500226/combout                                           apex20_lcell_normal  0.53  14.89 up             1.22 
ix1415575/Y                                                 NOT         1.49  16.38 up             1.22 
modgen_mux_6996_ix730/combout                               apex20_lcell_normal  3.10  19.48 up             1.55 
modgen_gt_7005_ix39/combout                                 apex20_lcell_arithmetic  4.96  24.43 up             2.05 
ix1507344/combout                                           apex20_lcell_normal  3.39  27.82 up             1.64 
ix6362/Y                                                    NOT         4.20  32.02 up             2.05 
ix1504380/combout                                           apex20_lcell_normal  2.18  34.21 up             1.22 
modgen_mux_7532_ix316/cascout                               apex20_lcell_normal  1.98  36.19 up             1.22 
modgen_mux_7532_ix318/combout                               apex20_lcell_normal  0.53  36.71 up             1.22 
modgen_mux_7532_ix342/combout                               apex20_lcell_normal  2.18  38.90 up             1.22 
ix1504445/cascout                                           apex20_lcell_normal  1.98  40.88 up             1.22 
ix1503646/combout                                           apex20_lcell_normal  0.53  41.41 up             1.22 
ix15950/Y                                                   NOT         1.49  42.90 up             1.22 
modgen_mux_7532_ix730/combout                               apex20_lcell_normal  3.10  45.99 up             1.55 
modgen_gt_7522_ix23/cout                                    apex20_lcell_arithmetic  2.01  48.00 up             1.22 
modgen_gt_7522_ix25/cout                                    apex20_lcell_arithmetic  0.09  48.09 up             1.22 
modgen_gt_7522_ix27/cout                                    apex20_lcell_arithmetic  0.09  48.18 up             1.22 
modgen_gt_7522_ix29/cout                                    apex20_lcell_arithmetic  0.09  48.27 up             1.22 
modgen_gt_7522_ix31/cout                                    apex20_lcell_arithmetic  0.09  48.35 up             1.22 
modgen_gt_7522_ix33/cout                                    apex20_lcell_arithmetic  0.09  48.44 up             1.22 
modgen_gt_7522_ix35/cout                                    apex20_lcell_arithmetic  0.09  48.53 up             1.22 
modgen_gt_7522_ix37/cout                                    apex20_lcell_arithmetic  0.09  48.62 up             1.22 
modgen_gt_7522_ix39/combout                                 apex20_lcell_arithmetic  0.53  49.15 up             1.90 
ix1507591/combout                                           apex20_lcell_normal  4.96  54.11 up             2.05 
ix1507333/combout                                           apex20_lcell_normal  4.90  59.00 up             2.05 
ix1501713/combout                                           apex20_lcell_normal  3.70  62.70 up             1.73 
ix1502628/combout                                           apex20_lcell_normal  2.21  64.91 up             1.22 
ix1503203/combout                                           apex20_lcell_normal  2.16  67.07 up             1.22 
ix1507603/combout                                           apex20_lcell_normal  2.47  69.53 up             1.34 
ix1507602/combout                                           apex20_lcell_normal  3.10  72.63 up             1.55 
ix1502721/combout                                           apex20_lcell_normal  2.21  74.84 up             1.22 
ix1503153/combout                                           apex20_lcell_normal  2.21  77.05 up             1.22 
ix1497841/combout                                           apex20_lcell_normal  4.87  81.92 up             2.05 
reg_e_delta(5)(7)/ena                                       apex20_lcell_normal  0.00  81.92 up             0.00 
data arrival time                                                             81.92 
 
 
data required time  (default specified - setup time)                        not specified 
------------------------------------------------------------------------------------------------------- 
data required time                                                         not specified 
data arrival time                                                             81.92 
                                                                           ---------- 
                                                                        unconstrained path 
------------------------------------------------------------------------------------------------------- 
 
 
 
-- Design summary in file 'C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.sum' 
-- Writing file C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf 
Info, Writing xrf file 'C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.xrf' 
-- Writing file C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.xrf 
Info, Writing batch file 'C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.tcl' 
-- CPU time taken for this run was  3017.14 sec 
-- Run Successfully Ended On  Fri Sep 23 14:14:27 India Standard Time 2005 
0 
Info: Finished Synthesis run 
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Snapshot 4. Hardware Floating Multiplier Custom Block & its Run Time with System 
Frequency of 48 MHz (Run Time Mentioned as Number of Clock Ticks) 
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Snapshot 5. Software Floating Multiplier & its Run Time With System Frequency of 48 
MHz (Run Time Mentioned as Number of Clock Ticks) 
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Snapshot 6. Memory Usage Summary in Nios II IDE 
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