
Nios II Embedded Processor Design Contest—Outstanding Designs 2005

136

Second Prize

SOPC-Based Word Recognition System

Institution: National Institute Of Technology, Trichy

Participants: S. Venugopal, B. Murugan, S.V. Mohanasundaram

Instructor: Dr. B. Venkataramani

Design Introduction
Real-world processes generally produce observable outputs, which can be characterized as signals. The
signals can be discrete in nature (e.g., characters from a finite alphabet, quantized vectors from a
codebook), or continuous in nature (e.g., speech samples, temperature measurements, music). The
signal source can be stationary (i.e., its statistical properties do not vary with time), or non-stationary
(i.e., the signal properties vary over time). The signals can be pure (i.e., coming strictly from a single
source), or can be corrupted from other signal sources (e.g., noise) or by transmission distortions,
reverberation, etc.

A problem of fundamental interest is characterizing such real-world signals in terms of signal models.
There are several reasons to be interested in applying signal models. First, a signal model can provide
the basis for a theoretical description of a signal processing system, which processes the signal to
provide a desired output.

A second reason why signal models are important is that they are potentially capable of letting us learn
a great deal about the signal source (that is, the real-world process that produced the signal) without
having the source available. This property is especially important when the cost of getting signals from
the actual source is high. In this case, with a good signal model, we can simulate the source and learn as
much as possible via simulations.

Finally, signal models are important because they often work extremely well in practice, and enable us
to realize important practical systems (such as prediction systems, recognition systems, identification
systems, etc.) in a very efficient manner. There are several possible choices for the type of signal model
used for characterizing the properties of a given signal. Broadly, one can dichotomize the types of signal
models into the class of deterministic models and the class of statistical models.

Deterministic models generally exploit some known specific properties of the signal (e.g., that the signal
is a sine wave or a sum of exponentials). In these cases, specification of the signal model is generally

 SOPC-Based Word Recognition System

 137

straightforward; all that is required is to determine (estimate) the values of the signal model parameters
(e.g., amplitude, frequency, phase of a sine wave, amplitudes and rates of exponentials, etc.).

The second broad class of signal models is the set of statistical models in which one tries to characterize
only the statistical properties of the signal. The underlying assumption of the statistical model is that the
signal is characterized as a parametric random process, and that the parameters of the stochastic process
can be determined (estimated) in a precise, well-defined manner. The Hidden Markov Model (HMM)
falls in this second category.

In simple terms, a HMM is a model used to create another model about which we know nothing except
its output sequence. The HMM is trained to produce an output that closely matches the available output
sequence, and can be assumed to model the unknown model with sufficient accuracy.

Speech recognition systems have been developed for many real-world applications, often using low-cost
speech recognition software. However high-performance and robust isolated word recognition,
particularly for digits, is still useful for many applications, such as recognizing telephone numbers for
use by physically challenged persons. This formed the motivation for taking up this project.

Efficient implementation of a complete system on a programmable chip (SOPC) got an impetus with the
advent of high-density FPGAs integrated with high-capacity RAMs and the availability of
implementation support for soft-core processors such as the Nios® II processor. FPGAs enable the best
of both worlds to be used gainfully for an application—the microcontroller or RISC processor is
efficient for performing control and decision-making operations, while the FPGA efficiently performs
digital signal processing (DSP) operations and other computation intensive tasks.

We aim to produce an efficient hardware speech recognition system with an FPGA acting as a
coprocessor that is capable of performing recognition at a much faster rate than software.
Implementation of systems using an Altera®-based system on a programmable chip enables time-critical
functions to be implemented on hardware synthesized with VHDL/Verilog HDL code. The soft-core
Nios II processor that is part of the FPGA can execute the programs, written in a high-level language.
Custom instructions enable the feasibility of implementing the whole system on an FPGA with better
partitioning of the software and hardware implementation of the speech recognition system.

Our project aims at developing a HMM-based speech recognition system with a vocabulary of 10 digits
(digits zero to nine). We trained the system for three users for all the mentioned digits with a
recognition accuracy of nearly 100%. Energy and zero crossings-based voice activity detection (VAD)
was used for segmentation of the input samples and removing background noise. We used linear
predictive coding (LPC-10) analysis, followed by cepstral analysis for feature vector extraction from
speech frames. HMM was used for training the speech models and Viterbi decoding for recognition.
Vector quantization (VQ) was used for reducing the memory requirement. We used direct parameter
averaging of the HMM parameters during training, which has several advantages over Rabiner’s
approach, such as a lower data requirement, higher detection accuracy, and less computation
complexity.

We implemented the feature extraction, training, and other preprocessing stages of HMM in software
(C++/MATLAB) in the offline mode and the recognition process, including floating-point
multiplication operation of the Viterbi decoding process, as custom hardware in hardware
implementation and as an online process.

Functional Description
The aim is to design a system that will recognize an uttered digit from the recorded speech samples
(recorded as .wav files and converted to text files using MATLAB). The digits have to be from a

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

138

predetermined vocabulary set for which the system is trained. The design can be split into software and
hardware partitioning to exploit the facilities present in the Nios II processor. The overall design can be
divided into two functional parts: training and recognition.

Training involves iteratively fine-tuning the parameters of the HMMs with digits from the given
vocabulary set until it converges. The sequence of steps in training are:

■ Preprocessing

■ Codebook generation

■ Generating models for individual digits using a combination of the Forward algorithm, the
Backward algorithm, and the Baum-Welch algorithm.

Recognition involves testing the given digit with each of the available digit HMMs, finding the model
that gives the maximum probability, and concluding that the result corresponds with the digit uttered.
The sequence of steps in recognition are:

■ Preprocessing

■ Finding the best fitting model using maximum likelihood algorithm, the Viterbi decoding algorithm

Preprocessing
Preprocessing involves the following steps:

1. Recording—Record the speech at a sampling frequency of 8 KHz with 16-bit quantization.

2. VAD—Using the endpoint detection algorithm, the starting and ending points are found. The speech
is sliced into frames 450 samples in length. The energy and number of zero crossings of each frame
is found. A threshold energy and zero crossing value is determined based on the computed values,
and only frames crossing the threshold are considered. This removes most of the unnecessary
background noise. A small vestige of frames beyond the starting and ending frames are included so
as not to leave the starting and ending parts of the speech that do not cross the threshold but that
may prove important in recognition.

3. Pre-emphasis—The digitized speech signal s(n) is put through a low-order LPF to spectrally flatten
the signal and to make it less susceptible to finite precision effects later in the signal processing.
The filter is represented by H (z)=1-az-1 where we have chosen the value of “a” as 0.9375.

4. Frame blocking—Speech frames are formed with durations of 56.25 ms (N = 450 sample length)
and with an overlap of 18.75 ms (M=150 sample length) between adjacent frames. The overlapping
is performed so that the resulting LPC spectral estimates correlate from frame to frame and are
quite smooth.

xq(n)=s(Mq+n) n=0 to N-1; q=0 to L-1 where L is the number of frames.

5. Windowing—Each frame with a Hamming window is windowed to minimize signal discontinuities
at the beginning and end of the frames.

x’q(n)=xq(n). w(n)

 SOPC-Based Word Recognition System

 139

Where

w(n)=0.54=0.46 cos (2 n/ N-1)

6. Autocorrelation analysis—Perform autocorrelation analysis for each frame and find P+1 (P=10)
autocorrelation coefficients.

 N-1-m

7. rq(m)= ∑ x’q(n)x’q(n+m) m=0,1,…..P

 n=0

8. The zeroth autocorrelation coefficient is the frame’s energy, which was previously used for VAD.

9. Perform LPC analysis by employing Levinson and Durbin’s algorithm to convert the
autocorrelation coefficients to LPC parameter set.

E(0) =rq(0)

L-1

Ki={ rq(i) – { ∑ αj

(i-1). rq(|i=j|) } }/E(i-1) 1≤i≤P

j=1

αi

(i) = ki

αj

(i) = αj

(i-1) - ki. α(i-j)

(i-1)

E(i) = (1- ki

2) E(i-1)

Where αm

10 1≤m≤P are the LPC coefficients.

10. LPC parameters to cepstral coefficient conversion: The cepstrum coefficients are a more robust and
reliable feature set than the LPC coefficients.

c0=ln σ2 where σ is the gain of the LPC model.

m-1

cm= αm + ∑ (k/m) . ck. αm-k 1≤m≤P

k=1

m-1

cm= ∑ (k/m) . ck. αm-k P<m≤Q

k=1

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

140

11. Parameter weighing—Sensitivity of the lower order cepstral coefficients to overall slope and the
higher order coefficients to noise has necessitated weighing of the cepstral coefficients by a tapered
window to minimize these sensitivities. We have used weighing by a band pass filter of the form

wm=[1+ (Q/2). sin (m/Q)] 1≤m≤Q

12. Temporal cepstral derivative—Temporal cepstral derivatives are an improved feature vector for
forming the speech frames. They can be used with the cepstral derivative in case the cepstral
coefficients do not give acceptable recognition accuracy.

Vector Quantization
A codebook of size 128 is obtained by the VQ of the weighted cepstral coefficients of all reference
digits, by all users. The advantages of VQ are:

■ Reduced storage for spectral analysis information

■ Reduced computation for determining similarity of spectral analysis vectors.

■ Discrete representation of speech sounds. By associating phonetic label(s) with each codebook
vector, the process of choosing a best codebook vector to represent a given spectral vector becomes
equivalent to assigning a phonetic label to each spectral frame of speech. This makes the
recognition process more efficient.

One obvious disadvantage of VQ is the reduced resolution in recognition. Assigning a codebook index
to an input speech vector amounts to quantizing it. This results in quantization error, which increases
with decrease in codebook size.

There are two commonly used algorithms, the K-Means algorithm and the Binary Split algorithm. The
K-Means algorithm describes the way in which a set of L training vectors can be clustered into M (<L)
codebook vectors with:

1. Initialization—Arbitrarily choose M vectors as the initial set of code words in the codebook.

2. Nearest neighbor search—For each training vector, find the code word in the current codebook that
is closest and assign that vector to the corresponding cell.

3. Centroid update—Update the codeword in each cell using the centroid of the training vectors
assigned to that cell.

4. Iteration—Repeat the above two steps until the average distance falls below a preset threshold.

The Binary Split algorithm is a more efficient method than the K-Means algorithm because it builds the
codebook in stages. First, it designs a 1-vector codebook, then uses a splitting technique on the code
words to initialize the search for a 2-vector codebook, and then continues the splitting process until the
desired M-vector codebook is received.

1. Design a 1-vector codebook, which is the centroid of the entire training set and hence needs no
iteration.

2. Double the size of the codebook by splitting each current codebook yn according to the rule

yn

+ = yn(1+e)

 SOPC-Based Word Recognition System

 141

yn

- = yn(1-e)

where n varies from 1 to the codebook size and e is the splitting parameter.

3. Use the K-Means iterative algorithm to obtain the best set of centroids for the split codebook.

4. Iterate the above two steps until the required codebook size is received.

Hidden Markov Model
Recognition is achieved by maximizing the probability of the linguistic string, W, given the acoustic
evidence, A. For example, choose the linguistic sequence W such that

P(W’ | A) = max P(W | A)

 W
An HMM is characterized by the following:

■ N, the number of states in the model. Although the states are hidden, for many practical
applications there is often some physical significance attached to the states or to sets of states of the
model. The states are interconnected in such a way that any state can be reached from any other
state (e.g., an ergodic model); however other possible interconnections of states are often used by
restricting the transitions. We denote the individual states as S = {S1,S2,… SN}, and the state at time
t as qt.

■ M, the number of distinct observation symbols per state, i.e., the discrete alphabet size. The
observation symbols correspond to the physical output of the system being modeled. We denote the
individual symbols as V={V1,V2,….VM}

■ The state transition probability distribution A = {aij} where aij=P[qt+1=Sj | qt=Si] 1≤i,j≤N

■ The observation symbol probability distribution in state j, B = {bj(k)},

where bj(k) = P[vk at t | qt = Sj] 1≤j≤N, 1≤k≤M

■ The initial state distribution = { i} where i=P[q1=Si] 1≤i≤N

Given appropriate values of N, M, A, B, and , the HMM can be used as a generator to give an
observation sequence O=O1 O2 O3 …OT (where each observation Ot, is one of the symbols from V, and
T is the number of observations in the sequence).

Three Basic Problems for HMM
Given the form of HMM, there are three basic problems of interest that must be solved for the model to
be useful in real-world applications. These problems are as follows:

■ Problem 1, the scoring problem—Given the observation sequence O = { O1 , O2 , . . . OT } and a
model λ = (A, B, π), how to efficiently compute P(O/A), the probability of the observation
sequence, given the model? The algorithm normally used to solve this is the Forward-Backward
algorithm

■ Problem 2, the matching problem—Given the observation sequence O = { O1 , O2 , . . . OT }, and
the model λ, how to choose a corresponding state sequence Q = q1 q2 . . . qT which is optimal in

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

142

some meaningful sense (i.e., best “explains” the observations)? The algorithm normally used to
solve this is the Viterbi algorithm

■ Problem 3, the training problem—How to adjust the model parameters λ = (A, B, π) to maximize

P(O/A)? The algorithm normally used to solve this is the Baum-Welch Re-Estimation Procedures.

Solution to Problem 1
One of the most straightforward and highly inefficient methods to solve this problem is to enumerate all
the possible state sequences of length T and finding the sum over all such state sequences to find the
required probability. The forward-backward is a more efficient algorithm, which can be explained as
follows:

Consider the forward variable αt(i) defined as

αt(i)=P[O1, O2, O3, Ot, qt=Si | λ]

That is, the probability of the partial observation sequence, O1, O2. . . Ot and state Si at time t, given the
model λ. We can solve for αt(i) inductively, as follows:

1. Initialization:

α1(i)= πi. bi(O1) 1≤i≤N

2. Induction:

 N

αt+1(j)=[∑ αt(i).aij] bj(Ot+1) 1≤t≤T-1; 1≤j≤N

 i=1

3. Termination:

 N

P(O| λ)= ∑ αT(i)

 i=1

In a similar manner we can solve for the backward variable βt(i) iteratively as follows:

1. Initialization:

βT(i)= 1 1≤i≤N

 SOPC-Based Word Recognition System

 143

2. Induction:

 N

βt(i)= ∑ βt+1(j).aij. bj(Ot+1) T-1≥t≥1; 1≤i≤N

 j=1

Solution to Problem 2
Unlike Problem 1, for which an exact solution can be given, there are several possible ways of solving
Problem 2, namely finding the “optimal” state sequence associated with the given observation sequence.
The difficulty lies with the definition of the optimal state sequence; i.e., there are several possible
optimality criteria. To implement this solution to Problem 2, we define the variable

γt(i)=P(qt=Si | O, λ)

γt(i) = αt(i). βt(i) / P(O | λ)

 N

= αt(i). βt(i) / ∑ αt(i). βt(i)

 i=1

Because αt(i) accounts for the partial observation sequence O1,O2….Ot, and state Si at t , while βt(i)
accounts for the remainder of the observation sequence Ot+1, Ot+2, …OT given state Si at t.

Viterbi Algorithm
To find the single best state sequence, Q = {q1, q2, . . . qT }, for the given observation sequence
 O = (O1, O2, … OT}, we need to define the quantity

δt(i) = max P[q1,q2,…qt = i, O1, O2 . . . Ot/λ]

q1,q2,…..qt

That is, δt(i) is the best score (highest probability) along a single path, at time t, which accounts for the
first t observations and ends in state Si. By induction we have

δt+1(j) = [max δt(i) aij] . bj(Ot+1).

To retrieve the state sequence, we need to keep track of the argument that maximized, for each t and j.
We do this via the array ψt(j). The complete procedure for finding the best state sequence can now be
stated as follows:

1. Initialization:

 δ1(i)= πi bi(O1), 1 ≤ i ≤ N

 ψ1(i)=0

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

144

2. Recursion:

 δt(j)= max [δt-1(i)aij] bj(Ot) , 2 ≤ t ≤ T ; 1 ≤ j ≤ N

 ψt(j)= argmax [δt-l(i)aij], 2 ≤ t ≤ T ; 1 ≤ i≤ N ; 1≤ j ≤ N

3. Termination:

 P* = max [δt(i)]

 1≤i≤N

 qT* = argmax [δt(i)]

 1≤i≤N

4. Path (state sequence) backtracking:

 qt*= ψt+1(qt+l*), t = T - 1, T - 2, .. 1.

The lattice (or trellis) structure given in Figure 1 efficiently implements the computation of the Viterbi
procedure.

Figure 1. Lattice Structure

. . .

Solution to Problem 3
The third, and by far the most difficult, problem of HMMs is to determine a method to adjust the model
parameters (A, B, π) to maximize the probability of the observation sequence given the model. There is
no known way to analytically solve for the model, which maximizes the probability of the observation
sequence. In fact, given any finite observation sequence as training data, there is no optimal way of
estimating the model parameters. We can, however, choose λ = (A, B, π) such that P(O | λ) is locally
maximized using an iterative procedure such as the Baum-Welch method.

To describe the procedure for re-estimation (iterative update and improvement) of HMM parameters,
we first define ξt(i,j), the probability of being in state Si at time t, and state Sj, at time t+1, given the
model and the observation sequence,

 SOPC-Based Word Recognition System

 145

ξt(i,j)= P(qt=Si,qt+1=Sj | O, λ).

We can write ξt(i,j) in the form

ξt(i,j) = P(qt=Si,qt+1=Sj,O | λ)/ P(O| λ)

 = αt(i) aij bi(Ot+1) βt+1(j)/ P(O| λ)

 N N

 = αt(i) aij bi(Ot+1) βt+1(j)/ [∑ ∑ αt(i) aij bi(Ot+1) βt+1(j)]

 i=1 j=1

We have previously defined γt(i) as the probability of being in state Si at time t, given the observation
sequence and the model; hence we can relate γt(i) to ξt(i,j) by summing over j, giving

 N

 γt(i)= ∑ ξt(i,j)

 j=1

If we sum γt(i) over the time index t, we get a quantity that can be interpreted as the expected (over
time) number of times that state Si is visited, or equivalently, the expected number of transitions made
from state Si (if we exclude the time slot t = T from the summation). Similarly, summation of ξt(i,j) over
t (from t = 1 to t = T - 1) can be interpreted as the expected number of transitions from state Si to state
Sj. That is,

 T-1

 ∑ γt(i) = expected number of transitions from Si

 t=1

 T-1

 ∑ ξt(i , j) = expected number of transitions from Si to Sj in O.

 t=1

Using the above formulas (and the concept of counting event occurrences), the method for re-estimation
of the parameters of an HMM is as follows:

Π’j = expected frequency (number of times) in state Si at time (t = 1) = γ1(i)

a’ij = expected number of transitions from state Si to state Sj / expected number of transitions from state
Si

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

146

 T-1 T-1

 = ∑ ξt(i,j) / ∑ γt(i)

 t=1 t=1

b’j(k)= expected number of times in state Sj and observing symbol vk / expected number of times in state
Sj

 T T

 = ∑ γt(i) / ∑ γt(i)

 t=1 t=1

such that Ot=vk

Based on the above procedure, we iteratively use λ’ in place of λ and repeat the re-estimation
calculation, to improve the probability of O being observed from the model until some limiting point is
reached. The result of this re-estimation procedure is a maximum likelihood estimate of the HMM. We
use a terminating condition of λ’ not varying by more than a certain fraction (say 10%) from λ.

Training
Training the HMM for each digit in the vocabulary is done using the Baum-Welch algorithm. The
codebook index will be the observation vector for the HMM.

Recognition
Recognition of the uttered digit is found by employing the maximum likelihood estimate such as Viterbi
decoding algorithm. This implies the model with the maximum probability will be the uttered digit.

Performance Parameters
This section describes the performance parameters for the project.

Recognition Accuracy
100% recognition accuracy for a three–user dependent system implemented with input from the trained
vocabulary alone.

Design Implementation Times
Total design run time for recognition:

■ 96.53 s (full software implementation)

■ 93.936 s (with floating-point multiplication operation of the Viterbi decoding process block
implemented as custom block and the rest as software)

Implementation time for the recognition process (excluding preprocessing step) and finding the
probability for the input digit for all models using the Viterbi block in software: 5.48 s.

 SOPC-Based Word Recognition System

 147

Implementation time for a floating-point multiplication operation of the Viterbi decoding process block
implemented as a custom block: 0.5 ms (Refer to Snapshot 4 in the Appendix). The Viterbi block uses
4810 such multiplications, so the estimated run time of the whole Viterbi process using the custom
block is 2.405 sec.

Implementation time for a floating-point multiplication operation of the Viterbi decoding process block
implemented as software: 5.7 ms (Refer to Snapshot 5 in the Appendix).

Speed-up factor achieved by using custom block: 11.4 times.

Design Metrics
Memory requirement—M4Ks (Refer to Snapshot 1 in the Appendix):

■ Whole design: 9 out of 20

■ Custom block alone: 2 out of 9

Logic area used: 4,233/5,980 logic elements (LEs).

Design Architecture
Figure 2 shows the software block diagram.

Figure 2. Software Design Block Diagram of Front-End Feature Analysis for HMM

Sampled
Speech S(n)

Pre-Emphasis
LPF

Block into
Frames

NA MA

Windowing Each
Frame

Auto Correlation
Analysis

W(n)

LPC/Cepstral
Analysis

Cepstral
Weighting

LPC/
Cepstral

Coefficients

Wc(n)

Vector
Quantization

Vector
Code Book

LPC Feature Analysis
Observation vectors are obtained from speech samples by performing VQ of LPC coefficients. The
overall system is a block processing model in which a frame of NA samples is processed and a vector
for each frame is computed.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

148

The steps in the processing are as follows:

1. Pre-Emphasis—A first-order digital network processes the digitized speech signal to spectrally
flatten the signal.

2. Blocking into Frames—Sections of NA consecutive speech samples are used as a single frame with
the overlap between adjacent frames being MA.

3. Frame Windowing—Each frame is multiplied by an NA sample hamming window w(n) to
minimize the adverse effects of chopping an NA-sample section out of the running speech signal.

4. Autocorrelation Analysis—Each windowed frame of speech samples is autocorrelated with a lag of
10.

5. LPC/Cepstral Analysis—The LPC coefficients (Q) of order 10 are computed from the
autocorrelation coefficients using Durbin’s recursion method, and LPC derived cepstral vectors are
computed.

6. Cepstral Weighting—The Q-coefficient cepstral vector Cl(m) at time frame ‘l’ is weighted by a
window WC(m) of the form.

WC(m)= 1+ (Q/2) sin(Πm/Q), 1≤ m ≤ Q

to yield the weighted cepstral coefficient as

C’l(m)=Cl(m) . WC(m)

7. VQ—For a HMM with discrete observation symbol density, VQ is required to map each continuous
observation vector into a discrete codebook index. Once the codebook of vectors has been obtained,
the mapping between continuous vectors and codebook indices becomes a simple nearest neighbor
computation, that is, the continuous vector is assigned the index of the nearest (in a spectral
distance sense) codebook vector. Thus, the major issue in VQ is the design of an appropriate
codebook for quantization. We have taken codebook size as 128.

Figure 3 shows the hardware design block diagram.

 SOPC-Based Word Recognition System

 149

Figure 3. Hardware Design Block Diagram

Observation
Sequence

Finding Nearest
Codebook Entry

Codebook
Index

HMM Model
for Digit 1

Model Parameters
λ = {N, A, B, π}

HMM Model
for Digit 2

Model Parameters
λ = {N, A, B, π}

HMM Model
for Digit M

Model Parameters
λ = {N, A, B, π}

Software Part

Probability of
Observed Digit
Being Digit 1

Probability of
Observed Digit
being Digit 2

Probability of
Observed Digit
Being Digit M

Select
Maximum

Index of
Recognized Digit

Hardware Part

The Hidden Markov Model (HMM)
Recognition is achieved by maximizing the probability of the digit W, given the acoustic evidence, A,
that is, choose the digit W such that

P(Ŵ|A)=max P(W|A)

 w

Elements of a Discrete Hidden Markov Model
N is the number of states in the model

M is the number of distinct observation symbols per state. We denote the individual symbols as

A = {aij}, the state transition probability distribution where

qt is the state of the HMM at time t

B is the observation symbol probability distribution in state j, B = {bj(k)}, where

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

150

π is the initial state distribution π ={ πi } where

Given appropriate values of N, M, A, B, and π, the HMM can be used as a generator to give an
observation sequence

where each observation Ot is one of the symbols from V, and T is the number of observations in the
sequence. A complete specification of an HMM requires specification of two model parameters (N and
M), specification of observation symbols, and the specification of the three probability measures A, B,
and π.

Design Methodology
We used an Altera UP3 board using a Cyclone™ EP1C6Q240C8 FPGA with a Nios II soft-core CPU.
The board has 128 Mbytes of SRAM and 8 Mbytes of SDRAM, and we used both memories for our
design. The SDRAM is particularly important because the SRAM alone cannot handle our data and
program (Refer to Snapshot 6 in the Appendix). We used a PLL for clock input to the SDRAM for clock
skew minimization. The PLL was generated using the Altera MegaWizard® Plug-In Manager.

Design Flow in Training
First, the input speech samples were preprocessed to extract the feature vectors. Then the codebook was
built, serving as the reference code space with which we compare the input feature vectors. We have
worked with both K-Means and Binary split algorithms and we decided to use the Binary split algorithm
in our final design since it is more efficient. Then for training the HMMs, the same weighted cepstrum
matrices for various users and digits are compared with the codebook, and their corresponding nearest
codebook vector indices are sent to the Baum-Welch algorithm for training a input index sequence
model. The Baum-Welch model is an iterative procedure and we have kept the iteration limit as 20. We
now have three models for each digit corresponding to the three users in our vocabulary set, and we
average the A, B, and π matrices over the users to generalize it. For the design to recognize the same
digit uttered by a user for whom the design has not been trained, the zero probabilities in the B matrix
have been replaced by a low value so that on recognition it gives a non-zero value. This overcomes the
problem of less training data to some extent. Training is done in software and we have included the
speech samples required for the software design as arrays. See Figure 4.

 SOPC-Based Word Recognition System

 151

Figure 4. Training

Preprocessing

 Appending the weighted cepstrum
for all digits in vocabulary

Weighted Cepstrum Coefficients

Speech
Samples

 Compressing the vector space by
vector quantization

 Finding the index of the nearest
code book (in an Euclidian sense)
vector for each frame (vector) of the
input speech

Training the HMM for each digit for
each user and averaging the para
meters viz A, B, p over all the users

Trained Models for Each Digit

Design Flow for Recognition
The input speech sample is preprocessed to get extract the feature vector. Then the index of the nearest
codebook vector for each frame is sent to all the digit models out of which the model giving the
maximum probability is chosen. Viterbi is computation intensive, so the processing steps in it have been
ported to the FPGA for better speed of execution. After the soft-core processor has completed all the
preprocessing steps, the required data is passed to the hardware to do the rest of the processing. Data is
through the dataa and datab ports and the prefix port used for the control operations. (Refer Snapshots
2a and b in the Appendix.) See Figure 5.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

152

Figure 5. Data Processing

Preprocessing

Finding the index of the nearest
code book (in an Euclidian sense)
vector for each frame (vector) of the
input speech.

Code Book Weighted Cepstrum Coefficients

Speech Sample to be
Recognized

Find the probability of the input
being digit k=0 to 9.

Digit Models
for All Digits

Find the model with maximum
probability and the corresponding digit.

Implementation Summary
Number of states of the HMMs, N: 10

Codebook size, M: 128

Order of LPC, P: 10

Number of weighted cepstrum coefficients per frame vector, Q: 11

Number of digits: 0 – 9

Speech sampling rate: 8 KHz, PCM encoded

End point detection (VAD): short-time energy-based thresholding

Feature analysis: LPC analysis

HMM training for multiple observation sequence: ensemble training (direct parameter averaging)

Design Features
Performance comparison of hardware and full software implementation could be done with the help of
the facility to measure the running time of the code (Refer to comparison Snapshots 4 and 5 in the
Appendix).

The HMM is rich with mathematical structure as the training of the model uses the Baum-Welch
algorithm and the recognition decoding employs the Viterbi algorithm. Hence, these algorithms can be
efficiently implemented using FPGAs.

 SOPC-Based Word Recognition System

 153

The Nios II processor enables the optimum sharing of hardware and software implementations by
executing more computation intensive tasks in hardware and the remaining algorithm blocks in
software.

Implementation issues include:

■ The Viterbi design was too big to be implemented as such in the Cyclone device. So we decided to
implement only the main processing part (i.e., the floating point multiplication) in hardware. We
included the synthesis report of the whole Viterbi block alone using the LeonardoSpectrum™ tool
using another APEX™ FPGA (Refer to Snapshot 3 in the Appendix).

■ Scaling. As T becomes sufficiently large, the range of the multiplication factors starts to reach
exponentially to zero. The basic scaling procedure is used is to multiply these factors by a scaling
coefficient so that they do not exceed the precision range of the machine. Over and above this,
since all the values in the Baum-Welch and Viterbi algorithms are probabilities, maintaining is of
utmost importance for proper results. Therefore, we have used a floating-point data format in the C
program with a structure (mantissa and exponent) and used a normalization function, which
removes the leading zeros and accordingly adjusts the exponent whenever it is called.

■ Initial Estimates of HMM Parameters. There is no simple or straightforward answer to the above
question. Either random (subject to the stochastic and the nonzero value constraints) or uniform
initial estimates of the π and A parameters have to be used. However, for the B parameters, good
initial estimates are helpful in the discrete symbol case. We have used uniform initial values for A
and B and random values for π.

■ Insufficient Training Data. The observation sequence used for training is finite. Thus there is often
an insufficient number of occurrences of different model events (e.g., symbol occurrences within
states) to give good estimates of the model parameters. One solution to this problem is to increase
the size of the training observation set, which is often impractical. A second possible solution is to
reduce the size of the model (e.g., number of states, number of symbols per state, etc) at the
expense of the recognition rate. For the design to recognize a digit in the vocabulary uttered by a
user for whom the design has not been trained, the zero probabilities in B matrix have been
replaced by a low value so that on recognition it gives a non-zero value. This implementation
overcomes the problem of less training data to some extent.

Conclusion
We learned that the Nios II processor is powerful enough to implement a full speech recognition
process. Its memory and logic capabilities enabled us to implement the design. We implemented the
whole design in C++ in a PC environment to check the functionality. We then ported it to the FPGA
environment. That gave us a good knowledge of the issues involved in porting a software code to the
SoC environment. Finally, we learnt how to include custom block in a design, how to communicate with
it from the soft-core processor, what the problems are that may crop up in such a process, and how to
solve them.

Probable Future Improvements
■ Implementing floating point vector dot product as custom block in the short term.

■ Optimizing the Viterbi part so that it can be fitted into the Cyclone device.

■ Implementing other computation intensive tasks in the design like LPC processing in hardware to
improve recognition time.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

154

■ Using Bakis model, which is claimed to model speech signals better.

■ Using flash memory for using file read/write functions in the soft-core processor itself.

■ Accessing SDRAM from software and hardware to pass large data, which is our requirement.

Results
The hardware and software results were verified and were found to match. The process of
software/hardware co-design using SOPC is much different than conventional methods such as using
microprocessor-based software routines alone or ASIC/FPGA-based full hardware implementation
alone. It helped us to achieve the best of both worlds. The ability to include our hardware as a custom
design in the FPGA and calling it from the software using custom instructions provided added flexibility
to our design. We identified the computation intensive blocks in the design and were able to port it to the
hardware for better speed. The soft IP cores helped us speed up our design time. We learned to pass data
from the soft core to the hard core processor and tackling the issues in the process helped us to gain
better understanding of the Nios II processor.

 SOPC-Based Word Recognition System

 155

Appendix: Implementation Snapshots
Snapshot 1. Fitter Summary for Custom Block

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

156

Snapshot 2a. Recognition Process for Digit 7 Uttered by User 1 as Input

 SOPC-Based Word Recognition System

 157

Snapshot 2b. Recognition Process for Digit 7 Uttered by User 1 as Input

Snapshot 3. Synthesis Report of Whole Viterbi Block Implemented in
EP20K1000EFC896 Device

Info: Attempting to checkout a license to run as LeonardoSpectrum Level 1 Altera
Info: License passed
Session history will be logged to file 'C:/Exemplar/LeoSpec/v19991j/bin/win32/exemplar.his'
Info, Working Directory is now 'C:\Exemplar\LeoSpec\v19991j\bin\win32'
->set _xmp_enable_renoir FALSE
FALSE
Info: system variable EXEMPLAR set to "C:\Exemplar\LeoSpec\v19991j"
Info: Loading Exemplar Blocks file: C:\Exemplar\LeoSpec\v19991j/data/xmplrblks.ini
Messages will be logged to file 'C:/Exemplar/LeoSpec/v19991j/bin/win32/exemplar.log'...
LeonardoSpectrum Level 1 Altera - v1999.1j (build 6.108, compiled Apr 6 2000 at 12:57:38)
Copyright 1990-1999 Exemplar Logic, Inc. All rights reserved.

--
-- Welcome to LeonardoSpectrum Level 1 Altera
-- Run By ecad@VLSI-33
-- Run Started On Fri Sep 23 12:13:10 India Standard Time 2005
--
No constraint for register2register
No constraint for input2register
No constraint for input2output
No constraint for register2output
->set register2register 1073741824.0
1073741824.0
->set input2register 1073741824.0
1073741824.0
->set register2output 1073741824.0
1073741824.0
->set input2output 1073741824.0
1073741824.0
->_gc_read_init
->_gc_run_init
->set input_file_list { "D:/nios_modelsim/viterbi_ver4.v" }
 "D:/nios_modelsim/viterbi_ver4.v"
->set part EP20K1000EFC896
EP20K1000EFC896
->set process 1
1
->set flex_use_cascades TRUE
TRUE
->set chip TRUE

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

158

->set macro FALSE
FALSE
->set area TRUE
->set delay FALSE
FALSE
->set report brief
brief
->set hierarchy_auto TRUE
TRUE
->set output_file "C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf"
C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf
->set novendor_constraint_file FALSE
FALSE
->set target apex20e
apex20e
->_gc_read
-- Reading target technology apex20e
Reading library file `C:\Exemplar\LeoSpec\v19991j\lib\apex20e.syn`...
Library version = 1.6
Delays assume: Process=1
-- read -tech apex20e { "D:/nios_modelsim/viterbi_ver4.v" }
-- Reading file 'D:/nios_modelsim/viterbi_ver4.v'...
-- Loading module viterbi_ver4
-- Compiling root module 'viterbi_ver4'
"D:/nios_modelsim/viterbi_ver4.v",line 92: Info, Enumerated type _STATE_NAME_ with 28 elements encoded as onehot.
Encodings for _STATE_NAME_ values
 value _STATE_NAME_[27-0]
===================================
 _STATE_0 ---------------------------1
 _STATE_1 --------------------------1-
 _STATE_2 -------------------------1--
 _STATE_3 ------------------------1---
 _STATE_4 -----------------------1----
 _STATE_5 ----------------------1-----
 _STATE_6 ---------------------1------
 _STATE_7 --------------------1-------
 _STATE_8 -------------------1--------
 _STATE_9 ------------------1---------
 _STATE_10 -----------------1----------
 _STATE_11 ----------------1-----------
 _STATE_12 ---------------1------------
 _STATE_13 --------------1-------------
 _STATE_14 -------------1--------------
 _STATE_15 ------------1---------------
 _STATE_16 -----------1----------------
 _STATE_17 ----------1-----------------
 _STATE_18 ---------1------------------
 _STATE_19 --------1-------------------
 _STATE_20 -------1--------------------
 _STATE_21 ------1---------------------
 _STATE_22 -----1----------------------
 _STATE_23 ----1-----------------------
 _STATE_24 ---1------------------------
 _STATE_25 --1-------------------------
 _STATE_26 -1--------------------------
 _STATE_27 1---------------------------

"D:/nios_modelsim/viterbi_ver4.v",line 164: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 215: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 248: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 307: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 285: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 307: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 343: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 378: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 440: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 417: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 440: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 417: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 440: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 487: Error, static loops are not allowed in implicit state machines.
No constraint for register2register
No constraint for input2register
No constraint for input2output
No constraint for register2output
->_gc_read_init
->_gc_run_init
->set input_file_list { "D:/nios_modelsim/viterbi_ver4.v" }
 "D:/nios_modelsim/viterbi_ver4.v"
->set chip TRUE
->set macro FALSE
FALSE
->set delay FALSE
FALSE
->set hierarchy_auto TRUE
TRUE
->set output_file "C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf"
C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf
->set sdf_write_flat_netlist TRUE
TRUE
->set target apex20e
apex20e
->_gc_read
-- Reading target technology apex20e
Reading library file `C:\Exemplar\LeoSpec\v19991j\lib\apex20e.syn`...
Library version = 1.6

 SOPC-Based Word Recognition System

 159

Delays assume: Process=1
-- read -tech apex20e { "D:/nios_modelsim/viterbi_ver4.v" }
-- Reading file 'D:/nios_modelsim/viterbi_ver4.v'...
-- Loading module viterbi_ver4
-- Compiling root module 'viterbi_ver4'
"D:/nios_modelsim/viterbi_ver4.v",line 92: Info, Enumerated type _STATE_NAME_ with 28 elements encoded as onehot.
Encodings for _STATE_NAME_ values
 value _STATE_NAME_[27-0]
===================================
 _STATE_0 ---------------------------1
 _STATE_1 --------------------------1-
 _STATE_2 -------------------------1--
 _STATE_3 ------------------------1---
 _STATE_4 -----------------------1----
 _STATE_5 ----------------------1-----
 _STATE_6 ---------------------1------
 _STATE_7 --------------------1-------
 _STATE_8 -------------------1--------
 _STATE_9 ------------------1---------
 _STATE_10 -----------------1----------
 _STATE_11 ----------------1-----------
 _STATE_12 ---------------1------------
 _STATE_13 --------------1-------------
 _STATE_14 -------------1--------------
 _STATE_15 ------------1---------------
 _STATE_16 -----------1----------------
 _STATE_17 ----------1-----------------
 _STATE_18 ---------1------------------
 _STATE_19 --------1-------------------
 _STATE_20 -------1--------------------
 _STATE_21 ------1---------------------
 _STATE_22 -----1----------------------
 _STATE_23 ----1-----------------------
 _STATE_24 ---1------------------------
 _STATE_25 --1-------------------------
 _STATE_26 -1--------------------------
 _STATE_27 1---------------------------

"D:/nios_modelsim/viterbi_ver4.v",line 216: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 249: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 308: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 286: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 308: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 344: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 379: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 441: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 418: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 441: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 418: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 441: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 488: Error, static loops are not allowed in implicit state machines.
No constraint for register2register
No constraint for input2register
No constraint for input2output
No constraint for register2output
->_gc_read_init
->_gc_run_init
->set input_file_list { "D:/nios_modelsim/viterbi_ver4.v" }
 "D:/nios_modelsim/viterbi_ver4.v"
->set chip TRUE
->set macro FALSE
FALSE
->set delay FALSE
FALSE
->set hierarchy_auto TRUE
TRUE
->set output_file "C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf"
C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf
->set target apex20e
apex20e
->_gc_read
-- Reading target technology apex20e
Reading library file `C:\Exemplar\LeoSpec\v19991j\lib\apex20e.syn`...
Library version = 1.6
Delays assume: Process=1
-- read -tech apex20e { "D:/nios_modelsim/viterbi_ver4.v" }
-- Reading file 'D:/nios_modelsim/viterbi_ver4.v'...
"D:/nios_modelsim/viterbi_ver4.v", line 526: Warning, system task enable ignored for synthesis
-- Loading module viterbi_ver4
-- Compiling root module 'viterbi_ver4'
"D:/nios_modelsim/viterbi_ver4.v",line 93: Info, Enumerated type _STATE_NAME_ with 28 elements encoded as onehot.
Encodings for _STATE_NAME_ values
 value _STATE_NAME_[27-0]
===================================
 _STATE_0 ---------------------------1
 _STATE_1 --------------------------1-
 _STATE_2 -------------------------1--
 _STATE_3 ------------------------1---
 _STATE_4 -----------------------1----
 _STATE_5 ----------------------1-----
 _STATE_6 ---------------------1------
 _STATE_7 --------------------1-------
 _STATE_8 -------------------1--------
 _STATE_9 ------------------1---------
 _STATE_10 -----------------1----------
 _STATE_11 ----------------1-----------

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

160

 _STATE_12 ---------------1------------
 _STATE_13 --------------1-------------
 _STATE_14 -------------1--------------
 _STATE_15 ------------1---------------
 _STATE_16 -----------1----------------
 _STATE_17 ----------1-----------------
 _STATE_18 ---------1------------------
 _STATE_19 --------1-------------------
 _STATE_20 -------1--------------------
 _STATE_21 ------1---------------------
 _STATE_22 -----1----------------------
 _STATE_23 ----1-----------------------
 _STATE_24 ---1------------------------
 _STATE_25 --1-------------------------
 _STATE_26 -1--------------------------
 _STATE_27 1---------------------------

"D:/nios_modelsim/viterbi_ver4.v", line 39:Info, D-Flipflop reg_si(237)(8) is unused, optimizing...
"D:/nios_modelsim/viterbi_ver4.v", line 39:Info, D-Flipflop reg_si(238)(8) is unused, optimizing...
"D:/nios_modelsim/viterbi_ver4.v", line 39:Info, D-Flipflop reg_si(239)(8) is unused, optimizing...
Info: Finished reading design
->_gc_run
-- Run Started On Fri Sep 23 13:24:10 India Standard Time 2005
--
-- optimize -target apex20e -effort quick -chip -area -hierarchy=auto
Using default wire table: apex20e_default
Warning, View .work.viterbi_ver4.INTERFACE needs partitioning, you may want to optimize this block in "auto
dissolve" hierarchy mode...
Warning, View .work.viterbi_ver4.INTERFACE needs partitioning, you may want to optimize this block in "auto
dissolve" hierarchy mode...
Warning, View .work.cx0.partition_vx0 needs partitioning, you may want to optimize this block in "auto dissolve"
hierarchy mode...
-- Start optimization for design .work.cx2.partition_vx0
Using default wire table: apex20e_default
 est est
 Pass LCs Delay DFFs TRIs PIs POs --CPU--
 min:sec
 1 6961 106 1809 0 810 688 07:07
-- Start optimization for design .work.cx0.partition_vx0
Using default wire table: apex20e_default
 est est
 Pass LCs Delay DFFs TRIs PIs POs --CPU--
 min:sec
 1 8351 116 2411 0 467 545 07:43
-- Start optimization for design .work.cx1.partition_vx0
Using default wire table: apex20e_default
 est est
 Pass LCs Delay DFFs TRIs PIs POs --CPU--
 min:sec
 1 6087 73 1472 0 606 331 01:56
-- Start optimization for design .work.viterbi_ver4.INTERFACE
Using default wire table: apex20e_default
 est est
 Pass LCs Delay DFFs TRIs PIs POs --CPU--
 min:sec
 1 7435 58 1767 0 2 18 03:24
Using default wire table: apex20e_default
-- Start timing optimization for design .work.viterbi_ver4.INTERFACE
No critical paths to optimize at this level

Cell: viterbi_ver4 View: INTERFACE Library: work

 Number of ports : 20
 Number of nets : 31206
 Number of instances : 29214
 Number of references to this view: 0

Total accumulated area:
 Number of GND: 4
 Number of I/Os: 20
 Number of LCs: 28938
 Number of Memory Bits: 7680
 Number of VCC: 1

Device Utilization for EP20K1000EFC896

Resource Used Avail Utilization

I/Os 20 896 2.23%
LCs 28938 38400 75.36%
Memory Bits 7680 540672 1.42%

 Clock Frequency Report

 Clock : Frequency

 clk : 12.1 MHz

 Critical Path Report

 SOPC-Based Word Recognition System

 161

Critical path #1, (unconstrained path)
NAME GATE ARRIVAL LOAD

clock information not specified
delay thru clock network 0.00 (ideal)

reg_i5(7)/regout apex20_lcell_normal 0.00 2.30 up 1.45
modgen_add_6752_ix86/combout apex20_lcell_arithmetic 4.96 7.25 up 2.05
modgen_mux_6996_ix304/cascout apex20_lcell_normal 2.01 9.26 up 1.22
modgen_mux_6996_ix306/combout apex20_lcell_normal 0.53 9.79 up 1.22
modgen_mux_6996_ix310/cascout apex20_lcell_normal 2.04 11.83 up 1.22
modgen_mux_6996_ix312/combout apex20_lcell_normal 0.53 12.36 up 1.22
ix1500353/cascout apex20_lcell_normal 2.01 14.36 up 1.22
ix1500226/combout apex20_lcell_normal 0.53 14.89 up 1.22
ix1415575/Y NOT 1.49 16.38 up 1.22
modgen_mux_6996_ix730/combout apex20_lcell_normal 3.10 19.48 up 1.55
modgen_gt_7005_ix39/combout apex20_lcell_arithmetic 4.96 24.43 up 2.05
ix1507344/combout apex20_lcell_normal 3.39 27.82 up 1.64
ix6362/Y NOT 4.20 32.02 up 2.05
ix1504380/combout apex20_lcell_normal 2.18 34.21 up 1.22
modgen_mux_7532_ix316/cascout apex20_lcell_normal 1.98 36.19 up 1.22
modgen_mux_7532_ix318/combout apex20_lcell_normal 0.53 36.71 up 1.22
modgen_mux_7532_ix342/combout apex20_lcell_normal 2.18 38.90 up 1.22
ix1504445/cascout apex20_lcell_normal 1.98 40.88 up 1.22
ix1503646/combout apex20_lcell_normal 0.53 41.41 up 1.22
ix15950/Y NOT 1.49 42.90 up 1.22
modgen_mux_7532_ix730/combout apex20_lcell_normal 3.10 45.99 up 1.55
modgen_gt_7522_ix23/cout apex20_lcell_arithmetic 2.01 48.00 up 1.22
modgen_gt_7522_ix25/cout apex20_lcell_arithmetic 0.09 48.09 up 1.22
modgen_gt_7522_ix27/cout apex20_lcell_arithmetic 0.09 48.18 up 1.22
modgen_gt_7522_ix29/cout apex20_lcell_arithmetic 0.09 48.27 up 1.22
modgen_gt_7522_ix31/cout apex20_lcell_arithmetic 0.09 48.35 up 1.22
modgen_gt_7522_ix33/cout apex20_lcell_arithmetic 0.09 48.44 up 1.22
modgen_gt_7522_ix35/cout apex20_lcell_arithmetic 0.09 48.53 up 1.22
modgen_gt_7522_ix37/cout apex20_lcell_arithmetic 0.09 48.62 up 1.22
modgen_gt_7522_ix39/combout apex20_lcell_arithmetic 0.53 49.15 up 1.90
ix1507591/combout apex20_lcell_normal 4.96 54.11 up 2.05
ix1507333/combout apex20_lcell_normal 4.90 59.00 up 2.05
ix1501713/combout apex20_lcell_normal 3.70 62.70 up 1.73
ix1502628/combout apex20_lcell_normal 2.21 64.91 up 1.22
ix1503203/combout apex20_lcell_normal 2.16 67.07 up 1.22
ix1507603/combout apex20_lcell_normal 2.47 69.53 up 1.34
ix1507602/combout apex20_lcell_normal 3.10 72.63 up 1.55
ix1502721/combout apex20_lcell_normal 2.21 74.84 up 1.22
ix1503153/combout apex20_lcell_normal 2.21 77.05 up 1.22
ix1497841/combout apex20_lcell_normal 4.87 81.92 up 2.05
reg_e_delta(5)(7)/ena apex20_lcell_normal 0.00 81.92 up 0.00
data arrival time 81.92

data required time (default specified - setup time) not specified

data required time not specified
data arrival time 81.92

 unconstrained path

-- Design summary in file 'C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.sum'
-- Writing file C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf
Info, Writing xrf file 'C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.xrf'
-- Writing file C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.xrf
Info, Writing batch file 'C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.tcl'
-- CPU time taken for this run was 3017.14 sec
-- Run Successfully Ended On Fri Sep 23 14:14:27 India Standard Time 2005
0
Info: Finished Synthesis run

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

162

Snapshot 4. Hardware Floating Multiplier Custom Block & its Run Time with System
Frequency of 48 MHz (Run Time Mentioned as Number of Clock Ticks)

 SOPC-Based Word Recognition System

 163

Snapshot 5. Software Floating Multiplier & its Run Time With System Frequency of 48
MHz (Run Time Mentioned as Number of Clock Ticks)

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

164

Snapshot 6. Memory Usage Summary in Nios II IDE

Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks
and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the
property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and
pending applications, mask work rights, and copyrights.

	Design Introduction
	Functional Description
	Preprocessing
	Vector Quantization
	Hidden Markov Model
	Three Basic Problems for HMM
	Solution to Problem 1
	Solution to Problem 2
	Viterbi Algorithm
	Solution to Problem 3

	Recognition

	Performance Parameters
	Recognition Accuracy
	Design Implementation Times
	Design Metrics

	Design Architecture
	LPC Feature Analysis
	The Hidden Markov Model (HMM)
	Elements of a Discrete Hidden Markov Model

	Design Methodology
	Design Flow in Training
	Design Flow for Recognition
	Implementation Summary

	Design Features
	Conclusion
	Probable Future Improvements
	Results

	Appendix: Implementation Snapshots

