
 High Aberrance AES System Using a Reconstructable Function Core Generator

 189

Third Prize

High Aberrance AES System Using a
Reconstructable Function Core
Generator

Institution: I-Shou University, Department of Computer Science and Information
Engineering

Participants: Chen JianHong, Liu Yu, and Chia-Hau Shiu

Instructor: Ming-Haw Jing

Design Introduction
Cryptography is an essential part of communication or information security. The Advanced Encryption
System (AES) was launched as a symmetrical cryptography standard algorithm by the National Institute
of Standard and Technology (NIST) in October 2000. Rijndael provides the AES algorithm’s
architecture, and the algorithm’s operation modules are based on finite field mathematics. Coding
contains the SubBytes, ShiftRows, MixColumns, AddRoundKey, KeyExpansion modules, and the
corresponding transcoding module. We use a look-up table (LUT) for the SubBytes and KeyExpansion
modules. This LUT, which is referred to as an S-box, takes up 256[x]8-bit memory.

In addition to containing the original AES specification, a flexible architecture is needed to produce
additional inputs that can change to irreducible polynomials, Affine transform matrix, and round
number parameters. This algorithm design makes AES decryption impossible even with the golden key,
and its variability can be expected to increase by more than 10 million times. This design needs the
software and hardware to cooperate, and takes advantage of the FPGA architecture to realize a highly
variable AES quickly.

Using the SOPC Builder tool we were quickly able to set up parameters to generate the Nios® II control
modules required for development. The Nios II microprocessor uses a RISC core, and can be combined
with a variety of peripherals, custom instructions, and custom hardware accelerators, including
algorithm logic operation, bit (group) operation, data transfer, flow control, condition instruction, and so
on. You can program these hardware accelerators as function calls in the C or C++ languages. Our
system adds fundamental components based on finite field mathematics and implements a high-speed

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

190

calculator and functional modules in software. We also performed special functions with custom
instructions and used the GNU C/C++ compiler and Eclipse IDE.

Design Concept
We used hardware-software co-design to complete the test platform for the AES software and hardware
data. Using the test platform, we were able to properly assess AES hardware and the control program
module operation as shown in Figure 1.

Figure 1. Co-Design of Software & Hardware

2iA

i2A

Today, many designers use a fixed irreducible polynomial for higher efficiency and a smaller footprint
of the AES intellectual property (IP). For long-term use, however, the fixed irreducible polynomial has
been proven to make the system’s golden key obvious, thus increasing the decryption rate of
confidential files. The decryption methods include side channel, time channel, and power side channel
attacks. Some systems can even be decrypted by an inside job. To overcome these deficiencies, we
designed an AES with high variability that can generate a LUT in real time through parameter input to
provide a dynamic AES core. See Figure 2. The input variables of this system are different from that of
the traditional AES, which cannot decrypt the encrypted document. See Figure 3.

Figure 2. AES with High Variability

Hardware (FPGA Base)

Nios II Development Kit, Cyclone Edition

Encryption / Decryption

Software (PC Base)

Diversified AES Parameter

Generator

 M: Affiner Transform Matrix
 Num: Round Num
 C: Constant
 F(x): lrreducible Polynomial

Data In:Image

Data in Data Out

Multi-Parameters & Data
Show Result

Parameters

 High Aberrance AES System Using a Reconstructable Function Core Generator

 191

Figure 3. Traditional AES Cannot Decrypt the Encrypted Document

Based on Rijindael’s AES theory, we divided the functions into encoding and transcoding. The
operation module for both parts is shown in Table 1 (each module is described in later sections). The
generation of the S-Box form (see “Implementation Method” for more information) is the key to using
AES theory. However, this generation must largely use finite field mathematical operations, such as
multipliers and squarers. These operations can be realized in software, so we can generate the required
S-Box and (Inv) S-Box. See Figure 4. This group integrates the operation modules of the AES
encoding/transcoding functions and requires the inclusion of four main components: (Inv)SubBytes,
(Inv)ShiftRows, (Inv)MixColumns and (Inv)AddRoundKey. You can implement the functions using the
Nios II software or by using hardware to accelerate the complete flow of encoding/transcoding. For
instance, the (Inv)ShiftRows and (Inv)MixColumns components are created in hardware.

Table 1. Encoding/Transcoding Algorithm in Rijndael’s AES Theory

Encryption Decryption Our
Implementation

AddRoundKey
for Round=1 to N-1
SubBytes
ShiftRows
MixColumns
AddRoundKey
end for
SubBytes
ShiftRows
AddRoundKey

InvAddRoundKey
for Round=1 to N-1
InvShiftRows
InvSubBytes
InvAddRoundKey
InvMixColumns
end for
InvShiftRows
InvShbBytes
InvAddRoundKey

Bold : Software or
Hardware

Italic : LUT

The architecture of the AES operation core can be divided into three types (see Figure 4):

■ Hardware component—Operation efficiency for accelerating the AES.

 Operation component of the AES theory: (Inv)ShiftRows, (Inv)MixColumns.

 Selection of the demultiplexer for encryption/decryption.

■ Operation of the dynamic table—Generation of (Inv)S-Box and (Inv)Key Expansion.

■ Software operation—Establishment of the dynamic table, system combination, core component
control and operation control, data flow control, and interface control.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

192

Figure 4. Architecture of the AES Operation Core

On Chip

Nios II
Processor

On-Chip
Debugging

DMA
Controller

Avalon
Bus

Data Memory

Multiplexer

(Inv)SubBytes

(Inv)MixColumes

Instruction Memory

SDRAM Controller

UART

PIO

Ethernet 10/100

M4K RAM

Sets of LUTs

SW

(Inv)Shift Rows

(Inv)AddRoundkey

Hardware

Diversified AES Application Scope
The application scope includes:

■ Secure wireless communications.

■ Protect network routers.

■ Secure electronic financial transactions.

■ Secure video surveillance systems.

■ Encrypted data storage.

■ Secure network storage systems.

Target Users
The target users include:

■ Manufacturers of wireless network bridges and wireless network adapters that support the AES
security mechanism.

■ Manufacturers of encrypted VPN products or firewalls.

■ Manufacturers of encrypting chips for mobile phones.

■ Manufacturers of private network hardware or high-capacity hardware array.

 High Aberrance AES System Using a Reconstructable Function Core Generator

 193

■ Manufacturers of ATM secure-exchange devices.

■ Manufacturers of portable communications or storage systems.

■ Manufacturers of private sensor network devices.

Nios II Development Kit
We used the Nios II Development Kit, Cyclone™ Edition, which contains the Cyclone EP1C20FC400
FPGA, to implement our design. The board features 36-Kbyte RAM, 1-Mbyte SRAM, 16-Mbyte
SDRAM, 8-Mbyte flash, 10/100 Ethernet PHY/MAC, two serial ports (RS-232 DB9 port), and so on.
See Figure 5.

Figure 5. Nios II Development Kit, Cyclone Edition

Function Description
This section describes the functionality of the system.

Expected Functionality
To implement this design we:

1. Used the Quartus® II software version 5.0 to implement the various APUs in VHDL for a high-
variability AES system.

2. Designed LUT generator and co-processors.

3. Built the entire AES system using Altera’s system-on-a-programmable-chip (SOPC) design
methodology.

4. Completed real-time transmission of plain text and cryptograph using a 115.2 Kbps UART
interface.

5. Completed 128-bit AES encoding/trancoding with SOPC Builder’s C++ compiler.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

194

6. Supported a multi-variable input interface to generate different AES encoding/transcoding
processes.

Implementation Method
We used the following implementation method:

1. Completed various APUs designed by VHDL for a high variability AES system.

a) According to the AES theory, three input methods can generate a high-variability AES
system: the irreducible polynomial, the Affine transform matrix, and round numbers.

b) The APUs were coordinated according to the input requirements of the multiplier, squarer,
S-Box, KeyExpansion, (Inv)SubBytes, (Inv)ShiftRows, (Inv)MixColumns, and
(Inv)AddRoundKey.

c) Compiled VHDL code in the Quartus II software version 5.0, and completed functional
validation.

d) According to the specification of Federal Information Processing Standard Publication
197, completed simulation of the software with BCB version 6.0, and validated it.

2. Designed the LUT generator and co-processor.

a) Analyzed the operation structure of SubBytes and InvSubBytes according to input
parameters, and generated the key required by S-Box and (Inv)S-Box form in the software.

b) Downloaded and stored the generated S-Box, (Inv)S-Box, and Key to the development
board.

3. Built the system using the Altera® SOPC Builder tool.

a) Initiated data sampling using the Cyclone FPGA standard functions.

b) Added to the user’s customized PIO. See Figure 6. The setting of each PIO is shown in
Table 2.

 High Aberrance AES System Using a Reconstructable Function Core Generator

 195

Figure 6. Add User’s Customized PIO

Table 2. Customized PIO Specification

Name Size Direction Purpose
Aes_data0~15 8 bits Bidirectional Transmit encrypted data
aes_ctl_out 32 bits Export Control external AES components

4. Defined UART baud rate: set as 115.2 Kbps, no parity, data bit=8, stop bit=1; as shown in Figure 7.

Figure 7. Communication Setting of UART Component

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

196

5. Completed 128-bit AES encoding/transcoding process with the SOPC Builder C++ compiler.

a) Compiled GUI interface program with the SOPC Builder C++ compiler.

Figure 8. Provide User’s Input Parameter Interface

b) Based on the Federal Information Processing Standard Publication 197 specification, we
completed the software test platform, which validated the whole system, as shown in
Figure 9.

Figure 9. Comparison of Specification (Up) & Test Platform (Down)

Round
Number

Start of
Round

After
SuBytes

After
ShiftRows

After
MixColumns

32 88 31 e0
43
f6
a8

5a 31 37
30 98 07
8d a2 34

2b 28 ab 09
7e ae f7 cf
15 d2 15 4f
16 a6 88 3c

a0 88 23 2a
fa 54 a3 6c
fe 2c 39 76
17 b1 39 05

04 e0 48 28
66 cb f8 06
81 19 d3 26
e5 9a 7a 4c

d4 e0 b8 1e
bf b4 41 27
5d 52 11 98
30 ae f1 e5

19 a0 9a e9
3d f4 c6 f8
e3 e2 8d 48
be 2b 2a 08

d4 e0 b8 1e
27 bf b4 41
11 98 5d 52
ae f1 e5 30

Input

1

Round Key
Value

c) According to the integration of the test data, testing system, and the test pattern provided
by the specification of Federal Information Processing Standard Publication 197, in Figure
10, the numbers marked in red are the result of the encoding/transcoding process.

 High Aberrance AES System Using a Reconstructable Function Core Generator

 197

Figure 10. Encoding/Transcoding Results by Test Pattern Input

6. Supported a multi-variable input interface to generate different AES encoding/transcoding
processes, as shown in Figure 11.

Figure 11. Multi-Variable Input Interface

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

198

Performance Parameters
The key function of the system while operating on this group is to perform the graphics for
encoding/transcoding. Because AES is a symmetric-password system, the method for encoding and
transcoding exception sequences is almost the same and the analysis of the following performance
parameters lists only the encoding process. The graphics encoding in this group is a 256[×]256-pixel, 8-
bit bitmap. Because the system can process 128-bit data each time, it needs 256[×]256[×]8 ÷ 128 =
4096 times encoding in all.

Four encoding functions—including SubBytes, ShiftRows, MixColumns, and AddRoundKey—are used
during every encoding process, with each function needing a great number of memory read/write
actions (in this group, data memory is set as external SDRAM). The performance analysis is shown in
Table 3.

Table 3. Performance Analysis During Encoding

Memory
Function Description Read

(Times)
Write

(Times)

Expected Number
of Cycle (Times)

Load this encoding data from memory (128 bit) 16 16 400
SubBytes 48 16 3200
ShiftRows 16 16 5600
MixColumns 16 16 5600
AddRoundKey 32 16 2400
Write Encoded Data to Memory (128 bit) 16 16 400
Flow and Peripheral Control 0 0 2000

Experimenting with minimum and maximum round, the minimum round is 3 and the maximum round is
11.The numbers shown in bold in Table 3 must be operated repeatedly in accordance with different
rounds, and the time of the repeated operation is Round-1. We have arranged the expected time and the
actual (experienced) time in Table 4, and added the completed PC software simulation time for
comparison. It is obvious that the Nios II/s, the standard processor, outperforms the PC software port.

Table 4. Time Analysis

Round
Number Expected Time (s) Use Time

(s)

PC
Software

Simulation
(s)

3 [400+(3200+5600+5600+2400)×2+400+2000]×20ns ×
4096 � 2.98 3 4

11 [400+(3200+5600+5600+2400)×10+400+2000]×20ns ×
4096 �13.99 13 27

Design Architecture
This section describes the design architecture.

System Design
Figure 12 shows the system design diagram.

 High Aberrance AES System Using a Reconstructable Function Core Generator

 199

Figure 12. Diagram of System Design

Define System

Processor
Component Library

Peripheral
Component Library

Custom Instruction

Composing CPU

Selecting & Composing
IP & Peripheral

Block-Based
Connection

Generation

SOPC Builder
Interface

EDIF Document
HDL Source
Document
Testbench

Assembling &
Installment

User Customized
IP

Quartus II

Development Hardware

Verification &
Debugging

Altera
FPGA

On-Chip
Debugging

GNU Pro Compiler

User Code
Program Library

RTOS

Development Software

JTAG Interface

C Header
Document

User Library
Peripheral Driver

IP Module Group

AES Algorithm
Implementation

Generate SOPC
System Define System

GNU Pro Tools

Download

We created the user link library of the system. See Table 5 for each program.

Table 5. System Program Description

Function Name Function Description
Load Parameters Load Parameters from PC Port
Receive Image From PC Load Pictures from PC Port
Encryption Encrypting
Decryption Decrypting
Send Cipher to PC Return Completely Encoding Buffer to PC
Send PlainText to PC Return Completely Decoding Buffer to PC
Text Device Test Device
Change Mode Switch Automatic Mode and Debug mode
Print Source Buffer Return Gradually Source Buffer to PC
Print Cipher Buffer Return Gradually Encoding Buffer to PC
Print Plaintext Buffer Return Gradually Decoding Buffer to PC

Figure 13 shows the system diagram.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

200

Figure 13. System Diagram

Hardware Design
This section describes the hardware design. We first created the multiplier, including the product and
modulation. See Figure 14.

Figure 14. Multiplier Design Diagram

. . .

...
...

For the product: Computing the result (c with 15 bits) of two 8-bit operations that are multiplied by b.
See Figure 15 for the theory, and Figure 16 for the waveform diagram.

Figure 15. Product Design Module

 High Aberrance AES System Using a Reconstructable Function Core Generator

 201

Figure 16. Product Simulation Waveform Diagram

For modulation: Input into C (15 bits), rank-reduced according to different f (x) (where f (x) must be an
irreducible polynomial), the result is M (8 bits). The hardware circuit is shown in Figure 17, where f7
and f6 denote the top bit and secondary top bit of f (x). These values are input at one port of this layer’s
AND gate.

Figure 17. Modulation Hardware Circuit Diagram

a1
4 m
x7

in
st

AN
D

2
a1

3
in

st
8

X
O

R

a1
4 m
x6

in
st

1

AN
D

2
a1

2
in

st
9

X
O

R
m

x7
in

st
19

A
N

D
2

in
st

24

XO
R

a1
4 m
x5

in
st

2

AN
D

2
a1

1
in

st
15

X
O

R
m

x6
in

st
16

A
N

D
2

in
st

25

XO
R

a1
4 m
x4

in
st

3

AN
D

2
a1

0
in

st
14

X
O

R
m

x5
in

st
17

A
N

D
2

in
st

31

XO
R

a1
4 m
x3

in
st

4

AN
D

2
a9

in
st

13

X
O

R
m

x4
in

st
18

A
N

D
2

in
st

30

XO
R

a1
4 m
x2

in
st

5

AN
D

2
a8

in
st

12

X
O

R
m

x3
in

st
20

A
N

D
2

in
st

29

XO
R

a1
4 m
x1

in
st

6

AN
D

2
a7

in
st

11

X
O

R
m

x2
in

st
21

A
N

D
2

in
st

28

XO
R

a1
4 m
x0

in
st

7

AN
D

2
a6

in
st

10

X
O

R

in
st

27

m
x1

in
st

22

A
N

D
2

XO
R

m
x0

in
st

23

A
N

D
2

XO
R

a[14..0]

mx[7..0]

INPUT
VCC
INPUT
VCC

f7

f6

a 5
in

st
26

For (Inv)ShiftRow: Combine ShiftRow and (Inv)ShiftRow components and send required parts by
multiplexer. Sel=0 is required one for encoding and sel=1 is required for decoding. See Figures 18 and
19.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

202

Figure 18. (Inv)ShiftRow Design Diagram

SR

InvSR

0

1

Data Out
[127..0]

sel

Data In
[127..0]

Figure 19. (Inv)ShiftRow Simulation

For (Inv)MixColumns: combine and design MixColumns and InvMixColumns components, generate
different Word_MixCs in accordance with input different MixColumns Polynomials; the Word_MixC
exports encoding/transcoding data at the same time it is encoding for sel = 0, transcoding for sel=1. See
Figures 20 and 21.

Figure 20. (Inv)MixColumns Design Diagram

MC

MC

MC

MC

Date In
[31..0]

0
1

sel

Date Out
[31..0]

Inv

 High Aberrance AES System Using a Reconstructable Function Core Generator

 203

Figure 21. (Inv)MixColumn Simulation

Software Design Flow
The function flow is as follows:

1. Automatic software simulation—Create an S-Box and complete encryption/decryption simulation
and image encryption/decryption process. See Figure 22.

Figure 22. Automatic Software Simulation Flow

2. Hardware encryption/decryption—The RS-232 interface is used to pass parameters and data and to
receive the data after verification. See Figure 23.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

204

Figure 23. Hardware Encryption/Decryption Flow

Set Communication Port

Send Parameter

Send Image

Hardware Encrypt Hardware Decrypt

Hardware Encrypt & Decrypt

Receive Image

Show Image

See Table 6 for the description of the software pseudo-code and function.

Table 6. Software Pseudo-Code

DAES Encryption DAES Decryption
Load_Parameter
Generate_Encrypt_SBox
Key_Schedule

for Image_rowcount=1 to row
for Image_colcount=1 to column

AddRoundKey
for round=1 to N-1

SubBytes
ShiftRows
MixColumns
AddRoundKey

end for
SubBytes
ShiftRows
AddRoundKey

end for
end for

Load Parameter
Generate_Decrypt_SBox
Key_Schedule

for Image_rowcount=1 to row
for Image_colcount=1 to column

InvAddRoundKey
for round=1 to N-1

InvShiftRows
InvSubBytes
InvAddRoundKey
InvMixColumns

end for
InvShiftRows
InvShbBytes
InvAddRoundKey

end for
end for

See Table 7 for the software function description.

 High Aberrance AES System Using a Reconstructable Function Core Generator

 205

Table 7. Software Functions Description

Coordinate All Required Functions
Basic function:
Multiplication Multiplication that operates on finite field
Inverse Inverse element that operates on finite field
Matrix Inverse Inverse Matrix that computes Affine Transform Matrix
Image Process Sub-program of image process
Debug RS232 communication Sub-program sent by UART interface
AES function:
Load Parameter Load parameter, user can change source parameter
Generate_Encrypt_SBox Generate_Encrypt_SBox: Required S-Box for generation of

encryption
Key Schedule Key is expanded for the use of AddRoundkey
Create Encrypt S-Box Table that creates S-Box
Create Decrypt S-Box Table that creates (Inv)S-Box
Key Expansion Key that creates each Round
Encrypt Encrypted sub-program
Decrypt Decrypted sub-program

The key functions are described as follows:

1. Parameter input—The user can input parameters and increase variability function. See Figure 24.

Figure 24. Parameter Input Interface

2. Data verification—Provide complete encryption/decryption process. See Figure 25.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

206

Figure 25. Data Verification Interface

3. Image process—Load a 256[x]256, 8-bit image and perform encryption/decryption process. See
Figure 26.

Figure 26. Image Process Interface

 High Aberrance AES System Using a Reconstructable Function Core Generator

 207

4. Debug communication—Based on RS-232 communication handle, the hardware returns the data to
make debugging easy. See Figure 27.

Figure 27. Communication Debug Interface

Design Methodology
This section describes the design methodology.

Realization Method
The realization method includes the following steps:

1. Definition of the AES system—Including the processor, memory, and peripheral components.

2. Generation of the system—Generate the document using the SOPC Builder tool.

3. Design the hardware—Build the required components with VHDL code, and incorporate, compile,
and simulate the circuits.

4. Design the software—Use the Nios II integrated development environment (IDE) to generate the
related headers and drivers, write the application program, and compile it as an .elf executable file.

5. Simulation—Simulate with the ModelSim software tool. If there is a problem, return to step 2 to
modify the system design software/hardware.

6. Verification—Perform verification by downloading the software/hardware with the JTAG port onto
the RAM of the Cyclone development board.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

208

7. Test—Produce test results by combining the user interface software of the PC port development
board and by delivering huge volumes of data for measurement.

Design Process
The SOPC design approach provides an integrated software/hardware with an IDE including logic part
(IP design), storage part (RAM), and computation core (CPU or DSP). The process of our system
design is as follows:

■ Selection of algorithm and core—We were able to handle the entire AES operation process with the
Nios II processor by adopting Rijndael’s AES algorithm. We added input variables to generate the
dynamic form that is stored on the on-chip RAM.

■ Selection of the IP and design of custom IP components—Our design uses general-purpose IP
components, whose detailed explanation files can be downloaded from Altera’s website.
Additionally, we developed custom IP components according to the requirements of the system
design and connected it onto Avalon® bus.

■ Design of the software/hardware system—Software and hardware modules are used together in this
design. This method creates challenges because the development of the software involves the plan
and assignment of hardware resources, and is dependant upon system performance. However, the
SOPC Builder and the Nios II IDE tools provide us with an integrated software/hardware design
development system, making it easy to accelerate the design process.

Design Features
■ Dynamic Form Generation—Based on the three input variables, the dynamic form of the S-Box

and MixColumns Matriqs are generated and stored in RAM. Thanks to the FPGA architecture, we
can use the Nios II processor to control the operation component of each AES, and perform data
move, access, and operation with the Avalon bus. In this way, we have successfully implemented
the high variability AES password system on the FPGA.

■ 100% Realization of Software/Hardware—The software/hardware platform of the Diversity AES
project was successfully designed in this group, greatly improving the security of the AES.

■ Personalized Demo Program—In this group, the whole Diversity AES process is shown at the
software port by AutoRun, which enables the user to understand quickly the design operation.

■ Connecting Three Customized IP Functions to the Nios II Core—Because the Nios II processor is
flexible, we were able to design the PIO of external communication according to the design
requirements. This means we were able to combine (Inv)ShiftRow, (Inv)MixColumn, and
demultiplexer to accelerate the efficiency of the AES encoding/decoding operations in this group.

■ Solution to UART-Related Envelope-Packet Transmissions—Because the UART IC on the
development board connects with a 25-MHz quartz oscillator, frequency errors may occur. As a
result, a few envelope packets may not be delivered during a large volume data transmission.
Therefore, we reduced the envelope packets in this group, making them suitable for transmission
and successfully solving the problem.

 High Aberrance AES System Using a Reconstructable Function Core Generator

 209

Conclusion
During Altera’s 2005 Nios II processor competition, our design group divided the design tasks into
system integration, hardware development, and software design as follows.

■ System—The convenience of the Nios II IDE and the SOPC Builder tools gave us the flexibility to
realize the design quickly on a prototype machine, which accelerated the development process.
Through this competition, we have learned the process of consumer-electronics product
development. The SOPC design approach reduces the cost of manpower and material resources
during development. Because of this, we believe that the design approach will become popular in
the future. While we did not add many components, this competition made us appreciate the
potential of more system integration capabilities. Additionally, we hope that Altera can provide a
variety of demo board demonstration programs that will enable interested students to quickly grasp
the development process of FPGA designs.

■ Hardware—In this competition, we used a top-down design approach and planned the complete
design of the hardware in the beginning. This meant that a set of data stream rules needed to be
established at the start of the planning stages. These rules eliminated problems during the design
stage, allowing the project to be completed on time. Teamwork became an integral part of this
contest. Although the Quartus II tool was easy and flexible to use, there were design issues that
required experience; for example, using different frequencies while accessing the RAM. In
conclusion, this competition provided us with an important opportunity to learn about teamwork
and problem-solving, understand system development, and resolve challenging design questions.

■ Software—We developed the necessary software interface, stressing communication and message
exchange with the Nios II processor. We completed this task with the RS-232 interface, and learned
a lot about message transmission. We adopted the SOPC Builder C++ tool to create the software
design for the Window’s interface. We used it as a verification tool and managed to perform Nios II
communication debugging for the phase test. We hope to learn more about SOPC design in the
future!

Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks
and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the
property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and
pending applications, mask work rights, and copyrights.

	Design Introduction
	Design Concept
	Diversified AES Application Scope
	Target Users
	Nios II Development Kit

	Function Description
	Expected Functionality
	Implementation Method

	Performance Parameters
	Design Architecture
	System Design
	Hardware Design
	Software Design Flow

	Design Methodology
	Realization Method
	Design Process

	Design Features
	Conclusion

