
Nios II Embedded Processor Design Contest—Outstanding Designs 2005

228

Third Prize

Portable Vibration Spectrum Analyzer

Institution: Institute of PLA Armored Force Engineering

Participants: Zhang Xinxi, Song Zhuzhen, and Yao Zongzhong

Instructor: Xu Jun and Wang Xinzhong

Design Introduction
We designed a portable vibration spectrum analyzer based on the Altera® Nios® II soft core processor
and FPGA. The instrument is used in fault monitoring and diagnosis of rotary machines, which are used
in battle tanks, armored cars, and vehicle engines. The operation of these vehicles may be affected by
abnormal vibrations for different reasons, including serious accidents that may lower fighting strength
and productivity. To solve the vibration diagnostics problem, we planned to design a portable vibration
spectrum analyzer. Our instrument can analyze the vibration spectrum of rotary machines such as
engine and gear case in real time.

First, vibration signals are collected by vibration sensor and sent to the FPGA after being processed by a
high-speed A/D converter. Next, we perform digital filtering of these signals using the FPGA and send
the data to the Nios II processor for fast Fourier (FFT) transformation using hardware acceleration,
Finally, the Nios II processor analyzes the spectrum of transfered results and displays the relevant time
domain waveforms and spectrum curves as well as a few major parameters such as major peak value
and major lobe frequency on a color LCD.

Our system can display both time domain waveforms and spectrum curves in real time and store the
required waveform and frequency into flash memory through a key-press action. Playback of
waveforms is also available. By observing the spectrum curve, a technician can zero in on some
abnormal vibration frequency and troubleshoot the faulty condition. In this way, imbalance,
misallignment, and bush fragmentation may be expediently detected. Using the instrument, mechanics
can quickly handle problems and avoid accidents and potential damage to vehicle engines. The systems’
reliable multi-task real-time operating system (RTOS) µC/OS handles management tasks. The 256-
color, 320 x 240 LCD display helps to migrate µC/GUI to the system; the systems’ graphical user
interface (GUI) enables convenient and user-friendly operation. The instrument can be used to monitor
and analyze rotary machine vibrations and thus offer considerable military and economic benefits to
users.

 Portable Vibration Spectrum Analyzer

 229

We chose Altera system-on-a-programmable-chip (SOPC) solution including the Nios II processor for
the following reasons:

■ The Nios II soft core processor is implemented in an FPGA, changing the traditional
microcontroller unit (MCU) plus FPGA system. The device combines control and digital signal
process functions into the FPGA and enables a system on a chip that results in compact designs
with reduced power consumption.

■ The Nios II based system has headroom for system upgrades. Because Nios II is a soft core
processor, you can upgrade the CPU if you do not need to alter the peripheral hardware; in this
way, designers can enhance system performance and prolong product life cycles.

■ The system uses several digital signal processing functions such as FFT and finite impulse response
(FIR). With the matching development environment, we can customize the peripheral intellectual
property (IP) based on Avalon® bus using customized instructions. By doing so, we have greatly
improved the digital signal processing capacity of the system and realized associated logic circuitry
using the FPGA.

In a high-speed digital system, faster signals make a transmission line of a PCB connection, and
therefore signal integrity is impacted because of crosstalk, connection topology of chips, pin distribution
and package, geometric and electrical property of the PCB, and voltage reference panel. Integrating
these high-speed signals into an FPGA can solve most of these problems. In addition, this approach
makes the best use of FPGA resources.

Function Description
The system enters into the wait master display after power up; the display shows design name and
function overview; a prompt to press any key to continue appears at the bottom of the display; on
pressing a key, the system enters master mode.

The structure of system master display is shown in Figure 1.

Figure 1. System Master Display

SAVE

LOAD

SET

NUM

16

Time Domain
Waveform

Frequency
Waveform

Sampling Frequency
Number

Windows
Function

Storage Unit
Choice

f

Function
Switch

Load

Save
Waveform

Storage Unit
Number

Amplitude
Value

Frequency
Size

5 V

2.5 V

0 V

0

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

230

Figure 2 shows the second level menu options.

Figure 2. Second Level Menu Options

The systems’ major functions and their implementation are as follows:

■ Real-time display of spectrum and real-time measurement of main lobe frequency—The real-time
display and measurement of vibration signal spectrum are major functions of the system.
Observation of vibration spectrum will help to detect vibrations that may cause fault or danger,
making it possible to troubleshoot engines. After entering the main menu, the system will
automatically perform FFT for the collected time domain digital signals. Next, these time domain
signals are transformed into frequency domain signals, and spectrum analysis is performed and a
spectrum curve is displayed on LCD. Because we have used a customized hardware floating-point
multiplier to accelerate key algorithms in the FFT, it takes less than 0.1 s for one 512-point FFT.
Because a naked eye can only distinguish 10 frames/s flushing speed, the software FFT algorithm
accelerated by application hardware meets the required system performance for a real-time display
of signal spectrum. To help the technicians, we have designed a real-time display function for easy
display of main lobe frequency.

■ Real-time display and measurement of time domain waveform—The time domain signal waveform
is an important reference for engine diagnostics. To facilitate comparison with frequency and
relevant analysis, the time domain waveform is displayed in real time on the waveform area. The
time domain waveform features amplitude coordinates, from which the amplitude information can
be measured. On the time domain waveform, the peak-to-peak value of time domain waveform
signal is also displayed. Any change in the amplitude of vibration signal can be detected through
observing the peak-to-peak value, helping in easy diagnostics.

■ Storage and playback of time domain and frequency domain waveforms—To facilitate diagnostics
using analysis and review of time domain and frequency domain waveforms, we have designed
storage and playback functions of these waveforms. When any time domain waveform is deemed
useful by technicians, you can press the Save button to store it. While storing, pressing Num button

 Portable Vibration Spectrum Analyzer

 231

changes the storage position. The storage action saves the current waveform and also the peak-to-
peak value and main lobe of spectrum. The system can save 64 frames of waveforms and spectrum
data on flash memory.

■ 9-level adjustable sampling frequency—To improve the frequency resolution of the sampling
signal, you can press the SAM button to set the sampling frequency of A/D controller and set the 9-
level sampling frequency using a 4-bit control word. The sampling frequency is implemented
through a controlling hardware-frequency divider.

■ Hardware-only digital filter accelerates digital signal processing—This system performs
hardware-only digital filtering on collected signals. Three states have been set including, high pass,
low pass, and no filter, selectable through the FIR button. The maximum and minimum frequencies
of high-pass filter and low-pass filter are respectively, multiple values of 0.05x and 0.45y of
sampling frequency. Because we have used a hardware filter, the system delivers excellent real-
time performance. Because the FIR filter time cycle is shorter than the A/D transform cycle, there
is no signal loss or delay. The digital filter uses an FIR algorithm to effectively filter out the
interference noise of the device. The hardware filter uses a 16-tap direct FIR design and the filter
parameters are fixed.

■ Windows settings of waveforms—For the system, we have set two window modes: a rectangular
window, and a Hanning window. Because the system samples 512 points and processes it with
FFT, it is equivalent to rectangular window in the sampling process; for a Hanning window, the
system can restrain side lobe effectively. When time domain signal is obtained, it can weight the
window function. The weighting function of Hanning window is:

)2cos(5.05.0)(
N

nnwH
π−= , 1,,1,0 −= Nn K (2.1)

The button WIN adds a window and the effect is displayed in real time.

■ Customized pulse-width modulation (PWM) peripherals generate standard waveforms for self-
check—By setting the peripheral PWM controller, a square wave signal with set frequency and
pulse width can be generated. Before testing the vibration signal, the square wave signal can be
tested initially so that the system can make accurate detection. The PWM controller based on the
Avalon interface is easily customized and the waveform can be output through a program
controlling the PWM.

■ Migrate µC/GUI to the system for easy operation—To make the display easy to operate, we
transferred the graphic user interface µC/GUI to the system. With the display interface, diagnostics
can be easily made by observing the frequency curve and functions set through buttons.

■ Management with µC/OS Multi-tasking Real-time Operating System—Because the system has
multiple tasks requiring real-time operation, we used an RTOS to manage the tasks. The Nios II
integrated development environment (IDE) provides the µC/OS whch has been used in many MPU
applications. In our system, we have assigned five major system tasks, such as the button scan,
LCD display/refresh, A/D collection, FIR control and flash timing storage.

Performance Parameters
The most important technical issues for the dynamic signal analyzer are frequency range, accuracy, and
dynamic range. The frequency range is the range of frequencies an analyzer can detect. This depends on

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

232

the A/D converter and sampling speed. In addition, this function is also related to the bandwidth of the
modulation-adjustment amplifier filter.

Amplitude-value accuracy refers to the full range accuracy of a corresponding frequency. This
parameter depends on absolute accuracy window flatness and electronic hash level; a typical single
channel’s absolute accuracy is ±0.15~±0.3dB and the matching accuracy between channels is
0.1~0.2dB. The phase error between channels is 0.5~2 [deg].

Dynamic range depends on the word value (digits) of the A/D converter; furthermore, this also relates to
the stop-band attenuation and FFT arithmetic error of the anti-alias filter as well as the background
noise of electronic instruments.

Other major technical issues are described in the following sections.

Input section
Input impedance: Impedance of test instruments without being powered up. Generally, it is about 1-M
Ω, which does not impact testing when coupled with external impedance.

Input-coupled mode: DC and AC.

Input range: the allowable voltage range of input.

Amplitude value error: ±0.1~±0.3dB.

Phase error: ±0.5~±1.0 deg.

Triggering mode: Free running, input signal triggering, signal source triggering, and external triggering.

Triggering level: Enables the operation of instruments.

Section of Analysis
Frequency range: Signal range available for detection.

Sampling frequency: Generally, it is 2.56 x analyzed frequency range.

Sampling points: Number of data points used in FFT operations.

Window function: Weighting modes of window functions.

Average mode: Provides average values of linearism, exponent, and peak value.

Parameters of the System Design
We surveyed the available test instruments in the market, and fixed the major parameters in our system
to be:

■ Frequency measurement range: 0~100 kHz

■ Dynamic range: 60 dB

■ Amplitude value accuracy: ±0.3 dB

 Portable Vibration Spectrum Analyzer

 233

■ Input range: 0~5 v

■ Amplitude value error: ±0.3 dB

■ Phase error: ±0.5

■ Sampling frequency: 788 Hz~200 kHz. This is separated into nine segments: 200 kHz, 100 kHz, 50
kHz, 25 kHz,13 kHz, 6,300 Hz, 315 Hz, 1575 Hz, and 788 Hz.

■ Spectrum resolution: With different sampling frequencies, the resolutions are set at 393.8 Hz, 196.9
Hz, 98.4 Hz, 49.2 Hz, 24.6 Hz, 12.3 Hz, 6.2 Hz, 3.1 Hz, and 1.5 Hz.

■ Time domain waveform range : 0~5000 mV.

■ Accuracy of spectrum major lobe frequency: ±0.5%

■ Sampling points: 512.

■ Windows: RSectangular and Hanning

■ Measurement accuracy of time domain peak-to-peak value: ±3%

■ Time-domain-amplitude value error: ±3%

■ Storage of time domain and frequency domain waveforms: 64 frames

Testing the Measurement Setup
To check our design and validate the test parameters, we carried out measurements for a group of sine
waves, using a signal generator. Next, we changed the waveform and amplitude values to get different
data and analyzed the results. Here is the list of several major parameters.

Experiment instruments:

■ JW—2B DC stabilization voltage supply one

■ GFG—8255A signal generator one

■ XJ4453A digital oscilloscope one

■ Test board one

System Test Solution
The system test solution is shown in Figure 3.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

234

Figure 3. System Test Solution

Experiment environment: room temperature: 24 degrees

Frequency Measurement Range
Measurement of lowest frequency:

Item
Measurement

Times

Set
Value
(Hz)

Measured
Value
(Hz)

Absolute
Error
(Hz)

Relative
Error (%)

1 0.03 0 -0.03 0
2 0.7 0 -0.7 0
3 1.23 0 -1.23 0
4 1.65 1 0.65
5 2 1 1

When the lowest sampling frequency is 788 Hz, the lowest resolution of system is 1.5 Hz, so the error is
comparatively large when measuring low frequency. In our system, frequencies below 1.5 Hz will be
considered as 0 Hz. The error in low frequency collection is due to the deficiency of system resolution.
Therefore, we need to improve the system resolution at a later stage.

When the sampling frequency is 200 Hz, the system can detect waveforms within a frequency range
100±0.4 kHz; considering the resolution, the waveform is deemed as100 kHz.

Accordingly, based on this calculation, we think the frequency range of the system meets the design
objectives. Further, in real applications, mechanical shocks contain low wave frequencies, making it
possible to use our instrument without impacting measurements.

Spectrum Major Lobe Accuracy
Considering the massive data we need to process, for brevity’s sake we show only data for the highest,
lowest, and middle frequencies.

 Portable Vibration Spectrum Analyzer

 235

Method: Input the sine signals generated by the signal generator into the detection system.

Sampling frequency: 778 Hz Resolution: 1.5 Hz

Item
Measurement

Times

Set Value
(Hz)

Measured
Value
(Hz)

Absolute
Error (Hz)

Relative
Error (%)

1 36.8 36 0 0
2 24.1 24 0 0
3 11.7 12 0 0
4 14.5 15 0 0
5 8.8 9 0 0
Average 0 0

Sampling frequency: 200 kHz Resolution: 393.8 Hz

Item
Measurement

Times

Set Value
(Hz)

Measured
Value (Hz)

Absolute
Error (Hz)

Relative
Error (%)

1 39.6 K 40.165 K 171 0.43
2 51.4 K 51.978K 184 0.36
3 21.0K 21.263K 0 0
4 5.03K 5.119K 0 0
5 60.38K 61.428K 652 1.08
Average 0.332

Sampling frequency: 25 kHz Resolution: 49.2 Hz

Item
Measurement

Times

Set Value
(Hz)

Measured
Value
(Hz)

Absolute
Error (Hz)

Relative
Error (%)

1 2.08K 2.116K 0 0
2 0.725K 0.738K 0 0
3 4.24K 4.331 42 0.99
4 9.98K 10.139 109 1.10
5 1.60K 1.624K 0 0
Average 0.402

Conclusion: Through analysis of the three different sampling frequency experiments, we feel the system
accuracy of ±0.5% was achieved and it meets the design requirements.

Time Domain Peak to Peak Value Accuracy
Method: input the sine signal generated by signal generator into the digital oscilloscope and system.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

236

Item
Measurement

Times

Set Value
(Hz)

Measured
Value
(Hz)

Absolute
Error (Hz)

Relative
Error (%)

1 3.24 3.15 -0.09 2.77
2 2.61 2.53 -0.08 3.06
3 1.50 1.45 -0.05 3.33
4 3.82 3.76 -0.06 1.57
5 1.30 1.26 -0.04 3.07
Average 2.76

Analysis: The peak-to-peak value of waveform generated by signal generator is unstable in
measurement. Therefore, the medium value is comparatively stable when taking the reading. Because
the measured value of system is the mean value processed by the system, it is an accurate value.

Time Domain Waveform Amplitude Accuracy

Item
Measurement

Times

Set Value
(Hz)

Measured
Value
(Hz)

Absolute
Error (Hz)

Relative
Error (%)

1 2.40 2.36. -0.04 1.67
2 1.83 1.89 0.06 3.28
3 1.06 1.10 0.04 3.37
4 0.84 0.81 -0.03 3.57
5 1.32 1.35 0.03 2.27
Average 2.832

Conclusion: With the experiment, the repeat (copy) accuracy of time domain waveform meets the
requirements of our design.

Analysis and conclusion of system measurement: Through the analysis of experiment data, we were
able to show that the basic performance of the system met our design objectives. The test indexes that
were not perfect enough will be further improved.

Design Architecture
The hardware design block diagram is shown in Figure 4. The bold line highlights block diagram of the
FPGA internal hardware circuit. The FPGA external circuit modules include A/D and signal-
conditioning circuitry, keyboard, LCD, SDRAM, SRAM and flash memories.

 Portable Vibration Spectrum Analyzer

 237

Figure 4. Hardware Design Block Diagram

Stratix FPGA

Key

320*240
LCD

8 M Flash

16 Mbyte
DRAM

1 M SRAM

High-Speed AD
& Conditioning

Unit

PWM Output

Keyboard
Controller

LCD Interface

FIR Hardware

LCD Controller

Tri-State Bus

SRAM
Interface

FIR Control

SDRAM
Interface

FIFO Control

Flash Interface

Self-
Customized

PWM

AD Storage
Hardware FIFO

AD Sample
Hardware
Controller

UART or Other
Interfaces

On-Chip
RAM/ROM

Nios II
Processor

Self-Customized
Floating-Point
Multiplication

Instruction

Timer

Nios II Processor

The software is implemented based on a Hardware Abstraction Layer (HAL) provided by the Nios II
IDE. The software tasks are handled by a multitasking real-time operating system, the µC/OS II, which
improves program readability and simplifies program development. We added a graphical user
interface, µC/GUI for the LCD display to make it more user-friendly.

Six tasks comprise the software structure of the whole system, including the system main task, keyboard
scanning, LCD display, A/D sampling, FIR control and flash timing storage. Where necessary, we can
add other tasks.

The overall software structure is shown in Figure 5.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

238

Figure 5. Software Block Diagram

Design Methodology
Our system design is based on Altera’s SOPC solution. During the design process, we fully utilized the
technical advantages of SOPC design for the system software/hardware synergy. By doing so, we were
able to realize system functions within a very short time. A detailed description of hardware and
software design follows.

System Hardware Design
Figure 6 shows the Block Design File (.bdf) diagram of the overall hardware design of system
peripherals, including A/D controller, FIR filter, and A/D FIFO.

Figure 6. Hardware Design BDF

clkin
key
data_s
sel[3..0]

cs
din

clk_ad
clk_fifo_wr

fifo_data[11..0]
ram_wraddr[8..0]

ads784
1

inst98

clk
mode[1..0]
x[11..0]

fim

inst8

y[11..0
]

OUTPUT ad_dclk

OUTPUT ad_din

OUTPUT ad_cs

fifo1
data[11..
0]
wrreq
wrclk

wrfull

rdreq
rdclk

q[11..0]

rdempty

12 bit¡Á512 word
inst97

in
st

4

N
O

T

 Portable Vibration Spectrum Analyzer

 239

The symbol diagram of Nios II processor is shown in Figure 7. It shows the peripherals that Nios II
integrates with the processor unit.

Figure 7. Nios II Symbol

Figure 8 shows the integrated IP modules of SOPC Builder.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

240

Figure 8. Integrated IP Modules

In this system, the Nios II CPU uses the Standard type configuration.

Lcd_data, lcd_a, lcd_rd, lcd_rw, lcd_busy and lcd_cs are all peripherals of PIO type. They are used to
simulate the control timing of an external LCD controller to control the LCD.

Ad_in: Data to send the sample data in FIFO to Nios II processor for processing.

Rd_clk,rd_req,rd_emp: Control line of A/D FIFO.

Selfir: Control line used for setting filter type.

Selfir: Control line used for controlling A/D sample frequency.

Pwm_test: Output port of self-customized PWM peripheral used for system self-test.

Now, we will describe the design process of each module in detail from the following aspects.

Design of PWM Peripheral Logic Based on Avalon Bus Interface

The Avalon bus structure promoted by Altera is used to connect the processor with its peripherals to
build an SOPC system. Besides defining connection port between master device and slave device, the
Avalon bus also defines the connection timing between the master device and slave device.

 Portable Vibration Spectrum Analyzer

 241

The Avalon data bus supports three widths: byte, word, and double word. When a transfer is finished,
Avalon bus will perform a new transfer on the next clock cycle between either previous master and
slave devices or new master and slave devices.

As a bus structure dedicated to SOPC design, the Avalon bus differs greatly from traditional ones. For
better understanding of its architecture, we have to give detailed explanations on some words.

■ Bus cycle—A cycle of Avalon bus starts when the master clock rises and ends when it goes down.
The bus cycle is used as reference for the timing of bus control signals.

■ Bus transfer—Avalon bus transfer is the reading and writing of data. It can take one cycle or
multiple cycles according to the master and slave devices being used.

■ Master port—A set of ports on the master device. Directly connected to the Avalon bus, these ports
initiate data transfer on the bus. One device may have several master ports.

■ Slave port—A set of ports on the slave device. Directly connected with the Avalon bus, these ports
generate data interaction with the master port on Avalon bus. A master device may have slave port.

■ Master/slave device group—A group consisting of a master device and a slave device that both
require data interaction. They transfer data through the master port and slave port and connect with
the Avalon bus.

An Avalon bus comprises multiselector and arbiter. A system can have several Avalon bus modules. An
Avalon bus features:

■ A maximum address space of 4-G bytes.

■ All signals are synchronized with its clock.

■ Offers independent address line, data line and control line for each peripheral, which simplifies
peripheral interface.

■ The multiselector can automatically establish dedicated data channel for the transfer of data.

■ Can automatically generate chip select signals for the peripherals.

■ Its parallel multiple master device structure allows simultaneous data transfer of multiple master
devices.

■ It has an interrupt processing function. Each peripheral has an independent signal line for interrupt
request connected to the Avalon bus. The Avalon bus can generate the corresponding interrupt
signal and then transfer it to Nios II.

Because of these advantages, Altera has added user-customizable logic to the SOPC system interface.
As long as the interface and logic are designed and defined in accordance with specifications for the
Avalon bus interface, the user-defined peripherals can be added to the system using development tools.

PWM Peripheral Function Design
We have designed the PWM peripherals to be Avalon bus slave peripherals. The bus controls the PWM
by modifying its registers. The registers’ addresses can be automatically mapped into the system, which
can be modified in software.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

242

The PWM is required to have functions as follows:

■ Set cycle—Sets the number of cycle (using a 32-bit register) through clock_divide port, and sets the
output cycle to be clock_divide times of clk, maximum 232=4294967296 times of clk.

■ Set duty cycle—Sets the ratio of low to high level (using a 32-bit register) duty_cycle, the value of
which shall be less than that of clock_divide.

■ Control PWM output—Decides whether PWM outputs or not with the control function.

Verilog HDL Design of PWM Logical Function
The core of PWM peripheral is a counter. It controls counter cycle with clock_divide, and the output is
the result of the contrast between duty_cycle and counter.

Here is the Verilog HDL program source code for programming control cycle and pulse width.

always @(posedge clk or negedge resetn) //PWM Counter Process
begin
 if (~resetn)begin
 counter <= 0;
 end
 else if(pwm_enable)begin
 if (counter >= clock_divide)begin
 counter <= 0;
 end
 else begin
 counter <= counter + 1;
 end
 end
 else begin
 counter <= counter;
 end
end

always @(posedge clk or negedge resetn) //PWM Comparitor
begin
 if (~resetn)begin
 pwm_out <= 0;
 end
 else if(pwm_enable)begin
 if (counter >= duty_cycle)begin
 pwm_out <= 1'b1;
 end
 else begin
 if (counter == 0)
 pwm_out <= 0;
 else
 pwm_out <= pwm_out;
 end
 end
 else begin
 pwm_out <= 1'b0;
 end
end

The timing simulation of PWM peripheral is shown in Figure 9.

 Portable Vibration Spectrum Analyzer

 243

Figure 9. PWM Simulation

Design & System Integration of Avalon Interface Files
After finishing the design of PWM functions, we moved onto design the interface timing between
function modules and Avalon bus. The interface timing is mainly responsible for transferring the bus
signals to the register on control-function module to handle the communication between bus and control
registers. The bus signals that are related to slave interface peripherals include clk, resetn, chip_select,
address, write, write_data, read, and read_data. The address is mainly used to transfer the bus address
and copy the address to register. Then, after selecting the appropriate control registers, the signals
including write, write_data, read and read_data will perform reading and writing operations on these
registers.

Customization & Integration of Hardware Floating-Point Multiplication,
Addition & Subtraction Instructions
Floating-point multiplication is generally used in digital signal processing (DSP) algorithms. Because
the Nios II processor does not have a floating-point multiplication instruction, defining a hardware
floating-point multiplication instruction will remarkably speed up related DSP algorithms. This was
implemented by taking advantage of the Nios II system’s well-defined interface that allows user-defined
hardware instructions. We simply need to call these user-defined instructions in the program to
complete the execution of algorithms.

IEEE Standard Single-Precision Floating Point Number Standard
IEEE754 criteria defines binary floating-point number standard as 32-bit (single precision) and 64-bit
(double precision) numbers. Because the system uses a 32-bit floating-point number, detailed
instructions are defined for single-precision floating-point number. For standard of double precision
floating-point number, please refer to related material.

It is indicated as:

 N=(-1) s*M*2E-'z' (5.1)

N in (5.1) indicates floating-point number; S is sign bit value (positive number when the 31st bit is 0,
and negative number when the 31st bit is 1). E represents 8 binary index from the 23rd to 30th bit, whose
value is that from 0 to 255, and hence can indicate value between 2-m to 2}z'. M refers to binary
decimal shown by mantissa. It is indicated as:

 M=1+m2}2-'+mz}2-z+m}o2-' } } – mot (5.2)

m in the formula indicates the ith number in the corresponding mantissa, which is 0 or 1.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

244

It can be displayed as 1.0101 * 23, its sign bit in corresponding floating-point is OB, index part is
10000010B, mantissa is olo_ loo0_ 0000_ 0000_ 0000_ ooooB, and the whole 32 bit figure shows the
value is 0100 0001 0010 1000 0000 0000 0000 0000B.

In practice, there are 5 cases for M and E, which should be processed differently:

1. (1) E=255,M-1}0 N does not represent a number

2. (2) E=255,M� 1=0 N = (-1)s*�

3. (3) 0<E<255 N = (-1)s * M * 2E-'z'

4. (4) E=O,M� 1 } 0 N = (-1)s * (M� 1) * 2}-}z}

5. (5) E=O,M-1= 0 N = (-1)s * 0

During floating-point operations, it is overflow as in cases 1, 2 and E > 255, and zero as in case 5.

Design of Single-Precision Floating-Point Number Multiplication
According to IEEE754 standard, the algorithm of single precision floating-point number multiplication
can be de divided into sign bit calculation, index bit calculation, and remainder multiplication
calculation. The first two are easy to realize. The sign bit is two multiplicands sign bit; the index
calculation is done by adding two 8-bit binary integers without symbol and subtracting 127 from the
result; and then estimate whether the overflow summation is 0. The remainder multiplication calculation
is the most difficult to implement because of floating-point number multipliers. The remainder
multiplication calculation can be transformed into multiplication of two 24-bit integers without symbol.
Therefore, the key to the designing of floating-point multiplier lies in the realization of a high-
performance multiplier hardware of 24-bit integers without symbol.

The basic design concept of the current hardware multiplier is consistent with manual multiplication
operation. First, obtain partial products, and then add partial products to get the result. The calculation is
clear and easy and needs less hardware resources. However, it suffers from time delay disadvantage,
with increasing multiplier digits. To reduce the computing time, you can consider using many improved
algorithms, such as Booth, improved Booth, Wallace Tree, and Dadda.

Integration of Customization Instruction
The guide can be used to integrate custom instruction into the system after the designing of hardware
multiplier and the corresponding interface unit (see Figure 10). The zxx_fp_mu instruction planted in
the left library can be seen after the integration. In addition, the added customization multiplication
instruction can be seen in right hand after clicking Add.

 Portable Vibration Spectrum Analyzer

 245

Figure 10. Integrating Custom Instructions

The following macro definition of floating-point multiplication and addition and subtraction can be seen
in system.h after the compiling of the project document we have established. According to the macro
definition, we could use ALT_CI_FP_MULT_CI(A,B) to operate hardware floating-point
multiplication between A and B.

System macro definition document:

#define ALT_CI_FP_MULT_CI_N 0x00000000
#define ALT_CI_FP_MULT_CI(A,B) \ __builtin_custom_inii(ALT_CI_FP_MULT_CI_N,(A),(B))
#define ALT_CI_FP_ADD_SUB_CI_N 0x00000002
#define ALT_CI_FP_ADD_SUB_CI_N_MASK ((1<<1)-1)
#define ALT_CI_FP_ADD_SUB_CI(n,A,B)\
__builtin_custom_inii(ALT_CI_FP_ADD_SUB_CI_N+(n&ALT_CI_FP_ADD_SUB
_CI_N_MASK),(A),(B))

Designing a Pure Hardware FIR Digital Filter
There are always high frequency noises in vibration signal, which will affect the result of the spectrum
analysis. In addition, unnecessary high frequency or low frequency signals are expected to be filtered in
case of a specific pertinence; therefore, FIR digital filter is designed to filter unnecessary frequency
waveforms. Concerning of real time requirements, FPGA logic resource is adopted to design pure
hardware digital filter, to meet system requirements.

Operating Principle of FIR Digital Filters
Digital filter is a time-invariant discrete-time system used to complete signal filter processing with finite
precision algorithm. Its input is a group of digital quantity and output is another group of digital
quantity after transformation. The digital filter features in high stability, high precision, and high
flexibility. As the development of digital technology, designing filter by digital technology is receiving
more and more attention and application.

The system function of a digital filter can be indicated as constant coefficient linearity difference
equation that shows input and output relations directly from H(z), i.e.

∑
−

=

−=×=
1

0
][][][][][

L

k
knfkxnfnxny

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

246

It can be seen that digital filter uses a certain operation to transform input serial to output serial. Most of
ordinary digital filters are liner time-invariant (LTI) filters.

The digital filter can be divided into an infinite impulse response (IIR) filter and finite impulse response
(FIR) filter according to the time characteristic of unit impulse response h(n). Concerning of the discrete
time domain, it is called an IIR series if the system unit sample should be extended to infinite length;
and a FIR series in case of finite length serial.

Compared with an IIR filter, a FIR filter has many unique advantages that can satisfy the requirements
of amplitude frequency response when getting strict linearity phase characteristic to keep its stability.
An IIR filter can be used for a non-linearity phase of a FIR filter. A FIR filter can be applied in wide
ranging applications since the signal is required to have no clear phase distortion during data
communications, voice-signal processing, image processing, and adaptive processing, whereas an IIR
filter has a problem with frequency dispersion. For this reason, we have used FIR digital filter in this
system.

Basic Structure of a FIR Digital Filter
A FIR filter includes three basic structures: direct form, cascade form, and frequency sample form.
Direct form is the most popular structure and is adopted in our design. Therefore, we discuss only the
direct form FIR filter here.

The direct form FIR filter is also referred to as tapped delay line structure or transversal filter structure.
As you can see from the above table, each tapped signal is weighted by the appropriate coefficient
(impulse response) along this chain, and you get the output Y(n)} via the addition of products.

Hardware Realization of FIR Digital Filter
The digital filter is based on the FIR algorithm, because it is more mature in filtering out random
jamming. The filter hardware design is based on a 16-tap direct form FIR filter. The filter has a fixed
coefficient. When the normalized frequency parameter is determined, the coefficient of the filter is first
calculated with a math tool and then it is fixed in VHDL code.

The VHDL program of direct form FIR design is shown below:

if clk'event and clk='1' then
case modem is
when "01" => -- high-pass

 y<=(-2*(tap(0)+tap(15))-(tap(0)+tap(15))-
 (tap(0)+tap(15))/2+64*(tap(1)+tap(14))+16*(tap(1)+tap(14))
 -52*(tap(2)+tap(13))+41*(tap(3)+tap(12))-172*(tap(4)+tap(11))
 +2*(tap(5)+tap(10))+(tap(5)+tap(10))/2-385*(tap(6)+tap(9))
 +462*(tap(7)+tap(8)))/1024;

 for i in 15 down to 1 loop
 tap(i)<=tap(i-1); --tapped delay line: shift one
 end loop;
 tap(0)<=x;

when "00" -------------------------low-pass-----
=>………………………

The advantage of direct form FIR filter design lies in the fact that you can get the result in a single
period since parallel operations are made by multiple hardware multipliers and adders. However, this
method uses up many logic resources due to parallel operations.

We can use a two-bit control word to select “High Pass,” “Low Pass,” or “None” status. The Nios II
processor issues the control word, which can be set up using the SOPC Builder development tool.

Figure 11 shows the timing simulation.

 Portable Vibration Spectrum Analyzer

 247

Figure 11. Timing Simulation

Figure 12 shows the symbol generated by the system.

Figure 12. Symbol

Design of A/D Sample Controller
To translate vibration sensor’s simulation signal output into a digital signal, we deployed a serial 12-bit
A/D ADS7841 to collect the sensor output. Keeping the main CPU focused on other system tasks, we
designed an A/D hardware controller in an FPGA to control A/D samples and send sample data to A/D
FIFO. Based on the control word output by the Nios II processor, we can also change sample frequency.
Generally, frequency analysis error is due to the spectral leakage resulting from imprecise
synchronization of sample window and actual waveform. Common methods to eliminate spectral
leakage errors are based on hardware synchronization and windows processing techniques.
Synchronization using phase-locked loop (PLL) circuitry is commonly employed in hardware
synchronization. Therefore, a precise sample clock generated by an FPGA-based PLL circuit is used to
implement strict sample synchronization to prevent overlapping and interval between windows, while
synchronizing with the measured signal.

The ADS7841 device is a 4-channel, 12-bit sample simulation/digital converter with 8-, or 12-digit
programmable output data under -40 to ~85 degree working temperature. The devices’ typical power
loss is 2 mW for a 200-kHz conversion clock and 5-V power input with a reference voltage from 0.1 V
~5 V. The ADS7841 features a power-down mode with 15 µW as the lowest power loss.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

248

The basic circuit connection of ADS7841 is shown in Figure 13.

Figure 13. Circuit Connection

The device has an external reference and external clock pins with 2.7 V ~ 5.25 V as the working voltage
range. The external reference voltage changes from 100 mV to +Vcc. The reference voltage has a direct
influence on the range of input simulation signal. The input simulation signal circuit is determined by
the ADS7841 conversion clock. The input of simulation signal is connected to one of the four input
channels. The ADS7841 chooses the appropriate channel based on the control data input from DIN pin

out (A0, A1 and A2) and SGL / DIF . Relation between A0, A1, A2 and SGL / DIF and 4 channels
and COM end is shown in Tables 1 and 2. This design is only for one channel input signal.

Table 1. Single-ended channel mode (SGL / DIF HIGH)

Table 2. Multiple-ended channel mode (SGL / DIF LOW)

The CHO channel can be selected for sample, therefore, A2=0, A1=0, A0=1 and SGL/ DIF =1 should
be set in control word input from DIN. In order to output 12-bit data after conversion, the MODE pin
out should be made low. In order to ensure normal operation of the ADS7841 device during data
conversion, we should prevent the ADC from entering power-down or low power loss modes, by setting
PD1 and PD0 to 1.

 Portable Vibration Spectrum Analyzer

 249

The timing diagram of ADS7841 is shown in Figure 13. The device needs 24 DCLK inputs to complete
the conversion process. You need to program the ADC with the control word during the first, eight
clocks. The conversion process enters sample mode when ADS7841 gets the control word denoting a
specific channel for conversion. The ADC enters hold mode after the input of three DCLKs control
word and then performs 12-bit data conversion after the lapse of 12 DCLKs.

From Figure 14, it is clear that the conversion clock frequency of ADS7841 F CLK=24 F DCLK. Due
to hardware restrictions, the conversion frequency could utmost reach 200 kHz, in case of a 5-V power
input. Because this design caters for only 3.3V levels of power and reference voltages, conversion
frequency cannot reach 200 kHz. In addition, the conversion frequency cannot be too low as it relates to
the discharge time of the ADC, confining the input sinusoidal signal to a certain frequency band.

The A/D conversion module accepts the simulation signal, converts it, and stores it in RAM. When all
data has been converted and stored in RAM, the ADC begins to read data from RAM.

Figure 14. ADS7841 Timing Diagram

We need to program the A/D converter with control signals such as CS LD and control word DIN.
Further, the output serial data from the ADC needs to be converted into a parallel format and fed
directly to RAM. In addition, through programming, we need to realize RAM read/write, control clock,
and address signals.

To effect changes in sample frequency, we designed a 4-bit control port that receives the control word
sent from Nios II soft-core processor. Then, based on the received control word, the A/D controller
changes sample frequency.

The VHDL source program is shown below:

 if clkin'event and clkin='1' then
 case sel is
 when "0001" => clk_s<=div(1);
 when "0010" => clk_s<=div(2);
 when "0011" => clk_s<=div(3);
 when "0100" => clk_s<=div(4);
 when "0101" => clk_s<=div(5);
 when "0110" => clk_s<=div(6);
 when "0111" => clk_s<=div(7);
 when "1000" => clk_s<=div(8);
 when "1001" => clk_s<=div(9);
 when others=> clk_s<=div(1);
 end case;
 end if;

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

250

Figure 15 shows the A/D controller design.

Figure 15. A/D Controller Design

sel[3..0] is the sample-frequency control port.

Design of A/D Sample FIFO
The A/D sample data cannot be sent to the Nios II processor for immediate processing because the CPU
has other scheduled tasks to perform. Therefore, some sample data needs to be buffered for processing
by the ADC to save CPU time. Hence, we have designed a FIFO memory module to buffer A/D sample
data. When data in the FIFO memory is full, the CPU starts processing it. We designed a dual-port, 512-
word deep, 12-bit FIFO keeping in mind our 512-point FFT. We customized the FIFO design using
components from Altera Library of Parameterized Modules (LPM). Figure 16 shows the customized
FIFO symbol diagram.

Figure 16. FIFO Symbol

Figure 17 shows the FIFO time sequence.

 Portable Vibration Spectrum Analyzer

 251

Figure 17. FIFO Time Sequence

System Software Design
The software design depends on the HAL API provided by Nios II IDE with the multi-tasking RTOS
µC/OS II, managing all tasks. This approach greatly improved the readability of the program structure
and made it easy for us to develop program modules. We wrote the LCD driver program and migrated
the embedded GUI function packages (µC/GUI) onto the Nios II-based system. Utilizing the graphics
functions provided by µC/GUI, we developed the waveform curve drawing function, window function
and button operation function for a user-friendly display operation. Once again, programming with the
µC/GUI greatly reduced our programming effort and made it possible for us to develop a user-friendly
GUI. Figure 18 shows the software structure.

Figure 18. Software Structure

The system software comprises five tasks: system main program, keyboard scan, LCD display, A/D
sampling, FIR control, and flash memory timing tasks.

For task intercommunication, we have used global variables instead of mechanisms, such as traffic
handling, email, and message queue. When designing function tasks, we need to avoid transferring the
same function to different tasks for function reuse. A detailed description of task designs will follow in
the next section. The software design flow is described next.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

252

Design of 320 x 240, 256-Color LCD Driver
Thanks to the simple interface of LCD drive panel, we could use the IO interface to simulate the control
timing of drive panel. This was done by writing a simple driver program that was able to read/write data
onto LCD. During the operation, the program could specify any one of 256 colors of the LCD.

The description of drive panel interface is as follows:

Ports:
CS WR RD A1 A0 D[7..0]
H X X X X HIZ
L L H 0 0 write data to controller
L L H 0 1 write X to controller
L L H 1 0 write Y to controller
L L H 1 1 write X to controller(for read data)
L H L 0 0 read data from controller
L H L 0 1 lock data written to X as parameter

According to the interface description, the driver program first writes in the coordinates x,y, then color
data, when doing a read/write operation for a point on LCD. The subroutines of writing x, y coordinates,
and color data are defined as follows:

Color data subroutine:

void set_lcdwr_d_c(int x)
{
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_A_BASE, 0);
 IOWR_ALTERA_AVALON_PIO_DIRECTION(LCD_DATA_BASE, 0xff);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_DATA_BASE, x);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x0);
IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x1);

}

X coordinate writing subroutine:

void set_lcdwr_x_c(int x)
{ IOWR_ALTERA_AVALON_PIO_DATA(LCD_A_BASE, 0x01);
 IOWR_ALTERA_AVALON_PIO_DIRECTION(LCD_DATA_BASE, 0xff);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_DATA_BASE, x);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x0);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x1);
}

Y coordinate writing subroutine:

 void set_lcdwr_y_c(int x)
{
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_A_BASE, 0x2);
 IOWR_ALTERA_AVALON_PIO_DIRECTION(LCD_DATA_BASE, 0xff);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_DATA_BASE, x);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x0);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x1);}

Subroutine for writing the x coordinate when reading a color value:

void set_lcdwr_x_c_rd(int x)
{
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_A_BASE, 0x3);
 IOWR_ALTERA_AVALON_PIO_DIRECTION(LCD_DATA_BASE, 0xff);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_DATA_BASE, x);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x0);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x1);}

 Portable Vibration Spectrum Analyzer

 253

Subroutine for reading color data:

unsigned int set_lcdrd_d_c(void)
{unsigned int m;
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_A_BASE, 0x0);
 IOWR_ALTERA_AVALON_PIO_DIRECTION(LCD_DATA_BASE, 0x00);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RD_BASE, 0x0);
 m = IORD_ALTERA_AVALON_PIO_DATA(LCD_DATA_BASE);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RD_BASE, 0x1);
 return m;}

Subroutine for parameter look-up table:

void set_lcdrd_d_c_l(void)
{
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_A_BASE, 0x01);
 IOWR_ALTERA_AVALON_PIO_DIRECTION(LCD_DATA_BASE, 0x00);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RD_BASE, 0x0);
 IORD_ALTERA_AVALON_PIO_DATA(LCD_DATA_BASE);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RD_BASE, 0x1);}

Subroutine for writing parameters:

void lcd_write_para(int para)
{ set_lcdwr_x_c(para);
 set_lcdrd_d_c_l();
}

Based on the data writing subroutines as above, the functions of read-dot and write-dot have been
developed. The subroutine for write-dot is defined as follows:

void lcd_write_dot(int x,int y,int d)
{
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x1);
 set_lcdwr_y_c(y);
 if (x>=256)
 {set_lcdwr_x_c(1);
 set_lcdwr_x_c(x%256);
 set_lcdwr_d_c(d); }
 else
 {set_lcdwr_x_c(0);
 set_lcdwr_x_c(x);
 set_lcdwr_d_c(d);
 }

 }

Subroutine for read-dot is defined as follows:

unsigned int lcd_read_dot(int x,int y)
{ unsigned int m;
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RD_BASE, 0x1);
 set_lcdwr_y_c(y);
 if (x>=256)
 {
 set_lcdwr_x_c(1);
 set_lcdwr_x_c_rd(x%256);
 m=set_lcdrd_d_c();
 return m;
 }
 else
 {set_lcdwr_x_c(0);
 set_lcdwr_x_c_rd(x);
 m=set_lcdrd_d_c();
 return m;
 }
}

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

254

Besides these basic LCD driver functions, we wrote other functions as follows:

void lcd_init_controlernios (void)

void showimage(unsigned char imageadd[],int imagesize) and other basic drive functions.

Migration of µC/GUI onto Nios II System
μC/GUI is a good graphics software for embedded systems developed by US-based Micrium
Corporation. The software is open-source, portable, reducible, stable, and highly reliable. Using the
μC/GUI, you easily display text, curves, graphics, and window objects (button, edit box, and bar-slide)
on the LCD as you would on Windows OS. In addition, μC/GUI software provides a simulation library
based on Visual C to help developers to simulate various effects of μC/GUI based on Windows OS.

Although μC/GUI can greatly reduce the difficulty of LCD display tasks in embedded systems, we need
to develop separate driver programs to handle LCDs with screens of different resolution.

μC/GUI Structure

Software architecture of μC/GUI is shown as Figure 19. The μC/GUI function library provides user
programs with a GUI interface including text, 2-D graphics, input device buttons, and window objects.
The input devices could include keyboard, mouse or touch screen; 2-D graphics elements could include
picture, beeline, polygon, circle, ellipse, and circular arc; window objects include buttons, edit box,
progress bar, and checkbox. Using GUIConf.h header file, you can configure memory, window
manager, support for OS and touch screen, as well dynamic configuration of memory size.

Further, you can define LCD hardware attributes such as LCD size, color, and interface functions in the
LCDConf.h file.

Figure 19. Software Architecture

 Portable Vibration Spectrum Analyzer

 255

Migration Process

Modifying LCDConf.h Header file
The LCDConf.h file defines the size and color of LCD, and is modified to handle LCD parameters.

#define LCD_BITSPERPIXEL 8 //Bits Per Pixel
#define LCD_SWAP_RB 1 //if picture element DB is swapped

//Size of screen L and W pixel

#define SCR_XSIZE (320)
#define SCR_YSIZE (240)
#define LCD_XSIZE (320)
#define LCD_YSIZE (240)

The LCD read/write function is associated with hardware in which zxxniosdriver.c is customized, and
the standard read/write functions are replaced with previously defined read/write functions.

static void SetPixel(int x, int y, LCD_PIXELINDEX c)
{ lcd_write_dot(x, y,c);}
unsigned int GetPixelIndex(int x, int y)
{ lcd_read_dot(x, y);}

Support options for the GUI can be changed by modifying the GUI.h file; when no LCD and memory
devices are used, the values of the two devices are set to 0;

#define GUI_OS (1) /* Compile with multitasking support
#define GUI_WINSUPPORT (1) /* Use window manager if true (1)
#define GUI_SUPPORT_MEMDEV (0) /* Support memory devices */
#define GUI_SUPPORT_TOµCH (0) /* Support a touch screen (req.

#define GUI_SUPPORT_UNICODE (1)

In addition, several important files as above need to be modified, such as GUI_X.c and GUI_waitkey.c,
but we will not discuss them here. System design can be performed directly by functions provided by
the GUI when µC/GUI is migrated to the Nios II processor.

Software Optimization of FFT Algorithm Design

FFT Fundamentals
The fast Fourier transform (FFT) is an improvement on the discrete Fourier transform DFT algorithm.

The formula of a traditional DFT is as follows:

∑
−

=

==
1

0

)()]([)(
N

n

nK
NWnxnxDFTkX

 , 1−≤≤ Nkn (5.3)

∑
−

=

−==
1

0

)(1)]([)(
N

n

nK
NWnX

N
nXIDFTkx

, 1−≤≤ Nkn (5.4)

In which,

nk
N

jnk
N eW

π2

=

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

256

According to the formula, the result of)(kX is obtained when every)(nx term is multiplied by

relative
nk

NW
 and then adding them. That is, N times of complex multiplication and N-1 times of

complex addition. Computing)(kX)(1−≤≤ Nkn) needs N2 times of complex multiplication and
)1(−NN times of complex addition. A complex multiplication needs four operations of real number

multiplication and two operations of real number addition, computing)(kX (1−≤≤ Nkn) needs
24N times of real number multiplication and)1(2 −NN times of real number addition. When the

number value of N is larger, for example, if it is 1024, you would need four million multiplications,
which means real-time signal processing requires a high-speed processor.

But research has shown that the character of
nk

NW
 can be exploited to improve the operation efficiency

of DFT. These include:

■ Periodicity of
nk

NW
:

nk
NW

=
kNn

NW)(+
 (5.5)

■ Conjugate symmetry of
nk

NW
:

nk
NW −

= (
nk

NW
)=

)(kNn
NW −

 (5.6)

■ Condensability and expandability of
nk

NW
: NW

= nNW / NW
 = NnW

 (5.7)

By taking advantage of above
nk

NW
, properties and rearranging the order of)(nx or (and))(kX and

disassembling the sequence of)(nx and (or))(kX into some segments, we can reduce the number of
complex multiplications and enhance the operation speed of DFT, leading to the origin of FFT..

Radix-2 FFT Algorithm

If the length of sequence)(nx equals
MN 2= , in which M is an integer (if M is not an integer, 0 is

added to meet this requirement), by disassembling, the least DFT operation unit is 2-point. The least
DFT operation unit in FFT operation is usually called radix, and hence, this algorithm is called radix-2
FFT algorithm of DFT.

)(nx is first divided into two sub-sequences by N’s odd number and even number:

⎩
⎨
⎧

+=
=

)12()(
)2()(
rxrf
rxre

 10 −≤≤ Nr (5.8)

 Portable Vibration Spectrum Analyzer

 257

DFT of N point is written as:

kr
N

N

r

N

r

rk
N WrxWrxkX)12(

12/

0

12/

0

2)12()2()(+
−

=

−

=
∑∑ ++=

rk

N

N

r

k
N

N

r

rk
N WrxWWrx 2/

12/

0

12/

0
2/)12()2(∑∑

−

=

−

=

++=
, 1−≤≤ Nkn (5.9)

According to the condensability and expandability of
nk

NW
 and

rk
N

rk
N WW 2/
2 =

, the formula is:

kr
N

N

r

N

r

rk
N WrfWrekX)12(

12/

0

12/

0

2)()()(+
−

=

−

=
∑∑ +=

)()(kFWkE k
N+= (5.10)

in which,

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=

∑

∑
−

=

−

=

12/

0
2/

12/

0
2/

)()(

)()(

N

r

rk
N

N

r

rk
N

WrfkF

WrekE

 12/0 −≤≤ Nk (5.11)

)(kE and)(kF are the result of DFT of N/2, it is known from the character of DFT:

⎪
⎪
⎩

⎪⎪
⎨

⎧

+=

+=

)
2

()(

)
2

()(

NkFkF

NkEkE

Thus, this formula is written as follows:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−=

+
+

++=+

+=

)()(

)
2

(
)

2
(

)
2

()
2

(

),()()(

kFWkE

NkF

Nk

NWNkENkX

kFWkEkX

k
N

k
N

 12/0 −≤≤ Nk (5.12)

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

258

According to the formula above, as long as DFT)(kE and)(kF of two N/2 points is computed, the
X (k) of all N points could be done by the linear combination of the formula (5.12). Due to

MN 2= and
122/ −= MN being even numbers, the analysis may be continued until the last cell

needing only two DFT points. As shown in Figure 20, the operation of the formula (5.12) is represented
by signal streaming; the formula is called butterfly operation structure (butterfly operation) because the
flow figure appears as a butterfly, also called twiddle factor.

Figure 20. Radix-2 Butterfly Cell

Some basic properties of radix-2 DIT FFT are derived according to the algorithm theory and twiddle
factor above:

Resolve Series

From the analysis above,
MN 2= is divided into M levels, of which every level contains N/2 butterfly

operation, so the number of total butterfly operations is N/2 x M.

Operand Estimation
According to Figure 21, every butterfly operation needs one complex multiplication and two complex

additions (subtractions), FFT of
MN 2= point altogether needs MN ×2/ of complex

multiplications and MN × of complex additions (subtractions).

Radix-2 algorithm can reduce the arithmetic operation of DFT by half, which greatly increases
computing speed.

Figure 21. 8-Point Radix-2 Algorithm Topology

 Portable Vibration Spectrum Analyzer

 259

Radix-4 FFT Algorithm

Make
MN 4= then:

∑∑
−

==

+=
14/

0
4/

3

0
)4()(

N

n

nk
N

l

lk
N WlnxWkX

 (5.13)

make respectively 3414,24,4 +=+=+== rkrkrkrk ¼° ,and r=0,1,…,4/N-1,According to
the formula (5.13), as follows:

∑

∑

∑

∑

−

=

−

=

−

=

−

=

+−++++=+

+−+−++=+

++++++=+

++++++=

1
4

0
4/

3

1
4

0
4/

1
4

0
4/

2

1
4

0
4/

))]
4

3()
4

(()
2

()([()34(

))]
4

3()
4

(()
2

()([()14(

))]
4

3()
4

(()
2

()([()24(

))]
4

3()
4

(()
2

()([()4(

N

n

nr
N

n
N

N

n

nr
N

n
N

N

n

nr
N

n
N

N

n

nr
N

WWNnxNnxjNnxnxrX

WWNnxNnxjNnxnxrX

WWNnxNnxNnxnxrX

WNnxNnxNnxnxrX

 (5.14)

Complex multiplications except for one imaginary number (j), may be not used in the basic cell of
radix-4 algorithm. The series of FFT operations are decreased by half because of the algorithm of radix-
4, so the number of multiplication required can also be relatively reduced.

Figure 22. Basic Cell of Radix-4 Algorithm

Splitting Algorithm
The basic principles of a splitting algorithm are to use radix-2 algorithm for an even sequence number
output, radix-4 algorithm for an odd sequence number output. The Fourier transform algorithm is an

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

260

FFT algorithm, that has the least multiplication and addition times for all algorithms of
MN 2=

known.

The formula of splitting algorithm is as follows:

14/,,1,0,))]
4

3()
4

(()
2

()([()34(

14/,,1,0,))]
4

3()
4

(()
2

()([()14(

12/,,1,0,))]
2

()([()2(

1
4

0
4/

3

1
4

0
4/

1
2

0
2/

−=+−++++=+

−=+−+−++=+

−=++=

∑

∑

∑

−

=

−

=

−

=

NrWWNnxNnxjNnxnxrX

NrWWNnxNnxjNnxnxrX

NrWNnxnxrX

N

n

nr
N

n
N

N

n

nr
N

n
N

N

n

nr
N

K

K

K

(5.15)

Considering that the 512-point sampled data takes less system resources and the Nios II processor
contains hardware multiplier, a simpler radix-2 algorithm is adapted in the system.]

FFT Cell Design
There are two schemes for the realization of FFT: hardware and software.

FFT Hardware Design
The operation cells of FFT are filled into sample-data RAM, Addwindow cell, dual-port DRAM of
operation data, selector switch of multi-channel data, address generator, butterfly operation cell, twiddle
factor ROM, result data FIFO, and control cell.

 Portable Vibration Spectrum Analyzer

 261

Figure 23. FFT Cell Architecture

Butterfly Operation Cell Design
The butterfly operation cell is an important part of FFT operation cell, as it takes charge of performing
radix-2 operation on input data, and then delivers data results. The structure is shown in Figure 24.

Figure 24. Architecture of Butterfly Operation Cell

VCC
x2[15..0] INPUT

VCC
wy 1[15..0] INPUT

VCC
wx1[15..0] INPUT

VCC
y 2[15..0] INPUT

VCC
x1[15..0] INPUT

VCC
y 1[15..0] INPUT

VCC
clk INPUT

VCC
rest INPUT

VCC
start INPUT

mx1[15..0]OUTPUT

mx2[15..0]OUTPUT

my 2[15..0]OUTPUT

my 1[15..0]OUTPUT

Signed
multiplication

dataa[15..0]

datab[15..0]

clock

aclr
clken

result[31..0]

lpm_mult0

inst

Signed
multiplication

dataa[15..0]

datab[15..0]

clock

aclr
clken

result[31..0]

lpm_mult0

inst1

Signed
multiplication

dataa[15..0]

datab[15..0]

clock

aclr
clken

result[31..0]

lpm_mult0

inst2

Signed
multiplication

dataa[15..0]

datab[15..0]

clock

aclr
clken

result[31..0]

lpm_mult0

inst3

A

B
A-B

dataa[15..0]

datab[15..0]
clock

clken
aclr

result[15..0]

lpm_add_sub1

inst5

A

B
A+B

dataa[15..0]

datab[15..0]
clock

clken
aclr

result[15..0]

lpm_add_sub0

inst6

A

B
A+B

dataa[15..0]

datab[15..0]
clock

clken
aclr

result[15..0]

lpm_add_sub0

inst7

A

B
A-B

dataa[15..0]

datab[15..0]
clock

clken
aclr

result[15..0]

lpm_add_sub1

inst8

A

B
A-B

dataa[15..0]

datab[15..0]
clock

clken
aclr

result[15..0]

lpm_add_sub1

inst9

A

B
A+B

dataa[15..0]

datab[15..0]
clock

clken
aclr

result[15..0]

lpm_add_sub0

inst10

datain[15..0] dataout[15..0]

datacov

inst4

datain[15..0] dataout[15..0]

datacov

inst11

clk

reset

start

qout[2..0]

start_crl

inst12

multresult1[31..0]

multresult1[31..16]

multresult2[31..16]

multresult2[31..0]

multresult3[31..0]

multresult4[31..0]

multresult3[31..16]

multresult4[31..16]

rest

rest

rest

rest

rest

rest

rest

rest

rest

rest

rest

clk

clk

clk

clk

clk

clk

clk

clk

clk

clk

start

clk

clk

start

q[2..0]

q[0]

q[0]

q[0]

q[0]

q[1]

q[1]

q[2]

q[2]

q[2]

q[2]

rest

inx2[15..0]

iny 2[15..0]

inwx[15..0]

inwy [15..0]

inx2[15..0]

inwx[15..0]

iny 2[15..0]

inwy [15..0]

inx2[15..0]

inwy [15..0]

iny 2[15..0]

inwx[15..0]

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

262

The design of butterfly operation cell completely depends on radix-2 operation, and butterfly operation
cell is composed of four multipliers, three adders, and three subtractors.

Design of Other Cells
Sampled data RAM: Store collected data.

Window cell: Select different types of window functions.

Dual-port DRAM of operation data: Store the data during butterfly cell operation. Dual-port DRAM is
used for handling complex data, and is matched with the real and imaginary parts of complex data,
respectively.

Address generator: Generate sequential addresses, control data output of dual-port DRAM.

Twiddle factor ROM: Store twiddle-factor data which is the value of
nk

NW

Selector switch of multi-channel data: Due to butterfly operation, the data cell usually imports or
exports two data values each time; where as RAM only reads and writes a data value once. The multi-
channel transform switch can make data streaming more stable.

Result data FIFO: Stores data sent in by next cell.

Data Type & Length Selection
Data type directly affects the speed of operation, so it is necessary to adopt a compliant-data type.

We used 16-bit integer data type in the design, for the following reasons:

1. Our system’s A/D converter handles 12-bit data, and the maximum value (A) it can export is not
greater than 4096, and data (B) stored in twiddle factor ROM are the data magnified by 216 times, the
result of A multiplied by B is less than 228 and greater than 232.

2. The data multiplied is reduces b 216 at once to ensure that the operation of addition cell is correct.
According to the principle of radix-2 algorithm, the last result should not be greater

than
16294069 <× , and no overflow occurs.

Operation Flow
The A/D’s sampling memory cell data are stored in dual-port DRAM. Computing starts when data
storage is complete and a signal is sent. At first, address generator generates a set of addresses, and
reads the data from DRAM and computes the radix-2 of FFT. A drive signal is generated while a
compute cycle is finished, which enables the address generator to generate new address. When this FFT
is completed, it signals the controller to read the data in DRAM to FIFO.

Operation Time
FFT is computed by a serial method in this system.

Giving due consideration to the stability of data streaming, the serial algorithm in the system needs
seven periods for every butterfly operation, and the number of sampled data in the system is 512,
resulting in a total period of 9×256×7� 16128. To this you need to add the time for collection of data

 Portable Vibration Spectrum Analyzer

 263

cell writing to dual-port DRAM and the delivery of dual-port DRAM data to FIFO, which results in the
system requiring a total of 16128+512×2=17152 periods.

Some Issues with Hardware
Designing an FFT using hardware would have put a strain on the systems’ hardware resources because
of the FPGA’s limited capacity. In addition, it is quite possible that there would be hardware delays
during the execution of FFT algorithm.

Method of Software Implementation
There are proven methods and different software tools available for the realization of FFT. Considering
the independence we enjoyed during system design, we decided to showcase our creativity by writing
the FFT algorithm of radix-2, instead of using the popular splitting algorithm.

Figure 25. FFT Software Programming Flow

Series m>9

Start

Does the Series End?

Butterfly Operation

m>1

Y

N

Y

N

Adjust Array
Sequence

End

N

Primary program of butterfly cell on radix-2 algorithm:

 for(m=0; m<M; m++)
 {
 is=0; ie=id;
 do
 {
 n2=id;
 for (i=is; i<ie; i++)
 {
 k=(i-is)*t;
 xtr=xr[i+n2]; xti=xi[i+n2];
 xr[i+n2]=(xtr*wr[k]-xti*wi[k]);
 xi[i+n2]=(xtr*wi[k]+xti*wr[k]);

 xtr=xr[i]; xti=xi[i];
 xr[i]=xtr+xr[i+n2];
 xi[i]=xti+xi[i+n2];
 xr[i+n2]=xtr-xr[i+n2];
 xi[i+n2]=xti-xi[i+n2];
 }
 is=is+id*2;
 ie=is+n2;

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

264

 } while(is<N);
 id=id*2;
 t=t/2;

 }

By adapting hardware design to match the software design flow we were able to improve system
performance. For example, by choosing parts that would execute slowly in software, we used hardware
to speed up these areas, ensuring that the software adoption did not slow down the system performance.
Our FFT cell designed using software is very stable and easy to manage and modify, and offers high
controllability. So our decision to use software was vindicated in the design of the system. Although we
could still use a series of optimizing algorithms involving hardware to speed up the FFT where we
could process a 512-point FFT in less than 100 ms, it is a good enough performance because human
eyes only distinguish a 10-frames per second images. Therefore, we have met the FFT processing
algorithm’s needs in real time application. We have optimized software design based on the aspects
described in the following sections.

Custom Hardware Floating-Point Instruction Accelerating Key Algorithm
Although large numbers of multiplication operations are used in FFT operation, the system only uses
512 points as FFT. Therefore all parameters during FFT operation are defined as long integers without
overflow, and this definition is controlled within acceptable number range. However, when we design
more points of FFT or need to have higher definition for FFT, a float-point number range is necessary
for FFT operation. Then, custom float-point multiplication instructions will greatly speed up FFT
operations. After FFT is complete, the pattern value of every complex number is required to render a
spectrum curve. In this case, floating-point number multiplication must be adopted for handling easy
overflow of long integer variables because of extra index operations. The operation unit that computes
one FFT with 512-point needs 1024 power operations, and hence a hardware floating-point
multiplication instruction will greatly quicken the computing speed; tests show a hardware floating-
point multiplication instruction can enhance 20% speed for the pattern value of FFT computing result.

The program for computing pattern value is as follows:

for(i=0;i<n/2;i++)
 {
 xr[i]=sqrt((float)xr[i]*(float)xr[i]+(float)xi[i]*(float)xi[i]);
 }

After using hardware floating-point multiplication instruction, it is as follows:

for(i=0;i<n/2;i++)
 {
 xr[i]=sqrt(ALT_CI_FP_MULT_CI(xr[i],xr[i])+ ALT_CI_FP_MULT_CI(xi[i],xi[i]));

 }

We decided to select 32-bit signed integer when selecting data types. The speed of software operation is
obviously quicker during integer operations as against that of floating-point data. Using 32-bit integer
data fully meets our requirement without overflow. Computing method matches that of hardware. Some
tweaks have been added to the design because of the errors that crept in after adopting 32-bit integer
data format: (1) Twiddle factor is magnified 1000 times while it is stored, and then it is reduced after
computation to ensure the accuracy of next-level operation; (2) software is used for rounding while
accepting or rejecting data.

Use system’s on-chip hardware multiplier.

Optimize twiddle factor cell. Traditional FFT software algorithm always computes temporarily when it

is used, but
)2sin()2cos(

2

nk
N

jnk
N

eW
nk

N
jnk

N
πππ

−==
−

 is comprised of sine (cosine) function,

 Portable Vibration Spectrum Analyzer

 265

and so software takes a lot of time. Thus, the importance of conserving memory in hardware design is
applied to the system, that is, twiddle factor is computed early during initialization phase, and is stored
in memory. When, it is used, it can be directly transferred according to memory address.
5) When the pattern value of the last result is computed, the 32-bit integer data is forced into floating-
point data, to avoid overflow and ensure accuracy of next-level operation.

Design & Realization of AddWindow Processing Algorithm

Principle of AddWindow
Spectrum analysis is key to modern dynamic signal analysis including FFT and mean square spectrum
analysis – power spectrum density (PSD). Following FFT, spectrum density is computed directly with
signal FFT.

PSD on the basis of FFT can be computed according to the formula:

∑

∑

=

=

=

=

a

a

n

i
kiki

a
kxy

n

i
kiki

a
kxx

fXfY
Tn

fG

fXfX
Tn

fG

1

*
^

1

*
^

)()(2)(

)()(2)(

 (5.16)

in which an
 is the number of sample (average time), T is sampling period.

Because data processed by computer is discrete, the collected sampling signal is also discrete. Besides
N, the values of other points are regarded as 0. In this case, leak occurs in the transformation process,
i.e., the frequency component of one point is leaked to other frequencies. Window function can fix
leakage of signal problems. Therefore, it is very significant to select the appropriate window function.

Leak indicates that the power of one narrowband in)(
^

ωS is expanded to adjacent frequency band,

which makes)(
^

ωS lose strength. Leak is generated for the result of main lobe convolution of

)(ωS and Window spectrum)(ωW .

The main factor determining resolution is the length of used data or the length of data window.

BWkN /2π> , of which BW is the distance of two spectrum-peaks in)(ωS .

Common Window functions include rectangle window, trigonometric function, Hanning window,
Hamming window, Kaiser window, Blackman window and flat top window. The common windows
adopted by our dynamic signal analyzer system involves rectangle window, Hanning window, and flat
top window.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

266

1. Rectangle Window

⎪⎩

⎪
⎨
⎧ −−=−=

=
ÆäËü

»ò

,0
2

,,1,0,1,
2

1,,1,0,1
)(

NNnNn
nwR

KKK

 (5.17)

2. Hanning Window

)2cos(5.05.0)(
N

nnwH
π−=

 , 1,,1,0 −= Nn K (5.18)

3. Flat Top Window

,]2cos2)[()(
3

1
0 ∑

=

+=
k

kRF knaanwnw π
 1,,1,0 −= Nn L (5.19)

Of which
091581.053929.0,95573.0,99948.0 3210 ==== aaaa

Realization of AddWindow
In the system, two types of AddWindows are set up including rectangle window and Hanning window.
For rectangle window, the 512 point FFT processing is done every time when it is sampled; for Hanning
window, it can drive down sidelobe effectively, and directly perform window function weighing after
time-domain signal is completed. In the program, the time-domain signal samples are made using
AddWindow, which functions in the system as follows:

void winhanning(long int win[])
{int i;
 for(i=0;i<512;i++)
 {
 win[i]=(long int)(win[i]*hcos[i]);
 }
}

of which hcos[] is coefficient array of AddWindow, and has completed computing when initialization,
the program is as follows:

for (i=0; i<512; i++)
 {
 hcos[i]=0.5-0.5*cos(0.01227185*i);

 }

The program structure does not compute cosine and multiplication every time when windowing which
saves system time, and occupies less memory.

Design of Waveform Memory & Playback Program
For effective analysis and review of time-domain and frequency domain waveforms, we have designed
the memory and playback function. Waveform and parameter data are stored in external flash, and we
can realize store and read of data by hardware abstraction layer flash read/write interface function
provided by HAL.

 Portable Vibration Spectrum Analyzer

 267

The main flash read/write functions are as follows:

fd=alt_flash_open_dev(EXT_FLASH_NAME);
alt_read_flash(fd, offset, rdfft, length);

alt_erase_flash_block(fd,offset,65536);
alt_write_flash(fd, offset, wrfft, length);

The first function is used to make initialization operations before flash is read/written; the second
function is to read data containing some length bytes, and place the read data to array rdfft[]; the third
function is to erase flash block, where the relative blocks must be erased before it writes data to
memory.

The following two arrays are defined to store time-domain waveform, frequency-spectrum curve and
relative parameters:

unsigned char fftm[64][512]�
 long int wfv[128];

 in which, first 64 bits of wfv[128] is used to store peak-value of time-domain waveform, later 64-bit
data is used to store mainlobe frequency of frequency spectrum.

The program of flash storage operation is as follows:

load_line_data(0x300010,fftm,32768);
 load_line_data(0x310000,wfv,512);
 for(i=0;i<256;i++)
 {
 fftm[pnum-1][i]=wave[i];
 fftm[pnum-1][i+256]=ffti[i];
 wfv[pnum-1]=everyw;
 wfv[pnum-1+256]=maxf;
 } // read data from flash;
 write_line_data(0x300010,fftm,32768);
 write_line_data(0x310000,wfv,512);

The program of flash reading data operation is as follows:

load_line_data(0x300010,fftm,32768);
 load_line_data(0x310000,wfv,512);
 for(i=0;i<256;i++)
 {
 wave[i]=fftm[pnum-1][i];
 ffti[i]=fftm[pnum-1][i+256];
 everyw=wfv[pnum-1];
 maxf=wfv[pnum-1+256];
 }

Partition of µC/OS Tasks & Their Design
Our system has five tasks, and the design of each of these tasks follows:

System Main
This task responds to keystroke commands and it is the most important part of system operation. With
different key input, the program processes different states; when no keystroke is sensed, the task
commands the A/D to sample and buffer the data in FIFO and compute FFT, and display the computed
frequency spectrum on LCD. Data collection and spectrum display on LCD are the two important
functions of the main task.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

268

void maintask(void* pdata)
{
 while (1)
 {
 OS_ENTER_CRITICAL();//Close up all interruptions
 waitbuttonpress(edge_capture);
 OS_EXIT_CRITICAL();Open up all interruptions
 OSTimeDlyHMSM(0, 0, 3, 0);
 }
}
waitbuttonpress(edge_capture); this function responds to keystroke input.

Keyboard Scan Task
Scans keys, and when a key is pressed, the program assigns the captured key value to the global variable
Edge_capture, which is used by the system main-task program. When we designed the Button_pio, we
initialized the port to capture keystroke values as a falling-edge transition, with no interrupt option.

void keyscan(void* pdata)
{
 while (1)
 {
 edge_capture = IORD_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE);
 OSTimeDlyHMSM(0, 0, 3, 0);
 }
}

Displaying Updated Tasks on LCD
During system initialization, a window is displayed on LCD and waveforms are displayed using the
main task function. However, parameters of some process states (represented as bars) change
continually following keystroke action during system operation. To handle this, we designed a display
update task, which takes charge of updating these parameters of different states on the LCD bar; for the
parameters of every state, we have defined the related global variables.

Here is a partial listing of update task program that is responsible for display update of peak-to-peak
value of time-domain signal and main-lobe frequency of spectrum.

void lcdrefresh(void* pdata)//refresh the lcd;
{
 while (1)
 {
 GUI_SetBkColor(GUI_BLACK);
 GUI_ClearRect(78, 3, 225, 13);
 GUI_SetColor(GUI_WHITE);
 GUI_SetFont(&GUI_Font10_1);
 GUI_DispStringAt(“vol: mv”, 58, 3);
 GUI_SetColor(GUI_RED);
 GUI_DispDecAt(everyw,80,3,4);
 GUI_SetColor(GUI_WHITE);
 GUI_DispStringAt(“freq: hz”, 140, 3);
 GUI_SetColor(GUI_RED);
 GUI_DispDecAt(maxf,165,3,6);

Omitting…………………………………………………………….
 OSTimeDlyHMSM(0, 0, 3, 0);
 }
}

A/D Collection & FIR Control Task
Controls sampling frequency of A/D converter and filter type of FIR according to key input. The routine
changes sampling frequency and filter type by the received user parameters.

 Portable Vibration Spectrum Analyzer

 269

void ad_fir(void* pdata)
{
 while (1)
 {
//Sample value delivered according to main task, changes the sampling frequency of

ADC.
 IOWR_ALTERA_AVALON_PIO_DATA(SELFRE_BASE, sam);
 //From value delivered according to main task, changes the sampling frequency of ADC.
 IOWR_ALTERA_AVALON_PIO_DATA(SELFIR_BASE, frem);
 OSTimeDlyHMSM(0, 0, 3, 0);
 }
}

Flash Memory Timing Task
During system initialization, all waveforms and parameters stored in flash memory are read into RAM
memory. Thus, the system can save into flash memory each time while viewing waveforms during
testing. You need to store data to middle array or you can directly read from middle array, and therefore
the display of waveform is continuous. Nevertheless, the disadvantage with this method is that all stored
data will be lost in case of system power-down. To avoid loss of data, the flash memory task
continuously stores data to middle of array. The program is as follows:

 void saveflash(void* pdata)//refresh the lcd;
{
 while (1)
 {
for(i=0;i<256;i++)

 {
 fftm[pnum-1][i]=wave[i];
 fftm[pnum-1][i+256]=ffti[i];
 wfv[pnum-1]=everyw;
 wfv[pnum-1+256]=maxf;
 } // read data from flash;
 write_line_data(0x300010,fftm,32768);
 write_line_data(0x310000,wfv,512);

Omitting…………………………………………………………….
 OSTimeDlyHMSM(0, 0, 3, 0);
 }
}

Design Features
This section describes the design features.

Implemented System-On-a-Chip with High Integration &
Reliability
We were able to realize functions of the whole system (control and signal processing) on an FPGA, a
result that is unparalleled when compared to traditional designs. As a 32-bit soft-core microprocessor
with high performance, Nios II can be configured in an FPGA. Therefore, we can use it to implement a
programmable system-on-a-chip function.

Custom Instruction Speeds Up Design Implementation
Because a great many floating-point multiplication operations are needed during the execution of FFT
software algorithm and there is no hardware floating-point multiplication instruction in Nios II
processor, we decided on a customized instruction. An excellent feature of the Nios II lies in the fact
that you can design customized instructions. Our hardware floating-point multiplication instruction was
designed with a general LE and added onto the instruction system. In addition, we defined a few other
digital signal processing instructions. Using this design approach, we were able to significantly speed up
the operation of digital signal-processing algorithms.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

270

The digital filter was realized in hardware, which significantly speeded up digital signal processing.

Using the rich logic resources in the FPGA and based on a powerful development environment, we
designed a digital hardware FIR filter with selectable high pass and low pass options. This filter speeded
up digital signal processing.

Customization of Avalon Bus Interface IP LCD PWM Controller
An easy guide is provided in the SOPC Builder tool that helps engineers design IP cores based on the
Avalon bus interface. Because the tool is integrated in software, we could easily design the interface
driver program and added it onto the hardware abstraction layer, which makes system design easy. For
instance, using the SOPC Builder tool, we could complete the design quickly even while adding several
PWM controllers according to design requirements. This is one of the major benefits of an open bus
interface.

Use of µC/OS II & µC/GUI
The powerful functionality and processing speed of Nios II processor, coupled with C-language support,
made it convenient to migrate the µC/OS RTOS to the processor. Thanks to the Nios II IDE, we were
able to develop applications easily and quickly. Based on the LCD control interface, we could migrate
the µC/GUI to the system. Then, we made changes to software based on the GUI which resulted in a
user-friendly system.

Soft Cores Made Interface Design Simple
Because Nios II is a configurable soft core processor, we could freely add the I/O interface according to
design requirements. For example, we added several I/O interfaces for internal and external connection
to/from the FPGA. Also, we adopted many peripherals in our design, such as an LCD controller
interface, A/D controller, and FIR filter, which needed many I/O interfaces to communicate with the
Nios II processor. Taking advantage of Nios II soft core, we could complete the design easily.

Conclusion
The design contest helped us to understand the following:

■ A synergy of hardware/software in design is possible taking the Nios II design approach. For
instance, we learned that customization instructions are a better method to accelerate key
algorithms when realizing FFT with hardware or software design approach. Also, the algorithm
flow could be easily controlled by software while resorting to hardware optimization where
necessary. Traditionally, in system design you would design software first based on the hardware.
In this design contest, for the first time, we could design hardware according to the software. For
instance, we designed a customized hardware floating-point multiplier instruction according to the
existing FFT algorithm. This is the first time we experienced the most interesting
hardware/software synergy.

■ Because some interfaces need a lot of customization, we needed to have a deep understanding of
bus interface protocols, transport protocols, and peripheral interface. Previously we had worked on
designs whose hardware was fixed. This contest deepened our understanding of the hardware layer.

■ The differences between hardware and software design lie in SOPC design. We always need to
design logic with HDLs and design software with C language. From the contest, we know more
about the differences between hardware and software design.

 Portable Vibration Spectrum Analyzer

 271

■ We need more communication with other designers since SOPC technology is a very new and
emerging technology. We have made many friends through the Nios II design contest, and in turn
learned many things from them. In addition, the Nios II forum www.niosforum.com is always
available for us to discuss problems with designers all over the world.

Appendix
Flow Summary

http://www.niosforum.com/

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

272

Fitter Resource Usage Summary

Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks
and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the
property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and
pending applications, mask work rights, and copyrights.

	Design Introduction
	Function Description
	Performance Parameters
	Input section
	Section of Analysis
	Parameters of the System Design
	Testing the Measurement Setup
	System Test Solution
	Frequency Measurement Range
	Spectrum Major Lobe Accuracy
	Time Domain Peak to Peak Value Accuracy
	Time Domain Waveform Amplitude Accuracy

	Design Architecture
	Design Methodology
	System Hardware Design
	Customization & Integration of Hardware Floating-Point Multiplication, Addition & Subtraction Instructions
	Design of Single-Precision Floating-Point Number Multiplication
	Integration of Customization Instruction
	Designing a Pure Hardware FIR Digital Filter
	Design of A/D Sample Controller
	Design of A/D Sample FIFO

	System Software Design
	Design of 320 x 240, 256-Color LCD Driver
	Migration of µC/GUI onto Nios II System
	Software Optimization of FFT Algorithm Design
	Design & Realization of AddWindow Processing Algorithm
	Design of Waveform Memory & Playback Program
	Partition of µC/OS Tasks & Their Design

	Design Features
	Implemented System-On-a-Chip with High Integration & Reliability
	Custom Instruction Speeds Up Design Implementation
	Customization of Avalon Bus Interface IP LCD PWM Controller
	Use of µC/OS II & µC/GUI
	Soft Cores Made Interface Design Simple

	Conclusion
	Appendix

