
Artificially Intelligent Autonomous Aircraft Navigation System Using a DT on an FPGA
Star Award

Artificially Intelligent Autonomous
Aircraft Navigation System Using a
Distance Transform on an FPGA

Institution: Monash University

Participants: Nathan William Smith

Instructor: Dr. Andrew Price

Design Introduction
This project is an artificially intelligent navigation system for use on board unmanned aerial vehicles
(UAVs). The system takes the available input data and a user-defined mission statement, integrates the
data, and produces navigation reference signals that are used by other systems to control the plane.
Figure 1 shows the UAV navigation system block diagram, which is implemented in an Altera®
Cyclone® FPGA. The output is continually updated based on the dynamic input from changes in the
UAV or obstacle positions. The navigation system produces output signals to other UAV systems, e.g.,
a signal indicates that the UAV should land because the mission is complete or because an emergency
landing is required.

The navigation system also produces a busy signal, which is usually inactive. This signal indicates that
the navigation system is busy recalculating several parameters due to complex obstacles in the flight
path, and the system will not produce the required pitch and heading for some time. In this case, the
busy signal causes the flight control system to enter a holding pattern (i.e., causes the UAV to travel in
a circle) until the navigation calculations are complete.
3

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 1. UAV Navigation System Block Diagram

The navigation system uses a novel two-level hierarchical distance transform (DT) algorithm in three
dimensions to control the aircraft’s longitude, latitude, and altitude. The DT technique is commonly
used in signal processing, specifically image processing. However, DT has been used more recently for
the robotic navigation of land-based vehicles over low ranges. This project applies the DT for aerospace
vehicles in three dimensions over long-range missions.

The project also involves significant systems integration and systems engineering. The navigation
system must interface and communicate with other hardware in the overall UAV system. For example,
a simple interface includes voltage-level signaling for one-bit signals, such as when to land the UAV.
More complex interfacing occurs for the global positioning system (GPS) where a National Marine
Electronics Association (NMEA) 183 communications standard applies, and for the RS-232 serial
communications required for specific navigation signals (pitch and bearing).

I chose to implement the Nios® II system on a Cyclone FPGA for the following reasons:

■ The application must perform computationally complex algorithms quickly.

■ The application receives inputs from a variety of communications media, such as from the GPS.

■ The application has to debug each part of the design in a user-friendly environment.

Figure 2 describes the required systems engineering and interfaces from the navigation system to other
UAV systems. Grey blocks show the systems that are within the project scope. The navigation system
produces or communicates with the interfaces indicated by bold arrows.

Current x,y position from GPS

Current z position from altimeter

Detected obstacles (storms, mountains, etc.)

Target waypoint x,y,z (user-defined
and created by UAV mission compiler)

Battery condition

Navigation System
Required bearing to reach waypoint

Required pitch to reach waypoint

Navigation busy (usually low,
becomes high to request entering a
holding pattern until more complex
navigation calculations can complete

Land UAV because the mission is
complete or the battery is low

Enable/disable on-board cameras
while en-route to current waypoint
4

Artificially Intelligent Autonomous Aircraft Navigation System Using a DT on an FPGA
Figure 2. UAV System and Interfaces Block Diagram

Note to Figure 2:
(1) Specific hardware is unknown; possible wireless TCP/IP to meterology and topographical site.

Function Description
The heart of the navigation system hardware is an Altera Cyclone FPGA, which is incorporated into
Monash University’s miniboard (called the Monash miniboard). Figure 3 shows the board and describes
its main components. The FPGA is used as a powerful microcontroller that can implement custom logic
or microprocessor systems by configuring the device using software. To configure this device on this
board requires the Altera Quartus® II software version 5.1.

Figure 3. Monash Miniboard

Navigation
System

Altera
Cyclone FPGA

GPS
Garmin Geko 201

Altimeter
Laser Range Finder

Mission Compiler
Microsoft Excel

Long-Range
Obstacle Scanning

System Note (1)

Battery Condition
Indicator

(Voltmeter &
Comparator)

Current Heading

Current Position (x,y)

Current Position (z)

Navigation System
Software

(Includes User-Defined
Target Waypoints)

Detected Obstacles

(Long Range: Storms,
Mountains, No-Fly
Zones, etc.)

Battery Condition

(Low Battery Signal)

Required Heading

Enable Cameras

(& Power Down
If Battery Is Low)

Required Pitch

Navigation Busy,
Enter Holding Pattern

- +
Flight Control

System

Altera
Cyclone FPGA

-

+

Signals to
Ailerons,
Propeller &
Other
Avionics

Artificial Horizon
Gyroscopic

Sensor

On-Board Cameras
& Image Processing

System

Altera
Cyclone FPGA

Landing Zone Clear
at Current Position

Request Landing
(Mission Complete or

Emergency Landing Due To
Critical Battery, Etc.)

Engage Landing

Detected
Obstacles
(Short Range:
Trees, Buildings,
Etc.)

Current
Pitch

Altera Cyclone FPGA

UART Connector

Power Connector

JTAG Connector

ASP Connector

Flash Memory

Voltage Regulators

Momentary Action Switch
Inputs (X3). Reserved for
Use as Reset Switch, Etc.

Programmable LED
Indicators (X8)

General PIO Pins

512-KByte SDRAM
5

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 4 shows the Quartus II project implementing the navigation system. To create the project, I
performed the following general steps:

1. Drew a block diagram of the desired system in the Quartus II software, including a block
(NAV_Processor) for a custom microprocessor that I developed with SOPC Builder.

2. Added pin assignments to the block diagram (described later in Table 1), according to the physical
pins that were available on the FPGA. Pins include I/O pin blocks that communicate to specific
pins on the FPGA, such as pins specific to the navigation system I/O as defined in Figure 1.

3. Used the Quartus II software to analyze and compile the design.

4. Used the Quartus II software to configure the FPGA with the configuration information.

After the configuration information was loaded into the FPGA, I could upload the specific C/C++
navigation software (provided from the mission complier) to the FPGA’s microprocessor. I could then
navigate the UAV for the desired mission.

Figure 4. Quartus II Project

Figure 5 shows the Quartus II compilation report, which describes the system usage. This project uses
more than 70% of the logic elements (LEs) available on the FPGA.
6

Artificially Intelligent Autonomous Aircraft Navigation System Using a DT on an FPGA
Figure 5. Quartus II Compilation Report

A critical part of the system is the microprocessor, which executes the navigation system software to
compute a DT and generate navigation control signals. The SOPC Builder graphical interface made it
easy to select a Nios II processor and connect it to the navigation system hardware. SOPC Builder
provides three processor variants, and lets you customize the selected processor. Depending on the
microprocessor system being developed, SOPC Builder allows the the designer to include UART
outputs, Ethernet interfaces, VGA displays, etc., provided that the selected components fit into the
memory/LEs available on the target FPGA.

Figure 6 shows the navigation system’s microprocessor configuration in SOPC Builder, including all of
the required hardware. The project uses the Nios II/f variant because of its speed and data cache. I
selected the cache size and pipeline performance by trial and error; I wanted to use the largest possible
cache configuration while still fitting the software and configuration data into the Cyclone device’s
memory.
7

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 6. Navigation System’s Processor Configuration in SOPC Builder

Table 1 shows the pin configuration for the navigation system’s test hardware, which was the Monash
miniboard.

Table 1. Navigation System Pin Configuration (Part 1 of 2)

Pin Number Type Function
16 Input Clock (CLK)

110 Input Reset (Reset)

3, 4 Input
Bidirectional

UART 0, Note (1) (RX, TX)

N/A JTAG UART GPS_UART, Note (2) (RX, TX)

108, 100, 104, 106, 107, 109, 103,1 05 Output LED PIO (LED 1-8)

143 Output Battery Low Signal PIO (BATT)

141 Output Landing Signal PIO (LAND)

96, 84, 82, 78, 60, 58, 56, 52, 51, 53, 57, 59, 61, 67,
79, 83, 85, 97

Output Address Bus to 512-Kbyte SRAM
(ADR 0 - 18)

74, 72, 70, 68, 69, 71, 73, 75 Bidirectional Data Bus to 512-Kbyte SRAM (DAT 0 - 7)

76 Output Chip Select to 512-Kbyte SRAM

77, 62 Output Read, Write Enable to 512-Kbyte SRAM

134, 133, 132 Output Camera Control PIO (CAM1 - CAM3)
8

Artificially Intelligent Autonomous Aircraft Navigation System Using a DT on an FPGA
Notes to Table 1:
(1) UART 0 is the connection from the miniboard to the PC or to the flight control board. It outputs the required pitch and bearing

control signals as a text stream for decoding by other hardware.
(2) GPS_UART is the connection from the miniboard to the GPS. It uses the JTAG UART interface in the miniboard and has no

pins specified in the Quartus II software.

With the microprocessor design uploaded to the FPGA, I loaded the navigation system software, which
I developed using the Nios II Integrated Development Environment (IDE), into the microprocessor.
Figure 7 shows the navigation system’s output stream, which is displayed by the Nios II terminal. The
system outputs more information than that required by the DT algorithm (i.e., the pitch and heading
data). The extra data, such as the UAV longitude and latitude, is useful for debugging and data recoding
of the actual UAV flight path.

Figure 7. Navigation System Output Stream

Performance Parameters
The most important performance parameter for the navigation system is that it performs a DT
computation over a large three-dimensional (3-D) mission area (requiring two 3-D arrays in software
to perform the computation) in the time that the GPS receives and outputs the next positional fix, which
is roughly 2 to 3 seconds.

SOPC Builder allows the user to configure additional aspects of the microprocessor to improve
computation speed, at the expense of using more system memory and LEs. Specifically, the user can
control the core type (Nios II/s, Nios II/f, etc.), pipelining, hardware multiply and divide, and cache
allocation. Pipelining allows multiple instructions to be fed into each stage of the microprocessor
execution cycle in parallel, enabling maximum execution performance of the navigation system
software. Larger caches provide more memory data storage, which makes code execute faster. A large

142 Output Navigation Busy PIO (PUSY)

140 Output Ancillary UAV Output PIO (AUX1)

Table 1. Navigation System Pin Configuration (Part 2 of 2)

Pin Number Type Function

Compute DT on Current Position

Output Required Pitch & Bearing
for the Aircraft Based on the DT

Get Raw GPS Message on the
Serial Interrupt Routine

Decode & Convert GPS Message to
Usable DT Coordinates

Perform Other Updates on Inputs/
Outputs, Such as the Battery
9

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
cache is particularly useful for the navigation system software, which uses an incremental iterative
process (i.e., values in a DT matrix are updated in a scanned incremental manner) to determine the DT.
However, larger caches also use more FPGA LEs and memory, and the designer can inadvertently
create a system that does not fit into the target Cyclone device.

Ultimately, I selected the cache size and pipelining based on trial and error, with the goal of maximizing
the cache size while still fitting the design into the Cyclone FPGA. The variant I chose met the design’s
timing requirements. Table 2 compares this variant and other hardware options.

Design Architecture
Figure 1, shown previously, provides the hardware design, and Figure 2 shows the systems integration
of the navigation system and other UAV hardware. I implented this design in the Monash miniboard and
Garmin Geko 201 GPS hardware (see Figure 8).

Figure 8. Hardware Construction

The navigation system software flow chart in Figure 9 provides information about the software building
blocks used to develop the project.

Table 2. Hardware Configuration and Performance Characteristics

Nios II
Processor

Instruction
Cache Size

(Kbytes)

Data
Cache

(Kbytes)

Clock
Pipeline

Design Fits in
Cyclone
Device

Time to Perform DT
Algorithm in 3-D Array

(25 x 25 x 25)
Nios II/s 2 N/A Yes Yes 8 seconds

Nios II/f 2 N/A Yes Yes 4 seconds

Nios II/f 2 1 Yes No N/A, no fit

Nios II/f 1 1 Yes No N/A, no fit

Nios II/f 1 512 Yes Yes 2 seconds (meets GPS timing
requirements)

Altera ByteBlasterTM JTAG
Cable for FPGA-to-PC
Communication

Altera Cyclone FPGA

Monash Miniboard

Navigation System
Test Enclosure Box

Power Cable

Serial Cable for
GPS Communication

Garmin Geko 201
GPS
10

Artificially Intelligent Autonomous Aircraft Navigation System Using a DT on an FPGA
Figure 9. Navigation System Software Flow Chart

Design Description
The design’s implementation steps are as follows:

■ Research and determine the validity of the DT technique for navigation, and develop software
algorithms to support it. Research the use of Altera FPGAs using the Quartus II software, SOPC
Builder, and Nios II IDE. Use the web editions of the software and documentation available from
the Altera web site (www.altera.com).

■ Create a Quartus II project applicable to the device on the Monash miniboard, selecting an
appropriate Nios II processor in SOPC Builder, as shown in Figures 4 and 6. Compile and debug
the Quartus II design and review the compilation report shown in Figure 5. Test this project,
including testing the microprocessor response, and miniboard hardware (UART communications,
etc.), with the simple hello world Nios II program.

■ Create a 3-D, two-level hierarchical, DT algorithm implemented in the Nios II processor. Test the
performance in the Cyclone device with the appropriate test input.

■ Update the SOPC Builder processor configuration to determine the fastest possible configuration
that fits in the device’s memory and available LEs (as outlined in Table 2). Optimize the processor
until the desired performance requirement is met.

■ Create interrupt-based interfaces using the Nios II IDE to control the appropriate input and output
to integrate the navigation system with other systems. Test these I/O interfaces.

■ Test the complete navigation system performance using available land-based vehicles and altitude
information relative to sea level provided from the GPS. A UAV was not available at this time
because other systems on board the UAV were not complete.

Future work will involve completing other UAV systems as shown in Figure 2, interfacing them with
the navigation system, and installing the navigation system on board a UAV. Once installed, I can
perform live testing in an airborne (rather than land-based) environment.

GPS (RS-232) Interrupt

Extract Most Recent, Raw
$GPGAA Messages from
GPS Using a UART Interrupt
Routine

Convert Latest Raw GPGAA
Message to Usable Variables
(e.g., Longitude, Latitude, etc.)

Convert GPS Coordinates to
DT Coordinates

Perform DT Algorithm,
Including Scanning for
Obstacles, to Determine Pitch
& Bearing to Next Required Cell

Perform 3-D, 2-Level Hierarchical
DT Algorithm, Including Scanning
for Obstacles, to Determine Pitch &
Bearing to Next Required Cell

Update PIO Outputs to Other
Systems in Flight Based on Current
Coordinates as Required, Including
Determining When to Land & Shut
Down Navigation System

Read Inputs from Batteries, etc., &
Make Decisions to Change Mission
Accordingly

Output Relevant Pitch Bearing to
Serial Port to Flight Control System

Main Navigation System Routine
11

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Design Features
This design features an Altera Cyclone FPGA. While Altera also offers some higher-performance
device families (e.g., Cyclone II, Stratix® and Stratix II devices), the Cyclone device used in this project
meets the performance requirements of the complicated navigation system, which uses somewhat
computationally and memory-intensive DT algorithms. The Cyclone device is built onto the Monash
miniboard, which includes 512-Kbyte on-board static RAM for storing instruction and other program
memory from the Nios II processor, as well as other electronic interfaces that support the Cyclone
device (power regulators, I/O connectors, communications controllers, etc.). The design hardware also
uses a Garmin Geko 201 GPS system, which interfaces with the Cyclone device. SOPC Builder makes
it easy to create interfaces between hardware and the Cyclone device.

Additionally, there are several features of the software programmed onto the device, as follows:

■ A two-level, 3-D sweeping DT algorithm gives the UAV associated intrinsic artificial intelligence
(AI) to plan and dynamically follow a flight path to predefined waypoints, and provides
compensating vectors when the UAV flies off course.

■ A DT orbiting routine uses the DT coordinate system to orbit a waypoint once it is reached. This
routine supports missions in which the UAV may take aerial surveillance photography over
waypoints, or gather meteorological data at the waypoint with appropriate sensors.

■ A NMEA 183 GPS serial string decoder algorithm decodes GPS data and converts it into X/Y cell
and sector equivalents for use by the DT algorithm.

■ The system provides software control of all other required I/O signals, as shown in Figure 2.

■ The system provides communications monitoring of the GPS interface, and can determine
whether the GPS has updated data within the last 6 or more seconds (most likely due to a
temporary loss of GPS satellite feed in flight). Should this situation occur, the navigation system
signals that it is busy. It then requests a holding pattern for the flight control system until GPS
communications are restored, at which point, the navigation system resumes its mission.

Conclusion
Using the DT, I developed a reliable, artificially intelligent navigation system for use on a UAV’s on-
board FPGA hardware. The system can plan a flight path dynamically, based on data obtained by other
hardware, such as a GPS, and the user-defined mission generated by the mission compiler. The system
also makes various other AI decisions, such as when to attempt landing the UAV.

This design involves several systems integration issues, as well as a variety of communication with
other systems, such as JTAG, RS-232 UART, and programmable I/O (PIO). The Quartus II software,
SOPC Builder, and Nios II IDE allow the user to implement a wide variety of I/O, and program and test
it quickly. With such simple, powerful systems design and integration packages, the Altera development
environment, along with the FPGAs capable of supporting such designs, is the best choice to satisfy the
navigation system’s requirements.

Additionally, SOPC Builder’s ability to customize the Nios II processor configuration, including cache,
pipelining, hardware multipliers, devices, etc., let me develop a highly efficient custom microprocessor
that is capable of computing the DT algorithm over a large mission area for UAV systems. Without this
control, I would not have been able to implement the project’s navigation system with the required
performance parameters.
12

Artificially Intelligent Autonomous Aircraft Navigation System Using a DT on an FPGA
References
Grevera, G J, “The ‘dead reckoning’ signed distance transform,” Computer Vision and Image
Understanding 95 (2004): 317-333.

Qin-Zhong Ye, “The signed Euclidean Distance Transform and its Applications” IEEE (1988): 495-
499.

Jarvis.R, “An all-terrain intelligent autonomous vehicle with sensor-fusion-based navigation
capabilities” Control Engineering Practice, vol. 4, no. 4, (1996): 481-486.

Wong. E, Jarvis.R, “Real Time Path Planning and Navigation for a Humanoid Robot in and Indoor
Environment” Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics
(2004): 693-698.

Lim Chee Wang, Lim Ser Yong, Marcelo H, “Hybrid of Global Path Planning and Local Navigation
implemental on a Mobile Robot in Indoor Environment” Proceedings of the 2002 IEEE International
Symposium on Intelligent Control (2004): 821-826.
13

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
14

	Artificially Intelligent Autonomous Aircraft Navigation System Using a Distance Transform on an FPGA
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Description
	Design Features
	Conclusion
	References

