
Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal
Third Prize

Nios II-Based Multiple-Core Intelligent 
Traffic On-Vehicle Terminal

Institution: Xi’an Institute of Post and Telecommunications

Participants: Xiao-Wu Chen, Li-Bin Liu, and Fang-Fang Zhang

Instructor: Jun Liu

Design Introduction
As China’s automobile industry has developed in recent years, more people are traveling in private cars 
to explore tourist sites. The traditional method of using maps to get to a destination does not provide 
enough objective details. Instead, car navigation systems are the future.

The navigation systems currently in the market provide information about roads and locations, but do 
not tell the driver about traffic jams, available parking lots, etc. Using a PC-based, real-time, Internet 
road inquiry system is not convenient or practical. To solve this problem, we designed an embedded 
system, the Nios II®-based multiple-core intelligent vehicle terminal. The system is convenient and 
practical, and can obtain real-time information, such as traffic jam and parking lot information, by 
wirelessly connecting to a background server via the Internet. Figure 1 shows the system schematic.

Figure 1. System Schematic Diagram

GPS Internet

Server

GPRS

Car
Terminal
19



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
We chose the Nios II processor for our design for the following reasons:

■ Using multiple Nios II processors solves a variety of problems, such as low microprocessor 
(MCU) processing speed, limited peripheral resources, complicated interface configuration, 
complex hardware, and software design and programming. With two Nios II processors, we can 
allocate the system controls and peripheral access, which greatly decreases the software 
workload.

■ Programmable logic devices (PLDs) are outstanding in lowering project development costs and 
for trial chip production. As we developed and built the design, we could program and reprogram 
the PLD. 

Our Nios II-based multiple-core intelligent vehicle terminal is suitable for a variety of vehicles, but we 
mainly target mid-level and high-end cars.

Function Description
The Nios II-based multiple-core intelligent vehicle terminal implements the following functions: 

■ Global positioning system (GPS)—The system uses a GPS to note the vehicle’s position 
accurately.

■ Navigation—Users can scale and translate the map, find a location, and select the destination. The 
system displays the vehicle’s real-time surroundings (roads and buildings).

■ Real-time road message updates—As the user is driving, the system displays real-time traffic jam 
information on the e-map, reminding the driver to avoid it.

■ Touch screen operation—With the touch screen, the driver can interact with the system at any time 
to complete any operation.

■ Client-server mode—The driver can obtain locale information from the background server, such 
as parking lots, hotels, hospitals, shopping malls, schools, etc.

Performance Parameters
The following list describes the performance and specifications for our system.

■ Power supply

● DC voltage: 12 V

● Operating current: 1 A

● Power consumption: 12 W

■ Operating temperature: 0 to 50° C

■ Hitachi IS61LV6416-10T LCD

● LCD resolution: 640 x 480

● LCD display space: 19 cm (7.5 inches)
20



Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal
● LCD display color depth: 8-bit RGB

● Viewing angle: 80 degrees

■ GS1100

● Operating voltage: 5 V

● Frequency: 1 Hz

● Data transmission velocity: 9,600 bits per second (bps)

● Positioning error: 15 m

● Features a built-in passive antenna, low power consumption, and sensitivity up to -153 dB/mW 
(dBm)

■ Siemens MC35I—Double-frequency general packet radio service (GPRS) module, circuit 
switched data (CSD) maximizing to 14.4 kilobits per second (Kbps), unstructured supplementary 
service data (USSD), and nontransparent mode.

■ Hitachi IS61LV6416-10T touch screen

● 19 cm (7.5 inches), same as the LCD

● 4-wire resistive touch screen

■ Epson S1D 13503F LCD controller:

● Available modes: 320 x 240 x 256 colors, 640 x 480 x 16, 8, or 4 colors, 1,024 x 768 x 2 colors

● Available memory size: 128 Kbytes maximum

■ MXB7843 touch screen controller—Programmable 8-12 route analog-to-digital (A/D) 
conversion, 2-route input serial peripheral interface (SPI)

Design Architecture
The system design is divided into hardware and software.

The hardware design includes the following items:

■ Nios II dual-core configuration

■ Peripheral driver circuit board design

■ Self-defined expanded bus

■ GPS module

■ GPRS module

■ LCD module, touch screen module, etc.
21



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
The software design includes the following items:

■ Self-defined custom instruction

■ Embedded real-time operating system μC/OS-II

■ Embedded graphics interface development software μC/GUI

■ Self-defined map messages system

■ GPS data receiving and serial driver

■ GPRS data receiving and delivering, network communication protocols (e.g., PPP, TCP/IP)

Figure 2 shows the software structure.

Figure 2. Software Structure

Table 1 shows the functions and main technologies used in our Nios II-based multiple-core intelligent 
vehicle terminal system.

Figure 3 shows the system hardware.

Table 1. Functions and Technologies

Function Implementation
Navigation
Location enquiry function
Function of real-time update of the road messages

LCD
Touch screen
Self-defined expanded bus
Self-defined map messages
μC/GUI, μC/OS-II

Dynamic positioning function Serial communication

Client-server mode GPRS wireless communication
Self-defined custom instruction
Network protocol
Database

Dual core Nios II CPU 1 operates the application (GUI)
Nios II CPU 2 operates the GPS and GPRS modules

Application

Map Messages Place Name 
Messages

μC/GUI

GPS Data
Receiving

GPRS
Communication

Serial Driver Protocol Driver

μC/OS-II

Dual Core & Communication
22



Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal
Figure 3. System Hardware

System Structure
The system provides customers with real-time traffic jam information. In client-server mode, the system 
stores static map information in the vehicle terminal and delivers dynamic information using the 
background server and the wireless communication module.

Hardware Structure
Figure 4 shows the hardware design. CPU 1 operates the application (GUI), CPU 2 operates the GPS 
and GPRS modules. Three resistive cores use CPU 1 and CPU 2 to communicate. The GPS signal 
provides communication between the GPS module and the key GUI. The GPRS uses the GPRS_TX 
signal to deliver data to the GUI. The GUI uses the GPRS_RX signal to deliver data to the GPRS. 
23



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 4. Hardware System Structure

Software Module Structure
Figure 5 shows the software module interface digram. The interface lets the application (GUI), GPS 
module, and GPRS module communicate. 

Figure 5. Software Module Interface Diagram

Figure 6 shows the software flow.

SDRAM

8-Mbyte
Flash

CPU
P1

CPU
P2

Mutex

GPS

GPRS_TX

GPRS_RX

SRAM

FPGA

UART_0 UART_1

GPS GPRS
LCD

Interface

Receive Message

GPRS

Send
Message

GUI Get GPS

Send
GPS Data

Receive
Message

GPS

Communicate by
Specifying the Cache

Send Message
24



Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal
Figure 6. Software Flow Design

Design Methodology
Our methodology was to use an FPGA to construct our system architecture, including the LCD 
interface, touch screen interface, serial interface, etc. See Figure 7. The following sections describe our 
design in more detail.

System
Power-On Reset

CPU (P2) CPU (P1)

μC/OS-II Initialization
OS_Init()

System Starts
the Tasks

Task_Start()

Execute
the Tasks

GPS
Initialization

GPRS Network
Initialization

Receive GPS
Data & Send
It to the Users

Receive the
Users' 

Commands

Receive the Data
from the GPRS

Network

Mailbox

Execute Read
Conversion
Operation

Command Control
Words or Data?

Messages
Returned?

Display Map
Messages

System
Initialization

Initialize the
Navigation

System

Command

Data

Y

N

25



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 7. System Architecture

Nios II Dual-Core Processor Design
As we developed our design, we determined that implementing μC/GUI was complex, that we needed 
heterogeneous map data processing, and that μc/OS-II required a huge stack when deploying the GUI. 
These factors made for a poor final product, so we decided not to use μc/OS-II for the whole project. 
Instead, we operated μC/GUI without the OS and the GPS and GPRS modules with the OS. To 
implement it, we chose a dual-core design.

The dual-core system fully uses the Nios II processor’s features, and has the following arrangement: 

■ First CPU:

● Perform human-machine interaction without the OS.

● Operate μC/GUI and the application program.

■ Second CPU:

● Set up the embedded real-time μC/OS-II OS.

● Receive the front-end GPS data through the UART1 serial interface. 

● Communicate with the GPRS module through the UART2 (self-defined expansion) serial 
interface.

The two Nios II processors communicate through a mailbox. The dual-core resistive communication 
mechanism did not operate well, so we created a mailbox mechanism to allow resistive communication 
between the two cores.
26



Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal
A mutual exclusion object (mutex) and mailbox allow the two cores to share memory, which is 2 x 32 
bits (see Table 2). We set the value to 0x0000, set the reset to 1, and enable the mutex. The mailbox 
allows the cores to communicate. The mutex resides in the mailbox and waits to be modified by a CPU. 
The following code shows the structure of the shared memory and mailbox.

typedef struct {
alt_u8     Flag; // avoid repeated reading and writing of the data
alt_u32    Data_Length;  // data length 
alt_u8  *  Data_Buf; // data cache

}SHARE_MEMERY;

typedef struct {
void          * Mutex_Base;
SHARE_MEMERY  * Share_Memery;

}MAIL_BOX;

Table 2 shows the memory structure.

Figure 8 shows the hardware system, which is generated by adding intellectual property cores in SOPC 
Builder.

Figure 8. SOPC Builder Hardware System

Table 2. Shared Memory

Offset Register Name Read/write Bit Descriptor
31 … 16 15 … 1 0

0 mutex RW OWNER VALUE

1 reset RW N/A N/A RESET
27



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
LCD and Touch Screen
The Hitachi SX19V001-Z2A LCD and touch screen have 640 x 480 resolution and an eight-color 
screen. The touch screen is 4-wire resistive. The LCD controller is the Epson SED13503. The touch 
screen’s drive module is the analog-to-digital (A/D) sampling converter MXB7843. It connects to the 
4-wire resistive touch screen, and converts the touch screen voltage value into a value we can work with 
more easily (the conversion is 12 bits and 1/4,096 of the X or Y direction). The MXB7843 devices sends 
the controller the X, Y values that have gone through A/D conversion, which is not practical without 
translation. The touch screen’s resistance value fluctuates in nearly a line, which means we can use the 
following translation formulas:

X coordinate = 640 x (X - X1) / (X2 - X1)

Y coordinate = 480 x (Y - Y1) / (Y2 - Y1)

Where the LCD’s resolution is 640 x 480, the voltage on LCD’s upper left corner is X1 and Y1, the 
voltage on its lower right corner is X2 and Y2, and the voltage on any point of the screen is X and Y.

We designed the LCD touch screen drive circuit, which connects to the self-defined expanded bus and 
SPI interface, i.e., the address, data, and control signals. All signals are implemented using the two 
universal input and output interfaces (JP1 and JP2) on the Altera® Development and Education (DE2) 
board.

GPRS Module
We use the Siemens MC35I device as the GPRS module. This module has passed radio and 
telecommunications terminal equipment (R&TTE) and Global Certification Forum (GCF) 
authentication. It supports end-to-end and end-to-user communication, SMS and GPRS-like data 
transmission and voice calls, and the GSM07.07 protocol. It also provides a variety of interfaces, 
including a subscriber identity module (SIM) card interface, power interface, standard RS-232 
interface, etc.

Because the MC35I communication module does not support parity, we used serial communication 
with a 115,200 bps baud rate, 8 data bits, 1 stop bit, no parity bit, and without streaming control. This 
arrangement occupies minimal CPU time.

Compared to other wireless communication technologies, GPRS has real-time operation and stability. 
It also has the following features:

■ Always on-line—As long as GPRS service is activated, it remains on-line, which is similar to a 
wireless network. 

■ Billing by use—Although it is always on-line, the user does not have to worry about the expense. 
The system only triggers billing when communication traffic is generated. The utilization-based 
billing mechanism is more reasonable and logical than other methods. 

■ Quick login—The packet service is much faster than a dial-up connection. 

■ High-speed transmission—Theoretically, GPRS’s maximum transmission speed is 171.2 Kbps. 
The GPRS systems currently being used support transmission speeds of about 40 Kbps.

GPS Module
The GPS module uses the GS1100 device. Its receiver has high sensitivity (up to -153 dBm), features 
low power consumption, has a built-in passive antenna, conforms to the National Marine Electronics 
Association (NMEA) v3.0 protocol, and transfers data through the RS-232 interface.
28



Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal
CRC Check Drive
Based on Altera’s cyclic redundancy code (CRC) check, we designed a new CRC check in hardware. 
We implemented a large network data check and accelerated the checking speed.

Hardware System Description
This section describes our system’s hardware design.

μC/OS-II
μC/OS-II is the basis of the GPRS communication module. It allows communication between tasks in 
the communication module and performs a variety of tasks, such as Task_start (main control tasks), 
Task_GPS_Send (receives GPS data from the serial interface and sends GPS messages to the GUI), 
Task_GPRS_Send (sends the data received from the background to the GUI), and 
Task_GPRS_TCP_Send (sends front-end service inquiries to the background console).

μC/GUI and Application
μC/GUI provides interface elements (form and controls), drawing functions, excellent color 
management, Chinese character support, and a hardware driver. We developed our application based on 
the GUI. We used a compressed bitmap for the intelligent traffic navigation system interface and the 
storage format. See Figure 9.

Figure 9. Compressed Bitmap for Navigation Interface

Figure 10 shows the application software flow chart.
29



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 10. Application Software Flow Chart

Notes to Figure 10:
(1) Front-end command means all of the commands except the surrounding messages on the interface.
(2) Background command means the surrounding messages.

Our design does not use μC/GUI and μC/OS-II together for several reasons:

■ Implementing μC/GUI is very complex.

■ Our design requires heterogeneous map data processing.

■ μC/OS-II requires a huge stack when the GUI is implemented at the same time. 

■ μC/GUI and μC/OS-II have little connection.

To implement the GUI and software application we defined several files:

■ GUIConf.h—Describes the size of μC/GUI function module and dynamic storage (used for 
memory devices and window object), the default font setup, and other basic GUI control 
definitions. 

System
Initialization

Coordinate
Conversion

Display Map
Messages

Initiate the
Navigation

System

Obtain
GPS

Message?

Display

Are Any Buttons 
Pressed?

Are Any 
Messages 
Returned?

Judge the
Button Types

Command
Control Words

 or Data?

Perform Read
Conversion
Operation

DisplayFront-End
Command

Background
Command

Is It Connected 
to the 

Background?

Deliver Inquiry
to Background

Server

Execute
Corresponding

Front-End
Operation

Command

Data

Y

Y

Y

N

N

N

30



Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal
■ LCDConf.h—Provides the LCD parameter control files such as LCD size, controller types, bus 
width, color selection, etc. 

■ GUI/CORE/LCD_ConfDefaults.h—Describes all default configuration items, such as the LCD 
numbers, controller numbers, color palette, the screen’s reverse setup, etc. 

■ GUITouchConf.h—Configures the touch screen by compiling the following functions according 
to the touch screen and the control chip (we need not the X, Y data in the software, so these 
functions are empty structures):

void TOUCH_X_ActivateX (void)?// Ready to measure the data on X-axis
void TOUCH_X_ActivateY (void)?// Ready to measure the data on Y-axis

The following functions are called by GUI_TOUCH_Exec():

int TOUCH_X_MeasureX(void); // Return the value of X according to AD 
// conversion result

int TOUCH_X_MeasureY(void); // Return the value of Y according to AD 
// conversion result

Figure 11 shows the μC/GUI software structure.

Figure 11. μC/GUI Software Structure

Using the built-in μC/GU function, memc_driver, we convert the cache reading and writing into that 
of the memory (physical address), which allows the LCD to display the images correctly. 

The run-length encoding (RLE) algorithm goes through a scan line and replaces adjacent pixels with 
the same color value based on the number of occurances of the color and the color value of the pixels. 
For example, aaabccccccddeee is replaced by 3a1b6c2d3e. Using the RLE algorithm, fully compressing 
the μC/GUI interface requires a large memory and a lot of CPU time. Our system does not need full 
compression and our map has consecutive white pixels as the dominant color. Therefore, we used an 
RLE-like algorithm (only compressing the white pixels) to accelerate the compression rate while 
slightly decreasing the compression ratio. This technique, along with using a partial compression 
strategy (we only compress the part that is displayed on the screen), means that we do not need as much 
memory. 

The DE2 board’s flash device is 4 Mbytes and our map can be as much as 4.1 Mbytes. So we have to 
compress the map if we want to use it. With the RLE-like algorithm, we compressed our map to 
2.45 Mbytes, which saves a significant amount of flash memory. 

GPRS Communication Module
This section describes the methods the GPRS uses for communication.

Text

Numeric Value

Image

Input Devices

Font

Window
Manager

Touch
Screen

Mouse

Window Object

Window Controls

μC/GUI
Application Program

Driver

μC/GUI
Function Blank

LCD
Driver

μC/GUI
Hardware
Interface

LCD

GUIConf.h

LCDConf.h
31



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
UART Serial Driver
To avoid CPU hangs caused by the Nios II UART driver and to help determine the package’s start and 
end points, we compiled a UART driver suited for our system that operates in real time and is easy to 
use. The driver’s data structure shown below:

typedef struct {       
alt_u32             BASE;       
alt_u32             IRQ_ID;       
alt_u8              Rx_Buf [ Uart_Buf_Size ];      
alt_u32             Rx_Bytes;       
alt_u32             In_Ptr;       
alt_u8              Rx_Star_Char;       
alt_u8              Rx_End_Char;      
alt_u16             Same_Flage;       
Data_Buf_Queue  *   Data_Queue;       
OS_EVENT        *   Sem;       
OS_EVENT        *   Rx_Sem;  

}UART;

Controlling the MC35I Module’s AT Instruction
The GSM07.07 standard defines complete AT instructions. Our system only uses instructions to control 
a short message, phone number directory, and basic AT instructions expanded by GPRS. AT 
instructions have the form AT+XXXXXX. The system sends the AT instructions’ ASCII codes to the 
GPRS communication module, then delivers the \n ASCII code to confirm the command. After 
executing the command, the GPRS communication module returns the result, which is \r\nOK\r\n for 
success and \r\nERROR\r\n for failure. Table 3 shows the basic AT instructions we used.

Custom Instructions
The communication module uses the following custom instructions to implement the big/small end 
conversion.

void IP_Assemble( IP  *  IP_Packet ) { 
IP_Packet->Total_Len  =  ( ALT_CI_ENDIAN ( IP_Packet->Total_Len ) >> 16 );
IP_Packet->ID         =  ( ALT_CI_ENDIAN ( IP_Packet->ID ) >> 16 );
IP_Packet->Offset     =  ( ALT_CI_ENDIAN ( IP_Packet->Offset ) >> 16 );
IP_Packet->Ckecksum   =  ( ALT_CI_ENDIAN ( IP_Packet->Ckecksum ) >> 16 );
IP_Packet->Src_IP     =  ALT_CI_ENDIAN ( IP_Packet->Src_IP );
IP_Packet->Dst_IP     =  ALT_CI_ENDIAN ( IP_Packet->Dst_IP );

memcpy ( &PPP_Packet_Buf [ PPP_Packet_Buf_Length ], IP_Packet, 
sizeof ( IP ) - 8 );

}

Point-to-Point Protocol (PPP)
In this system, the μC/OS-II OS controls the GPRS module to access the network, implementing point-
to-point communication. PPP provides a standard method to encapsulate a multi-protocol message on 

Table 3. AT Instructions

Instruction Function Description
AT If an OK is returned, the GPRS module supports the AT instruction and operation is normal.

AT+CREG Network registration.

AT+IPR Set data terminal device velocity.

AT+CGDCONT Define PDP context.

AT+CGACT PDP context activation.

AT+CGQMIN Service quality introduction (as small as acceptable).

AT&W Reserve all software modification of the module.
32



Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal
the point-to-point link. It supports the dynamic distribution and management of IP addresses, the 
transmission of a synchronous (delivery of bit-oriented synchronous data module) or asynchronous 
(start bit + data bit + parity bit + stop bit) physical layer, network layer protocol reuse, link 
configuration, quality detection, and error correction, and can negotiate multiple parameters.

PPP has three parts: the link control protocol (LCP), network control protocol (NCP), and expanded 
protocols, such as the multi-link protocol. To establish PPP communication, the system first sends an 
LCP package to each side of the PPP connection to configure and test the data connection. After the 
connection is established, the corresponding entity is confirmed. Then, the system sends an NCP 
package to select one or more network layer protocols for configuration. Once the selected network 
layer protocol is configured, the package is delivered on the link. The link remains in a configurable 
state unless the LCP and NCP packages terminate the connection or other unexpected events occur 
(e.g., the non-activity clock is fully occupied by counting or there is interference). Figure 12 shows the 
PPP link phase transition. 

Figure 12. Link Phase Transition

TCP/IP 
The system must deliver collected data to the server immediately through the Internet. The delivery 
must be in real time and fast, but have a small amount of data. Because of these requirements and the 
functions implemented using TCP/IP, we simplified the subprotocols as shown in Table 4.

Figure 13 shows the GPRS communication module flow chart according to these protocols. We 
implemented PPP, TCP/IP, and UDP ourselves.

Table 4. Simplified TCP/IP Subprotocols

Layer Implemented Protocol
Application layer Subscriber self-defined

Transmission layer TCP/UDP 

Network layer IP

Link layer PPP

Link Unavailability
Phase

Link Establishment
Phase

Link Termination
Phase

Authentication
Phase

Failure

Network Layer
Protocol Phase
33



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 13. GPRS Communication Module Flow Chart

GPS Positioning
The vehicle navigation system is part of the intelligent traffic system. Its built-in GPS antenna receives 
data from at least 3 out of 24 GPS satellites orbiting the Earth. With help from the navigation system’s 
e-map, it converts the latitude and longitude position coordinates measured by the GPS satellite signals, 
which confirms the vehicle’s position on the map.

Client-Server Application
We created the server-side software using Microsoft SQL2000 and Microsoft Visual Studio .NET 2003. 
The database contains hotels, shopping malls, hospitals, railways and bus stations, gas stations, roads, 
etc. The .NET system mainly deals with interface design, algorithm design, and data processing.

The client-server mode has the following advantages:

■ It reduces the front-end burden and costs by placing the information in the background. 

■ It facilitates software function expansion. The driver can quickly download another city’s map 
(such as Xi’an). 

■ It requires real-time operation. The background server can immediately send the road conditions 
to the driver. 

■ The navigation system’s powerful background server provides real-time geographical information 
as well as traffic jam conditions, helping the driver learn about road conditions and to guide traffic 
at rush hour.

Figure 14 shows the background server’s login interface.

End

Is There a
Terminated
Message?

Enter Network
State

Establish PPP
Link Layer

GPRS
Initialization

Y

N

34



Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal
Figure 14. Background Server Login Interface

Figure 15 shows the interface operation.

Figure 15. Interface Operation

Traffic Congestion Algorithm
This algorithm is used in server terminals. Using client-server advantages, the vehicle terminal can be 
used as a data collection terminal for the traffic authority. As long as the traffic authority has the system 
(e.g., installed in a bus or taxi), it will be informed of road congestion according to the information sent 

 
Intelligent traffic system of the city

About

System informa-
tion enquiry

New system infor-
mation registration

System informa-
tion modification

System
management

Geographical
information

Traffic congestion
information

Traffic lights

Vehicle
terminal

Vehicle
terminal

System administrator’s
information modification

Parking lot
terminal

Parking lot
terminal

New system administrator
authorization

Traffic lights
terminal

Traffic lights
terminal

Road notice
board

Road notice
board

Parking lot
account

Parking lot
account

Parking
rate

Parking
rate

Parking
card

Parking
card

Road notice
board

Parking lot
information

Vehicle
terminal

Parking infor-
mation

Exit
35



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
from the vehicle terminal. (It is also available if the user does not send the information.) The algorithm 
is defined as:

If R << R0 and N is bigger than a specified number (to reduce the possibility that parking affects the 
result), the road segment is considerd to be congested. Congestion increases as R decreases. 

where:

■ N is the number of vehicles that are installed with this device and running on the road S.

■ R is the average vehicle speed (the specified time is longer than the duration of a red light to avoid 
errors).

■ R0 is the road’s speed limit.

Design Features
Our design has the following features:

■ Uses two Nios II processors—Using two processors solves software design problem and improves 
system performance. Using an FPGA to implement the two processors reduces hardware costs 
and improves performance. 

■ Custom peripherals and instructions—The LCD, touch screen GPS and GPRS, all as custom 
peripheral processing, use a custom bus and SPI (the 40-pin expansion headers on the Altera DE2 
board) to complete the interface design. We use custom instructions to implement the big/small 
end conversion of the GPRS communications module. 

■ Client-server mode—The server can provide better services for drivers using client-server mode. 

■ Traffic jam algorithm and best path—With the traffic jam algorithm described previously, traffic 
authorities can learn traffic conditions, helping them guide traffic and send traffic updates to 
drivers who can then choose the best route. 

■ Integrating μC/GUI and μC/OS-II in the embedded system—μC/GUI is the design platform of the 
whole navigation module, which provides various interface elements (windows and controls), 
good color management, Chinese character support, and low-level driver support for the 
hardware. We used it to compile applications and provide a friendly user interface. We used
μC/OS-II, which is effective and reliable, to deploy system tasks. 

■ Using TCP/IP and PPP in the embedded system—Applying TCP/IP and PPP to the system did 
not require memory management and allowed transmission of small volumes of data. 

■ GPRS—To send real-time road information to drivers and to facilitate communication between 
drivers and the control center, the system establishes an external GPRS module and connects with 
the Nios II processor in the FPGA using the serial port. Drivers can directly send service requests 
to the back-end monitoring center and receive information. Meanwhile, the back-end learns traffic 
conditions in real-time by collecting the road information.

■ GPS—We used a GPS to implement real-time, accurate vehicle positioning and to provide the 
necessary data for the traffic jam algorithm. 
36



Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal
■ Touch screen LCD—Touch operations are easy and the LCD is beautiful, offering a user-friendly 
interface.

■ Collaborative hardware/software development—Because the hardware and software in the SOPC 
Builder can be clipped, we can jointly develop the hardware and software during system 
development. Hardware and software development begin and end almost simultaneously, saving 
time. Additionally, we accelerated the product launch and can support a longer product life cycle. 
If we need to modify some definitions during development, we can simply generate a new Nios II 
core, which does not impact other peripherals or Nios II programs.

Conclusion
In our two-month project, we successfully designed the Nios II-based multiple-core intelligent vehicle 
terminal, improving our knowledge of the Nios II embedded system. By meeting specific requirements, 
the multiple-core processor solution provides higher performance without adding more hardware. 
Using dual-core processor technology is another way to enhance a processor’s performance. Because 
the processor’s real performance is the sum of the instructions that processes per clock cycle, adding 
another processor doubles the number of instructions executed per clock cycle. 

The system design is centered on one FPGA. Using a range of Nios II functions and features, the control 
and data processing are managed by two Nios II processors implemented in an FPGA, demonstrating 
the high integration of system-on-a-programmable-chip (SOPC) solutions. Designing the system with 
SOPC tools helped us to streamline the hardware and software system, disconnecting the software 
development from the hardware development. Moreover, by combining multiple processors and 
selecting suitable peripherals, memories, and I/O interfaces, we could build a customized embedded 
system with the lowest price, simplest design, highest performance, and lowest risk. 

The design uses the new Nios II Integrated Development Environment (IDE), which, compared with 
the original environment, has simpler register operation and a more convenient operating and 
debugging environment. The original development tool was difficult to download and debug because it 
did not have a graphical compiling and debugging environment and download speeds were slow. The 
new Nios II IDE downloads and debugs through the JTAG-UART with a Windows-style interface. 

The competition showed us how to develop a project and helped us learn a new design concept: SOPC. 
We believe cooperation is vital to the success of such an arduous task with many sophisticated 
technologies. Without a joint effort and team spirit, we would never have finished the design. We will 
always have good memories of the experience. 

Due to limited time and resources, the system is unsatisfactory in some areas. The GPS cannot receive 
GPS satellite signals indoors, so after starting the indoor system normally, the GPS shows the GPS 
information that was saved when the system was last closed. 

Due to limited storage space and data, we only made a map for Xi’an. Our design is missing data for 
other cities, e.g., Shanghai, and information on relevant places. 

Appendix: GPRS Communications Testing Data
Refer to the PDF of this paper on the Altera web site at http://www.altera.com for a detailed description 
of the GPRS communications testing data.
37



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
38



  Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal 

 

Appendix: GPRS Communications Testing Data: 
 
nios2-terminal: connected to hardware target using JTAG UART on cable 
nios2-terminal: "USB-Blaster [USB-0]", device 1, instance 0 
nios2-terminal: (Use the IDE stop button or Ctrl-C to terminate) 
 
ATE0 
 
OK 
AT 
 
OK 
AT+CREG? 
 
+CREG: 0,1 
AT+IPR=115200 
 
OK 
AT+CGDCONT=1,"ip","cmnet",,0,0 
 
OK 
AT&W 
 
OK 
AT+CGACT=1 
 
OK 
AT+CGATT=1 
 
OK 
AT+CGQMIN=1,0,0,3,0,0 
 
OK 
 
***************************************************** 
**- < GPRS Module Initialization is Successfull > -** 
***************************************************** 
ATD*99**1*1# 
 
CONNECT 
 
***************************************************** 
**-- < Connection GPRS Network is  Successfull > --** 
***************************************************** 
 
Rx_Data:________________________________________________________________



Nios II Embedded Processor Design Contest—Outstanding Designs 2006 

 

_______ 
FCS is OK! 
0x7e 0xff 0x 3 0xc0 0x21 0x 1 0x 3 0x 0 0x19 0x 2 0x 6 0x 0 0x a 0x 0 0x 0 0x 7  
0x 2 0x 8 0x 2 0x 5 0x 6 0x53 0x8e 0xb6 0xef 0x 3 0x 5 0xc2 0x23 0x 5 0xe1 0x5e  
0x7e  
 Rx LCP Req ! 
 
Tx LCP Req : 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0xff 0x7d 0x23 0xc0 0x21 0x7d 0x21 0x7d 0x21 0x7d 0x20 0x7d 0x32 0x7d 0x22  
0x7d 0x26 0x7d 0x20 0x7d 0x2a 0x7d 0x20 0x7d 0x20 0x7d 0x27 0x7d 0x22 0x7d 0x28  
0x7d 0x22 0x7d 0x23 0x7d 0x24 0xc0 0x23 0x6c 0x7d 0x30 0x7e  
 
 
Rx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0xff 0x 3 0xc0 0x21 0x 2 0x 1 0x 0 0x12 0x 2 0x 6 0x 0 0x a 0x 0 0x 0 0x 7  
0x 2 0x 8 0x 2 0x 3 0x 4 0xc0 0x23 0x54 0x11 0x7e  
Rx LCP ACK ! 
 
Rx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0xff 0x 3 0xc0 0x21 0x 1 0x 3 0x 0 0x18 0x 2 0x 6 0x 0 0x a 0x 0 0x 0 0x 7  
0x 2 0x 8 0x 2 0x 5 0x 6 0x53 0x8e 0xb6 0xef 0x 3 0x 4 0xc0 0x23 0x1e 0x95 0x7e  
 Rx LCP Req ! 
 
Tx LCP ACK : 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0xff 0x7d 0x23 0xc0 0x21 0x7d 0x22 0x7d 0x23 0x7d 0x20 0x7d 0x38 0x7d 0x22  
0x7d 0x26 0x7d 0x20 0x7d 0x2a 0x7d 0x20 0x7d 0x20 0x7d 0x27 0x7d 0x22 0x7d 0x28  
0x7d 0x22 0x7d 0x25 0x7d 0x26 0x53 0x8e 0xb6 0xef 0x7d 0x23 0x7d 0x24 0xc0 0x23  
0xd2 0x78 0x7e  
 
Tx PAP Req: : 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0xff 0x7d 0x23 0xc0 0x23 0x7d 0x21 0x7d 0x22 0x7d 0x20 0x7d 0x26 0x7d 0x20  
0x7d 0x20 0x4d 0x34 0x7e  
 



  Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal 

 

 
Rx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0xc0 0x23 0x 2 0x 2 0x 0 0x 5 0x 0 0x30 0x15 0x7e  
Rx PAP ACK ! 
 
Tx IPCP Req: 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0xff 0x7d 0x23 0x80 0x21 0x7d 0x21 0x7d 0x21 0x7d 0x20 0x7d 0x36 0x7d 0x23  
0x7d 0x26 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x81 0x7d 0x26 0x7d 0x20 0x7d  
0x20 0x7d 0x20 0x7d 0x20 0x83 0x7d 0x26 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20  
0x6e 0xdb 0x7e  
 
 
Rx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x80 0x21 0x 1 0x 1 0x 0 0x a 0x 3 0x 6 0xc0 0xa8 0xfe 0xfe 0x48 0xcc 0x7e  
Rx IPCP Req ! 
 
Tx IPCP ACK:  
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0xff 0x7d 0x23 0x80 0x21 0x7d 0x22 0x7d 0x21 0x7d 0x20 0x7d 0x2a 0x7d 0x23  
0x7d 0x26 0xc0 0xa8 0xfe 0xfe 0x5f 0x56 0x7e  
 
Tx IPCP Req:  
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0xff 0x7d 0x23 0x80 0x21 0x7d 0x21 0x7d 0x22 0x7d 0x20 0x7d 0x36 0x7d 0x23  
0x7d 0x26 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x81 0x7d 0x26 0x7d 0x20 0x7d  
0x20 0x7d 0x20 0x7d 0x20 0x83 0x7d 0x26 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20  
0xda 0x82 0x7e  
 
 
Rx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x80 0x21 0x 3 0x 2 0x 0 0x16 0x 3 0x 6 0x a 0xb6 0x 9 0x b 0x81 0x 6 0xd3  
0x89 0x82 0x 3 0x83 0x 6 0xd3 0x89 0x82 0x13 0xc3 0xcd 0x7e  
Rx IPCP NCK ! 



Nios II Embedded Processor Design Contest—Outstanding Designs 2006 

 

 
Get IP Adress: 
 
__________________GPRS Network Config Information_____________________ 
  
This is My IP Adress:    10.182.9.11. 
This is My DNS 1 Adress: 211.137.130.3. 
This is My DNS 2 Adress: 211.137.130.19. 
______________________________________________________________________ 
 
 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0xff 0x7d 0x23 0x80 0x21 0x7d 0x21 0x7d 0x23 0x7d 0x20 0x7d 0x36 0x7d 0x23  
0x7d 0x26 0x7d 0x2a 0xb6 0x7d 0x29 0x7d 0x2b 0x81 0x7d 0x26 0xd3 0x89 0x82 0x7d  
0x23 0x83 0x7d 0x26 0xd3 0x89 0x82 0x7d 0x33 0x64 0x30 0x7e  
 
 
Rx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x80 0x21 0x 2 0x 3 0x 0 0x16 0x 3 0x 6 0x a 0xb6 0x 9 0x b 0x81 0x 6 0xd3  
0x89 0x82 0x 3 0x83 0x 6 0xd3 0x89 0x82 0x13 0xf2 0x53 0x7e  
 
__________________GPRS Network Config Information_____________________ 
  
This is My IP Adress:    10.182.9.11. 
This is My DNS 1 Adress: 211.137.130.3. 
This is My DNS 2 Adress: 211.137.130.19. 
______________________________________________________________________ 
 
  
***************************************************** 
**--      < PPP Link Config is Successfully! >   --** 
***************************************************** 
 
Tx_Data ( IP_Packet ): 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x7d 0x20 0x7d 0x20 0x26 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20  
0xff 0x7d 0x31 0x5c 0x54 0x7d 0x2a 0xb6 0x7d 0x29 0x7d 0x2b 0xca 0x75 0x81 0x3c  
0x7d 0x20 0x64 0x7d 0x24 0x7d 0x38 0x7d 0x20 0x7d 0x32 0x91 0xd6 0x7d 0x20 0x7d  
0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x31 0x32 0x33  
0x34 0x35 0x36 0x37 0x38 0x39 0x30 0x62 0x8d 0x7e  



  Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal 

 

 
 
Tx_Data ( IP_Packet ): 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x7d 0x20 0x7d 0x20 0x26 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20  
0xff 0x7d 0x31 0x5c 0x54 0x7d 0x2a 0xb6 0x7d 0x29 0x7d 0x2b 0xca 0x75 0x81 0x3c  
0x7d 0x20 0x64 0x7d 0x24 0x7d 0x38 0x7d 0x20 0x7d 0x32 0x91 0xd6 0x7d 0x20 0x7d  
0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x31 0x32 0x33  
0x34 0x35 0x36 0x37 0x38 0x39 0x30 0x62 0x8d 0x7e  
 
 
Tx_Data ( IP_Packet ): 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x7d 0x20 0x7d 0x20 0x26 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20  
0xff 0x7d 0x31 0x5c 0x54 0x7d 0x2a 0xb6 0x7d 0x29 0x7d 0x2b 0xca 0x75 0x81 0x3c  
0x7d 0x20 0x64 0x7d 0x24 0x7d 0x38 0x7d 0x20 0x7d 0x32 0x91 0xd6 0x7d 0x20 0x7d  
0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x31 0x32 0x33  
0x34 0x35 0x36 0x37 0x38 0x39 0x30 0x62 0x8d 0x7e  
 
TCP Establishment is runningh 
 
Tx_Data ( IP_Packet ): 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x7d 0x20 0x7d 0x20 0x28 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20  
0xff 0x7d 0x26 0x5c 0x5d 0x7d 0x2a 0xb6 0x7d 0x29 0x7d 0x2b 0xca 0x75 0x81 0x3c  
0x7d 0x20 0x50 0x7d 0x24 0x7d 0x38 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d  
0x20 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x50 0x7d 0x22 0x7d 0x28 0x7d 0x20 0x44 0x7d  
0x28 0x7d 0x20 0x7d 0x20 0x7d 0x2b 0x7d 0x37 0x7e  
 
 
Rx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x 0 0x 0 0x2c 0x13 0x2f 0x40 0x 0 0x2f 0x 6 0xd9 0x2a 0xca 0x75  
0x81 0x3c 0x a 0xb6 0x 9 0x b 0x 4 0x18 0x 0 0x50 0x32 0xe2 0x56 0xe7 0x 0 0x 0  
0x 0 0x 1 0x60 0x12 0xff 0xff 0xaa 0x71 0x 0 0x 0 0x 2 0x 4 0x 5 0xb4 0x20 0xe0  
0x7e  
 
-----TCP  Checksum is Eroor! 
 



Nios II Embedded Processor Design Contest—Outstanding Designs 2006 

 

Tx_Data ( IP_Packet ): 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x7d 0x20 0x7d 0x20 0x28 0x7d 0x33 0x2f 0x40 0x7d 0x20 0x2f 0x7d  
0x26 0xd9 0x2e 0x7d 0x2a 0xb6 0x7d 0x29 0x7d 0x2b 0xca 0x75 0x81 0x3c 0x7d 0x20  
0x50 0x7d 0x24 0x7d 0x38 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x21 0x32 0xe2 0x56  
0xe8 0x50 0x7d 0x30 0x7d 0x28 0x7d 0x20 0xba 0x2e 0x7d 0x20 0x7d 0x20 0x9c 0xea  
0x7e  
 
 
Tx_Data ( IP_Packet ): 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x7d 0x20 0x7d 0x20 0x32 0x7d 0x33 0x2f 0x40 0x7d 0x20 0x2f 0x7d  
0x26 0xd9 0x24 0x7d 0x2a 0xb6 0x7d 0x29 0x7d 0x2b 0xca 0x75 0x81 0x3c 0x7d 0x20  
0x50 0x7d 0x24 0x7d 0x38 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x21 0x32 0xe2 0x56  
0xe8 0x50 0x7d 0x38 0x7d 0x28 0x7d 0x20 0xb0 0x7d 0x37 0x7d 0x20 0x7d 0x20 0x31  
0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x30 0x3d 0x7d 0x27 0x7e  
 
 
Rx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x 0 0x 0 0x28 0x13 0x44 0x40 0x 0 0x30 0x 6 0xd8 0x19 0xca 0x75  
0x81 0x3c 0x a 0xb6 0x 9 0x b 0x 4 0x18 0x 0 0x50 0x32 0xe2 0x56 0xe8 0x 0 0x 0  
0x 0 0x b 0x50 0x10 0xff 0xf5 0xc2 0x2e 0x 0 0x 0 0x 6 0xb7 0x7e  
 
Rx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x 0 0x 0 0x2e 0x13 0x57 0x40 0x 0 0x30 0x 6 0xd8 0x 0 0xca 0x75  
0x81 0x3c 0x a 0xb6 0x 9 0x b 0x 4 0x18 0x 0 0x50 0x32 0xe2 0x56 0xe8 0x 0 0x 0  
0x 0 0x b 0x50 0x18 0xff 0xf5 0x28 0x84 0x 0 0x 0 0x31 0x32 0x33 0x34 0x35 0x36  
0x50 0xd5 0x7e  
 
--------------Receive Data : 
123456 
Tx_Data ( IP_Packet ): 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x7d 0x20 0x7d 0x20 0x28 0x7d 0x33 0x57 0x40 0x7d 0x20 0x30 0x7d  
0x26 0xd8 0x7d 0x26 0x7d 0x2a 0xb6 0x7d 0x29 0x7d 0x2b 0xca 0x75 0x81 0x3c 0x7d  
0x20 0x50 0x7d 0x24 0x7d 0x38 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x2b 0x32 0xe2  



  Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal 

 

0x56 0xee 0x50 0x7d 0x30 0x7d 0x28 0x7d 0x20 0xba 0x7d 0x3e 0x7d 0x20 0x7d 0x20  
0x8d 0x7d 0x22 0x7e  
 
The Data Queue is Empty 
The Packet is Retransmission 
 
Tx_Data ( IP_Packet ): 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x7d 0x20 0x7d 0x20 0x2b 0x7d 0x33 0x57 0x40 0x7d 0x20 0x30 0x7d  
0x26 0xd8 0x7d 0x23 0x7d 0x2a 0xb6 0x7d 0x29 0x7d 0x2b 0xca 0x75 0x81 0x3c 0x7d  
0x20 0x50 0x7d 0x24 0x7d 0x38 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x2b 0x32 0xe2  
0x56 0xee 0x50 0x7d 0x30 0x7d 0x28 0x7d 0x20 0x49 0xe3 0x7d 0x20 0x7d 0x20 0x37  
0x38 0x39 0x92 0xa2 0x7e  
 
 
Rx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x 0 0x 0 0x28 0x13 0x92 0x40 0x 0 0x30 0x 6 0xd7 0xcb 0xca 0x75  
0x81 0x3c 0x a 0xb6 0x 9 0x b 0x 4 0x18 0x 0 0x50 0x32 0xe2 0x56 0xee 0x 0 0x 0  
0x 0 0x e 0x50 0x10 0xff 0xf2 0xc2 0x28 0x 0 0x 0 0x2a 0x15 0x7e  
 
Rx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x 0 0x 0 0x2b 0x13 0xad 0x40 0x 0 0x30 0x 6 0xd7 0xad 0xca 0x75  
0x81 0x3c 0x a 0xb6 0x 9 0x b 0x 4 0x18 0x 0 0x50 0x32 0xe2 0x56 0xee 0x 0 0x 0  
0x 0 0x e 0x50 0x18 0xff 0xf2 0x57 0xe8 0x 0 0x 0 0x34 0x35 0x36 0x28 0x33 0x7e  
 
-----TCP  Checksum is Eroor! 
 
--------------Receive Data : 
456 
Tx_Data ( IP_Packet ): 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x7d 0x20 0x7d 0x20 0x28 0x7d 0x33 0xad 0x40 0x7d 0x20 0x30 0x7d  
0x26 0xd7 0xb0 0x7d 0x2a 0xb6 0x7d 0x29 0x7d 0x2b 0xca 0x75 0x81 0x3c 0x7d 0x20  
0x50 0x7d 0x24 0x7d 0x38 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x2e 0x32 0xe2 0x56  
0xf1 0x50 0x7d 0x30 0x7d 0x28 0x7d 0x20 0xba 0x7d 0x38 0x7d 0x20 0x7d 0x20 0x84  
0xe3 0x7e  
 
The Data Queue is Empty 



Nios II Embedded Processor Design Contest—Outstanding Designs 2006 

 

 
Rx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x 0 0x 0 0x2b 0x13 0xcf 0x40 0x 0 0x30 0x 6 0xd7 0x8b 0xca 0x75  
0x81 0x3c 0x a 0xb6 0x 9 0x b 0x 4 0x18 0x 0 0x50 0x32 0xe2 0x56 0xf1 0x 0 0x 0  
0x 0 0x e 0x50 0x18 0xff 0xf2 0xeb 0xa2 0x 0 0x 0 0x71 0x77 0x65 0x9a 0x72 0x7e  
 
-----TCP  Checksum is Eroor! 
 
--------------Receive Data : 
qwe 
Tx_Data ( IP_Packet ): 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x7d 0x20 0x7d 0x20 0x28 0x7d 0x33 0xcf 0x40 0x7d 0x20 0x30 0x7d  
0x26 0xd7 0x8e 0x7d 0x2a 0xb6 0x7d 0x29 0x7d 0x2b 0xca 0x75 0x81 0x3c 0x7d 0x20  
0x50 0x7d 0x24 0x7d 0x38 0x7d 0x20 0x7d 0x20 0x7d 0x20 0x7d 0x2e 0x32 0xe2 0x56  
0xf4 0x50 0x7d 0x30 0x7d 0x28 0x7d 0x20 0xba 0x7d 0x35 0x7d 0x20 0x7d 0x20 0x88  
0x4e 0x7e  
 
The Data Queue is Empty 
 
Rx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x 0 0x 0 0x28 0x13 0xe8 0x40 0x 0 0x2f 0x 6 0xd8 0x75 0xca 0x75  
0x81 0x3c 0x a 0xb6 0x 9 0x b 0x 4 0x18 0x 0 0x50 0x32 0xe2 0x56 0xf4 0x 0 0x 0  
0x 0 0x e 0x50 0x11 0xff 0xf2 0xc2 0x21 0x 0 0x 0 0x24 0xdb 0x7e  
 
Tx_Data ( IP_Packet ): 
Tx_Data:________________________________________________________________
_______ 
FCS is OK! 
0x7e 0x21 0x45 0x7d 0x20 0x7d 0x20 0x28 0x7d 0x33 0xe8 0x40 0x7d 0x20 0 

 
Contact: YunLiu 
 
Tel: 13201517775 
 
Institute: Computer Department, Xi’an Institute of Post and Telecommunications 
 
Postalcode: 710061 
 
Address: No. 563, Chang’an South Road, Xi’an, Shaanxi Province 



  Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal 

 

 
2006-08-31 


	Nios II-Based Multiple-Core Intelligent Traffic On-Vehicle Terminal
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion
	Appendix: GPRS Communications Testing Data


