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Design Introduction
Our project implements a software-defined radio (SDR) in a Nios® II processor. A software-defined 
radio is a radio that provides software control of a variety of modulation and demodulation techniques, 
wide-band or narrow-band operation, communications security functions (such as hopping), and 
waveform requirements of current and evolving standards over a broad frequency range. In this project, 
we used the Nios II processor—which supports easy reconfiguration and low development costs—to 
build a software-defined radio that supports many real-time applications. Altera®-based system-on-a-
programmable-chip (SOPC) designs let designers implement real-time critical functions in hardware. 
Custom instructions make it easy to implement the whole system on an SOPC platform, with better 
software partitioning and hardware implementation of the software-defined radio.

Design Purpose
SDR technology facilitates the software development of the radio system functional modules, such as 
modulation/demodulation, signal generation, coding, and link-layer protocols. This implementation 
helps designers build reconfigurable software radio systems in which parameters are selected 
dynamically. A complete hardware-based radio system has limited utility, because the functional 
module parameters are fixed. A radio system built using SDR technology extends the use of the system 
for a wide range of applications. 

Application Scope
SDR technology can be used to implement military, commercial, and civilian radio applications. 
Designers can implement a wide variety of radio applications using SDR technology, such as Bluetooth, 
WLAN, GPS, radar, wideband code division multiple access (W-CDMA), general packet radio services 
(GPRS), etc. SDR has generated tremendous interest in the wireless communications industry because 
of the wide-ranging economic and deployment benefits it offers.
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SOPC Builder Role
The Nios II processor offers embedded design versatility and reconfigurability. It has built-in memory, 
peripherals, and interfaces, as well as a variety of intellectual property (IP) functions. Productivity 
tools—such as SOPC Builder, the Nios II Integrated Development Environment (IDE), and Nios II 
compiler—combined with an FPGA target device allowed us to reduce our turnaround time and costs. 
The Nios II processor is a perfect fit because we can choose the peripheral, performance, processor mix, 
and cost that best suits the our SOPC needs. The Nios II processor supports multi-processor systems, 
and using SOPC Builder, we can use multiple processor cores according to our design requirements.

The Nios II processor provides design flexibility because it is compatible with both software and 
hardware description languages. Efficient implementation of a complete SOPC is feasible when high-
density FPGAs are integrated with high-capacity RAMs and the Nios II processor. 

Suitability of FPGAs
Designers can use FPGAs efficiently for digital signal processing (DSP) and other computationally 
intensive tasks. High-bandwidth memories, embedded DSP blocks, phase-locked loops (PLLs), and 
high-speed interfaces can be programmed into the FPGA, which facilitates SDR implementation. 
Additionally, embedded processors with FPGA co-processors enable easy design reconfiguration.

Functional Description
Our SDR design receives and demodulates realtime AM signals. The design can accomodate future 
enhancements, e.g., accommodating a transmitter in addition to the existing receiver, implementing 
different transmission modes, enhancing reception, and supporting the real-time requirements of 
civilian and military applications.

The SDR implementation involves frequency translation, analog-to-digital (A/D) conversion, and 
message recovery. In the frequency translation phase, the received signal frequency is translated to the 
intermediate frequency (IF) of 455 KHz. This part consists of an antenna, a radio frequency (RF) 
amplifier, a mixer, a local oscillator, a band-pass filter, and an A/D converter. We used the the MATLAB 
and Simulink software to implement the blocks and obtain AM signal sample values. Sampled values 
of the modulated signal are stored in RAM and are fed to the demodulator circuit, which is programmed 
into the FPGA. The demodulator circuit is based on a special sampling theorem, which makes using a 
mixer unnecessary. This signal then produces a demodulated output using the coordinate rotation digital 
computer (CORDIC) algorithm.

CORDIC Algorithm
CORDIC algorithms use shifts and adds to compute a wide range of functions, including trigonometric, 
hyperbolic, linear, and logarithmic functions. The CORDIC algorithm is used in diverse applications 
such as mathematical co-processor units, calculators, waveform generators, and digital modems. 

The CORDIC algorithm uses shifts and adds to perform vector rotations iteratively. In rotation mode, 
CORDIC converts one vector in rectangular form to another vector in rectangular form. In vector mode, 
it converts a vector in rectangular form to polar form.

CORDIC Rotation Mode
The CORDIC algorithm for this mode is derived from the general rotation transform:

xfin = xincosΘ - yinsinΘ (1)

yfin = yincosΘ = xinsinΘ (2)
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The transform rotates a vector (xin, yin) in a Cartesian plane by an angle Θ to another vector with the 
coordinates (xfin, yfin). Rotation is achieved by performing a series of successively smaller elementary 
rotations Θ0, Θ1, Θ2 ... ΘN such that:

Figure 1 shows the case where rotation of a vector of magnitude 1 by an angle Θ is achieved using three 
elementary rotations Θ0, Θ1, and Θ2 . 

Figure 1. Vector Rotation by an Angle Θi Using a Number of Steps

Rotation of the vector by an angle Θi can be rewritten as:

xi+1 = xicosΘi - yisinΘi (3)

yi+1 = yicosΘi - xisinΘi (4)

(5)

(6)

The computational complexity of equations 5 and 6 can be reduced by rewriting them as:

xi+1 = xi - yi tanΘi (7)

yi+1 = yi - xi tanΘi (8)

(9)

and performing the division by cosΘ together for all N iterations by dividing the value of (xN,yN) by:
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Further, the value of Θi for i =1, 2, ... N is chosen such that tanΘi is 2-i. Table 1 shows the values of the 
angles for i = 0 to 9. 

This process reduces the multiplication by the tanΘi to a simple shift operation. As the iteration 
increases, Θi becomes smaller and smaller. We terminate the iteration when the difference between Θi 
and the sum of Θi from 1 to N becomes very small for some value of N. The remaining angle by which 
the vector must be rotated after the completion of i iterations is indicated by the parameter zi+1 as 
defined by equation 10.

Zi+1 = Zi - Θi (10)

Z0 = Θ (11)

Θi is considered to be positive when the rotation required is counter-clockwise and negative otherwise. 

To approximate an arbitrary angle using Θi of the form tan-1(2-i), Θi may be negative for some values of 
i. For example, to approximate 50, we choose Θi as 45, 26.5, -14 and, -7.1 in the first four iterations. 
(The actual sum of these angles is 50.4.) The sign (sgn) of zi indicates whether, in the next iteration, the 

rotation should be counter-clockwise or clockwise. Because, tanΘi is +2-i when Θi is positive and -2-i 
otherwise, the iterative equations may be rewitten as:

δi = sgn (zi) (12)

xi+1 = xi - δi yi 2
-i (13)

yi+1 = yi + δi xi 2
-i (14)

zi+1 = z1 - δi tan-1 ( 2-i ) (15)

Table 1. Values of Θi = tan-1 (2-i)s

i Θi tanΘi

o 45 1

1 26.5 0.5

2 14 0.25

3 7.1 0.125

4 3.57 0.0625

5 1.78 0.03125

6 0.895 0.015625

7 0.4476 0.0078125

8 0.2238 0.00390625

9 0.1119 0.001953125
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1

N

∏
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The computation of

can be simplified. Because cosΘi = 1 for very small values of Θi, the equation can be computed for N = 6 
(therefore K = 0.6073), and can be used for any other value of N > 6.

CORDIC Vector Mode
In this mode, an initial vector with the x,y coordinates of (xin,yin) is rotated such that its y coordinate 
becomes zero. The procedure used for rotation may be adopted for vector mode with the following 
modifications: rotation is carried out clockwise (so that the y coordinate can be made 0), and the total 
angle by which the vector has been rotated from the initial position after i rotation is indicated by the 
parameter Zi+1 and Z0 is defined as 0. See equations 16 through 19. To obtain equation 16, when yi is 
positive, the rotation is clockwise in the next iteration. When it is negative, it is counter-clockwise. 

δ i = -sgn (yi) (16)

xi+1= xi - δ i yi 2
-i (17)

yi+1 = yi + δi xi 2
-i (18)

zi+1 = zi - δi tan-1 (2-i) (19)

As i becomes large, yi goes to 0 and xfin, the magnitude of the vector after N iterations and Zfin, the 
angle of the vector are obtained as:

(20)

(21)

CORDIC as a Universal Demodulator
If the carrier frequency, amplitude, and phase of the received signal are fi , 2b(t), and (t) respectively, 
then the received signal r(t) is given by:

r(t) = 2b(t)sin(i t + (t) )  (22) 

One approach to demodulating the signal is generating the in-phase I(t) signal and quadrature signal 
Q(t) given by:

I(t) = b(t{sin[2(fi – fo)t + (t)] (23)

Q(t) = b(t){cos[2(fi – fo)t + (t)] (24)
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using a local oscillator of frequency fo with a known initial phase. 

The in-phase and quadrature signals can be fed to the two inputs (xin,yin) of the CORDIC operated in 
rotation mode. The magnitude of the vector xfin gives the demodulated signal corresponding to 
amplitude modulation as:

 (25)

Similarly, Zfin, the angle of the vector, gives the phase shift introduced into the carrier and is given by:

(26)

Differentiating equation 26, the instantaneous frequency of the carrier can be found. 

Generating In-Phase and Quadrature Signals Using 
Quadrature Mixers 
Using the quadrature mixers shown in Figure 2, I (t) and Q (t) can be generated.

Figure 2. Generating In-Phase and Quadrature Signals

In this scheme, the input signal is divided into two in-phase paths and the local oscillator signals applied 
to the two mixers are 90-degree out of phase. The outputs of the two mixers are:

Vif1 = 2b(t)sin(2fit + (t)) cos(2fot) (27)

 = b(t){sin[2(fi – fo)t + (t)] + sin[2(fi +fo)t + (t)]) ) 

vif2 = 2b(t) sin (2fit + (t)) sin 2fot) (28)

 = b (t){cos [2(fi – fo)t + (t)]-cos[2(fi + fo)t + (t)]} (29)

The desired I and Q components are obtained using low-pass filters, which filter out the high-frequency 
signals represented by the fi+f0 terms in equations 27 and 29.

A special sampling scheme generates the I and Q components without using quadrature mixers. In this 
case, if the local oscillator frequency is f0, r(t) is sampled at a rate of fs = 4f0. If Vif1, Vif2, and r (t) are 
sampled at a rate of fs = 4f0, then:

t = nTs = n /4f0 (30)
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2tf0 = 2 (nTs) f0 = 2n /4 = n/2 (31)

If we substitute equation 31 in equations 1, 27, and 29, the output sequence at different sampling 
instants are as shown in Table 2. Table 2 shows the samples of the received signal, in-phase channel, 
and quadrature channel signals at different sampling instants for f0 fi.

From Table 1, we can verify that the in-phase and quadrature components can be generated by 
alternately passing r(t) to one of the two channels and inserting zeros alternately to each channel as 
shown in Figure 3. We obtain the desired I and Q components using low-pass filters that filter out the 
high-frequency signals represented by the fi + f0 terms in equation 29. Let us denote the value of r(t), 
I(t), Q(t) at t = nTs as r(n), I(n), and Q(n), respectively. Then, I(n) and Q(n) can be written as:

I(n) = r(0), 0, -r(2), 0, r(4), ...

Q(n) = 0, r(1), 0, -r(3), 0, r(5), ...

What happens if the local oscillator frequency f0 is the same as the input frequency fi? In this case, fs 
can be 4f0. Table 3 shows r(t), I(t), and Q(t) at various sampling instants for f0 = fi.

Therefore, we can generate the in-phase and quadrature components without using mixers, at the 
expense of a higher sampling rate.

Demodulator Implementation
Two mutually complimentary clocks are fed to the selection lines of both multiplexers operated at four 
times the IF signal as defined by our special sampling theorem. I and Q are given as the x and y inputs 
to the CORDIC, which is operating in vector mode. The demodulated signal can be fed to the PC and 
displayed. See Figure 3.

Table 2. Signal Samples (Sample at t = tn = nTs)

For n =      0 1 2 3 4
R(t) b(0)sin(Θ) b(t1 )sin(2Π fi t 1+ Θ) -b(t2 )sin(2Π fi t 2  + Θ) b(t3 )sin(Π2 fi t 3  + Θ) b(t4 )sin(2Π fi t 4  + Θ)

Vi f 1 b(0)sin(Θ) 0 -b(t2 )sin(2Π fi t 2  + Θ) 0 b(t4 )sin(2Π fi t 4  + Θ)

Vi f 2                                                  0 b(t1 )sin(2Π fi t 1+ Θ)  0 -b(t3 )sin(2Π fi t 3+ Θ)  0

Table 3. r(t), I(t) and Q(t) ((Sample at t = tn = nTs))

For n = 0 1 2 3 4
R(t) b(0)sin(Θ) b(t1 )cos(Θ) -b(t2 )sin(Θ) -b(t3 )cos(Θ) b(t4 )sin(Θ)

Vif1   b(0)sin(Θ) 0 - b(t2 )sin(Θ) 0 b(t4 )sin(Θ)

Vif2                                                 0 b(t1 )cos(Θ)  0 -b(t3 )cos(Θ)  0
241



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 3. Generating In-Phase and Quadrature Signals Using Special Sampling Scheme 
and CORDIC 

Advantages of Using the Nios II Processor
We chose the Nios II processor for the following reasons:

■ Based on the Nios II processor, we can enhance system performance by adjusting the Avalon® 
switch fabric.

■ The customizable Altera Nios II processor has high performance and supports flexible product 
development at low cost.

■ The Nios II processor’s customizable instruction set can accommodate complicated arithmetic 
operations. Additionally, it can accelerate algorithm processing, which provides faster execution 
than implementing these operations in software.

■ A configurable design enhances system performance. 

■ The μC/OS-II and RTOS with the Nios II IDE are very user friendly.

■ Implementing the processor, peripherals, memory, and I/O interface in a single FPGA reduces the 
total system cost.

■ We could implement the system rapidly.We could go from the original concept design to system 
implementation in a short time with the Nios II processor. Additionally, we could easily upgrade 
the hardware and software on site. This flexibility allows us to design products in-line with the 
latest specifications and equipped with new features.

■ The Nios II processor can be customized and reconfigured. For example, it supports three 
processor cores, peripherals, the Avalon switch fabric, custom instructions, and hardware 
acceleration. All of these functions can be implemented using commonly available Altera FPGAs.

■ Using IP optimized for the FPGA architecture, we can redesign standard functions easily, rapidly 
customize hardware peripherals, focus on design partitioning, and improve our design knowledge.

■ Integrated development kits, the Quartus® II software, SOPC Builder, ModelSim®-Altera 
software, and SignalTap® II embedded logic analyzer provide a complete set of test and debug 
tools for hardware design. With the Nios II IDE, it is possible to simplify software design and all 
software development tasks, such as program editing and debugging.
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Design Architecture
This section describes our design architecture.

Hardware Design
A signal is received from an antenna and is fed to the RF amplifier. Its output is mixed with the local 
oscillator signal in the mixer. All frequency components, except IF (455 KHz), are filtered out by the 
band-pass filter (BPF). The IF signal is digitized by the analog-to-digital converter (ADC) and is fed to 
the demodulator that is implemented on the FPGA. The demodulator reconstructs the message signal 
and feeds it to the digital-to-analog converter (DAC), which drives a loudspeaker. Figure 4 shows the 
SDR block diagram.

Figure 4. SDR Block Diagram

Software Flow Chart
The demodulator output is called by a Nios II custom instruction. The demodulator output is available 
in the Nios II processor after it has been plotted in MATLAB. Figure 5 shows the software flow chart.

RF Amplifier Mixer Band-Pass Filter A/D Converter

Local Oscillator

Demodulator D/A Converter
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Figure 5. Software Flow Chart

Design Description
The SDR implementation involves two design phases: 

■ Frequency translation

■ Message recovery

We implemented the first phase using the MATLAB software and the second phase in an FPGA using 
Altera tools. The amplitude modulated signal is generated and digitized in the Simulink (MATLAB) 
software before being stored in RAM. These data values are fed to the demodulator, which is called by 
the Nios II processer using a custom instruction. The RAM address is incremented for every call. 

The custom instruction consists of two essential elements (see Figure 6):

■ Custom logic block—Hardware that performs the user-defined operation. The Nios II processor 
can include up to five user-defined custom logic blocks. These blocks become part of the Nios II 
microprocessor’s arithmetic logic unit (ALU).

■ Software macro—Allows the system designer to access the custom logic from the software code. 
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Figure 6. Adding Custom Logic to the Nios II ALU

The demodulator is based on a special sampling theorem and the CORDIC algorithm. Modulated 
samples are split into in-phase and quadrature components with multipliers. These components are fed 
as x and y inputs of the rectangular-to-polar coordinate converter (cordic hardware). The rectangular-
to-polar converter, RAM, and multiplexers are implemented using Verilog HDL. The Verilog HDL 
demodulator implementation block, along with M4K blocks that contain the sampled AM signal values, 
is downloaded into the FPGA. 

In a software-defined radio, the amplitude modulation (AM), frequency modulation (FM), phase 
modulaton (PM), phase shift keying (PSK), and frequency shift keying (FSK) modulation types and the 
local oscillator frequency can be varied using software. The variable local oscillator frequency can be 
implemented using CORDIC and a phase accumulator; however, the CORDIC algorithm cannot be 
used to generate high-frequency signals. Instead, we use programmable logic (multiplexers) to generate 
the high-frequency signals. The stable signal frequencies, on the order of tens of MHz, can be generated 
efficiently using the Quartus II LogicLock™ feature and programmable logic.

Figure 7 shows the design flow.

Figure 7. Design Flow
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Experiments and Results
To test the design, we applied two amplitude modulated signals to the design (a carrier of 1 MHz is 
modulated with two message signals of 1 KHz and 2 KHz, respectively). Figures 8 and 9 show the two 
modulated signals.

Figure 8. Amplitude Modulated Waveforms (fc = 1 MHz , fm = 1 KHz)
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Figure 9. Amplitude Modulated Waveforms (fc = 1 MHz , fm = 2 KHz)

The design generated perfectly reconstructed (i.e., demodulated) message signals from the two 
modulated signals, as shown in Figure 10. 
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Figure 10. 1 KHz and 2 KHz Demodulated Waveforms

Performance Parameters
Table 4 shows the design’s resource usage.

Table 4. Design Resource Usage

Parameter Value
Device EP2C35F672C6 (Cyclone II)

Tool Quartus II verson 5.1

Total logic elements (LEs) 3,154 of an available 33,216 (9%)

Total memory bits 181,760 of an available 483,840 (38%)

Total number of phase-locked loops (PLLs) One quarter (25%)

Total registers 1,860
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Design Features
Our design has the following features:

■ Implementing a demodulator for real-time applications involves mathematical operations 
instructed by the CORDIC algorithm. We efficiently implemented our design using SOPC 
concepts.

■ Because the Nios II processor can be reconfigured, we can enhance the design in the future to 
meet the requirements of real-time applications with very low development costs. 

■ The Nios II processor enables optimum hardware/software development by executing more 
computationally intensive tasks in hardware and the remaining tasks in software.

■ The Nios II embedded processor delivers good price/performance and lowers technical 
development hurdles. We use the Nios II processor to implement the processor, peripherals, 
memory, and I/O interface on a single FPGA, which helped to reduce the total system cost. 
Additionally, Altera’s comprehensive development tools and optimized IP functions reduced our 
software development cost, letting us focus more attention on the design details of the software-
defined radio.

Future Development
We plan to develop our design in the following areas in the future:

■ Add various modulation techniques, such as FM, amplitude shift keying (ASK), PSK, and FSK.

■ Add support for variable frequency transmission, which is required for military applications. 

■ Enhance the design such that multiple software modules implementing different standards on the 
same system co-exist. This support will allow dynamic system reconfiguration by simply 
selecting the appropriate software module.

Conclusion
We thank Altera for having the contest and acknowledge their support when we had design problems. 
During the design we learned that the Nios II processor complies with the emerging trend of industrial 
technology software such as hardware design. Using the Nios II processor, we reduced development 
costs, material costs, and turnaround times, improving our competitiveness. The Nios II processor and 
its development platform provide flexibility and an enhanced, robust system. Using custom instructions 
with the Nios II processor is an added advantage for design customization. On the whole, using SOPC 
concepts allowed us to create a more flexible, dynamically reconfigurable, and computationally 
intensive implementation.
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