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Design Introduction

For the past several decades, designers have processed speech for a wide variety of applications ranging
from mobile communications to automatic reading machines. Speech recognition reduces the overhead
caused by alternate communication methods. Speech has not been used much in the field of electronics
and computers due to the complexity and variety of speech signals and sounds. However, with modern
processes, algorithms, and methods we can process speech signals easily and recognize the text.

Objective

In our project, we developed an on-line speech-to-text engine, implemented as a system-on-a-
programmable-chip (SOPC) solution. The system acquires speech at run time through a microphone
and processes the sampled speech to recognize the uttered text. We used the hidden Markov model
(HMM) for speech recognition, which converts the speech to text. The recognized text can be stored in
a file on a PC that connects to an FPGA on a development board using a standard RS-232 serial cable.

Our speech-to-text system directly acquires and converts speech to text. It can supplement other larger
systems, giving users a different choice for data entry. A speech-to-text system can also improve system
accessibility by providing data entry options for blind, deaf, or physically handicapped users.

Project Outline

The project implements a speech-to-text system using isolated word recognition with a vocabulary of
ten words (digits 0 to 9) and statistical modeling (HMM) for machine speech recognition. In the training
phase, the uttered digits are recorded using 16-bit pulse code modulation (PCM) with a sampling rate
of 8 KHz and saved as a wave file using sound recorder software. We use the MATLAB software’s
wavread command to convert the .wav files to speech samples.
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Generally, a speech signal consists of noise-speech-noise. The detection of actual speech in the given
samples is important. We divided the speech signal into frames of 450 samples each with an overlap of
300 samples, i.e., two-thirds of a frame length. The speech is separated from the pauses using voice
activity detection (VAD) techniques, which are discussed in detail later in the paper.

The system performs speech analysis using the linear predictive coding (LPC) method. From the LPC
coefficients we get the weighted cepstral coefficients and cepstral time derivatives, which form the
feature vector for a frame. Then, the system performs vector quantization using a vector codebook. The
resulting vectors form the observation sequence. For each word in the vocabulary, the system builds an
HMM model and trains the model during the training phase. The training steps, from VAD to HMM
model building, are performed using PC-based C programs. We load the resulting HMM models onto
an FPGA for the recognition phase.

In the recognition phase, the speech is acquired dynamically from the microphone through a codec and
is stored in the FPGA’s memory. These speech samples are preprocessed, and the probability of getting
the observation sequence for each model is calculated. The uttered word is recognized based on a
maximum likelihood estimation.

FPGA Design Significance

The trend in hardware design is towards implementing a complete system, intended for various
applications, on a single chip. The advent of high-density FPGAs with high-capacity RAMs, and
support for soft-core processors such as Altera’s Nios® Il processor, have enabled designers to
implement a complete system on a chip. FPGAs provide the following benefits:

B FPGA systems are portable, cost effective, and consume very little power compared to PCs. A
complete system can be implemented easily on a single chip because complex integrated circuits
(ICs) with millions of gates are available now.

B SOPC Builder can trim months from a design cycle by simplifying and accelerating the design
process. It integrates complex system components such as intellectual property (IP) blocks,
memories, and interfaces to off-chip devices including application-specific standard products
(ASSPs) and ASICs on Altera® high-density FPGAs.

B SOPC methodology gives the designer flexibility when writing code, and supports both high-level
languages (HLLs) and hardware description language (HDLs). The time-critical blocks can be
implemented in an HDL while the remaining blocks are implemented in an HLL. It is easy to
change the existing algorithm in hardware and software by simply modifying the code.

B FPGAs provide the best of both worlds: a microcontroller or RISC processor can efficiently
perform control and decision-making operations while the FPGA can perform digital signal
processing (DSP) operations and other computationally intensive tasks.

B An FPGA supports hardware/software co-design in which the time-critical blocks are written in
HDL and implemented as hardware units, while the remaining application logic is written C. The
challenge is to find a good tradeoff between the two. Both the processor and the custom hardware
must be optimally designed such that neither is idle or under-utilized.

Nios lI-Based Design

We decided to use an FPGA after analyzing the various requirements for a speech-to-text conversion
system. A basic system requires application programs, running on a customizable processor, that can
implement custom digital hardware for computationally intensive operations such as fast Fourier
transform (FFT), Viterbi decoding, etc. Using a soft-core processor, we can implement and customize
various interfaces, including serial, parallel, and Ethernet.

The Altera development board, user-friendly Quartus® II software, SOPC Builder, Nios II Integrated
Development Environment (IDE), and associated documentation enable even a beginner to feel at ease
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with developing an SOPC design. We can perform hardware design and simulation using the Quartus II
software and use SOPC Builder to create the system from readily available, easy-to-use components.
With the Nios II IDE, we easily created application software for the Nios II processor with the intuitive
click-to-run IDE interface. The development board’s rich features and customization, SOPC Builder’s
built-in support for interfaces (such as serial, parallel, Ethernet, and USB), and the easy programming
interface provided by the Nios II hardware application layer (HAL) make the Nios II processor and an
FPGA the ideal platform for implementing our on-line speech-to-text system.

Application Scope and Targeted Users

The design is very generic and can be used in a variety of applications. The basic system with the
vocabulary of numbers from 0 to 9 can be used in applications such as:

Interactive voice response system (IVRS)
Voice-dialing in mobile phones and telephones

Hands-free dialing in wireless bluetooth headsets

PIN and numeric password entry modules
B Automated teller machines (ATMs)

If we increased the system’s vocabulary using phoneme-based recognition for a particular language,
e.g., English, the system could be used to replace standard input devices such as keyboards, touch pads,
etc. in I'T- and electronics-based applications in various fields. The design has a wide market
opportunity ranging from mobile service providers to ATM makers. Some of the targeted users for the
system include:

B Value added service (VAS) providers

Mobile operators

Home and office security device providers

ATM manufacturers

Mobile phone and bluetooth headset manufacturers
Telephone service providers

Manufacturers of instruments for disabled persons

PC users

Function Description

The project converts speech into text using an FPGA. Run-time speech data is acquired from a
transducer through analog-to-digital (A/D) conversion and is sent to the FPGA, which provides speech
preprocessing and recognition using the Nios II processor. The system sends text data to a PC for
storage. Functionally, the project has the following blocks:

B Speech acquisition

B Speech preprocessing
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B HMM training

B HMM-based recognition

B Text storage

Figure 1 shows the system’s functional block diagram

Figure 1. Functional Block Diagram
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During speech acquisition, speech samples are obtained from the speaker in real time and stored in
memory for preprocessing. Speech acquisition requires a microphone coupled with an analog-to-digital
converter (ADC) that has the proper amplification to receive the voice speech signal, sample it, and
convert it into digital speech. The system sends the analog speech through a transducer, amplifies it,
sends it through an ADC, and transmits it to the Nios II processor in the FPGA through the
communications interface. The system needs a parallel/serial interface to the Nios II processor and an
application running on the processor that acquires and stores data in memory. The received samples are
stored into memory on the Altera Development and Education (DE2) development board.

We easily implemented speech acquisition with the Altera DE2 development board. The microphone

input port with the audio codec receives the signal, amplifies it, and converts it into 16-bit PCM digital
samples at a sampling rate of 8§ KHz. The codec requires initial configuration, which is performed using
custom hardware implemented in the Altera Cyclone® II FPGA on the board.

The audio codec provides a serial communication interface, which is connected to a UART. We used
SOPC Builder to add the UART to the Nios II processor to enable the interface. The UART is connected
to the processor through the Avalon® bus. The C application running on the HAL transfers data from
the UART to the SDRAM. Direct memory access (DMA) transfers data efficiently and quickly, and we
may use it instead in future designs.

Speech Preprocessing

The speech signal consists of the uttered digit along with a pause period and background noise.
Preprocessing reduces the amount of processing required in later stages. Generally, preprocessing
involves taking the speech samples as input, blocking the samples into frames, and returning a unique
pattern for each sample, as described in the following steps.

1. The system must identify useful or significant samples from the speech signal. To accomplish this
goal, the system divides the speech samples into overlapped frames.

2. The system checks the frames for voice activity using endpoint detection and energy threshold
calculations.

3. The speech samples are passed through a pre-emphasis filter.

4. The frames with voice activity are passed through a Hamming window.
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5. The system performs autocorrelation analysis on each frame.

6.  The system finds linear predictive coding (LPC) coefficients using the Levinson and Durbin
algorithm.

7. From the LPC coefficients, the system determines the cepstral coefficients and weighs them using
a tapered window. The cepstral coefficients serve as feature vectors.

Using temporal cepstral derivatives improves the speech frame feature vectors. We use them in case the
cepstral coefficients do not give acceptable recognition accuracy.

We implemented these steps with C programs, which execute based on the algorithms. Although we
used the same C programs for training and recognition, the C code executes on a PC during training and
it runs on the Nios II processor during recognition.

HMM Training

An important part of speech-to-text conversion using pattern recognition is training. Training involves
creating a pattern representative of the features of a class using one or more test patterns that correspond
to speech sounds of the same class. The resulting pattern (generally called a reference pattern) is an
example or template, derived from some type of averaging technique. It can also be a model that
characterizes the reference pattern statistics. Our system uses speech samples from three individuals
during training.

A model commonly used for speech recognition is the HMM, which is a statistical model used for
modeling an unknown system using an observed output sequence. The system trains the HMM for each
digit in the vocabulary using the Baum-Welch algorithm. The codebook index created during
preprocessing is the observation vector for the HMM model.

After preprocessing the input speech samples to extract feature vectors, the system builds the codebook.
The codebook is the reference code space that we can use to compare input feature vectors. The
weighted cepstrum matrices for various users and digits are compared with the codebook. The nearest
corresponding codebook vector indices are sent to the Baum-Welch algorithm for training an HMM
model.

The HMM characterizes the system using three matrices:
B A—The state transition probability distribution.

B B—The observation symbol probability distribution.
B »n—The initial state distribution.

Any digit is completely characterized by its corresponding A, B, and n matrices. The A, B, and n
matrices are modeled using the Baum-Welch algorithm, which is an iterative procedure (we limit the
iterations to 20). The Baum-Welch algorithm gives 3 matrices for each digit corresponding to the 3
users with whom we created the vocabulary set. The A, B, and n matrices are averaged over the users
to generalize them for user-independent recognition.

For the design to recognize the same digit uttered by a user for which the design has not been trained,
the zero probabilities in the B matrix are replaced with a low value so that it gives a non-zero value on
recognition. To some extent, this arrangement overcomes the problem of less training data.

Training is a one-time process. Due to the complexity and resource requirements, it is performed using
standalone PC application software that we created by compiling our C program into an executable. For
recognition, we compile the same C program but target it to run on the Nios II processor instead. We
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were able to accomplish this cross-compilation because of the wide support for the C language in the
Nios II processor IDE.

The C program running on the PC takes the digit speech samples from a MATLAB output file and
performs preprocessing, feature vector extraction, vector quantization, Baum-Welch modeling, and
averaging, which outputs the normalized A, B, and n matrices for each digit. The normalized A, B, and
n matrices are then embedded in the recognition C program code and stored in the DE2 development
board’s SDRAM using the Nios II IDE.

HMM-Based Recognition

Recognition or pattern classification is the process of comparing the unknown test pattern with each
sound class reference pattern and computing a measure of similarity (distance) between the test pattern
and each reference pattern. The digit is recognized using a maximum likelihood estimate, such as the
Viterbi decoding algorithm, which implies that the digit whose model has the maximum probability is
the spoken digit.

Preprocessing, feature vector extraction, and codebook generation are same as in HMM training. The
input speech sample is preprocessed and the feature vector is extracted. Then, the index of the nearest
codebook vector for each frame is sent to all digit models. The model with the maximum probability is
chosen as the recognized digit.

After preprocessing in the Nios II processor, the required data is passed to the hardware for Viterbi
decoding. Viterbi decoding is computationally intensive so we implemented it in the FPGA for better
execution speed, taking advantage of hardware/software co-design. We wrote the Viterbi decoder in
Verilog HDL and included it as a custom instruction in the Nios II processor. Data passes through the
dataa and datab ports and the prefix port is used for control operations. The custom instruction
copies or adds two floating-point numbers from dataa and datab, depending on the prefix input.
The output (result) is sent back to the Nios II processor for further maximum likelihood estimation.

Text Storage

Our speech-to-text conversion system can send the recognized digit to a PC via the serial, USB, or
Ethernet interface for backup or archiving. For our testing, we used a serial cable to connect the PC and
RS-232 port on the DE2 board. The Nios II processor on the DE2 board sends the digital speech data
to a PC; a target program running on the PC receives the text and writes it to the disk.

We wrote the PC program using Visual Basic 6 (VB) using a Microsoft serial port control. The VB
program must be run in the background for the PC to receive the data and write it to the hard disk. The
Windows HyperTerminal software or any other RS-232 serial communication receiver could also be
used to receive and view the data. The serial port communication runs at 115,200 bits per second (bps)
with 8 data bits, 1 stop bit, and no parity. Handshaking signals are not required.

The speech-to-text conversion system can also operate as a standalone network device using an Ethernet
interface for PC communication and appropriate speech recognition server software designed for the
Nios II processor.

Design Architecture

Figure 2 shows the system’s block diagram.
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Figure 2. Block Diagram
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The system has the following parts:

Training software
Audio input hardware
FPGA interface

Nios II software

PC software for storage

Design Description

The design is an efficient hardware speech-to-text system with an FPGA coprocessor that recognizes
speech much faster than software. With an Altera FPGA, we implemented the time-critical functions
(written in VHDL/Verilog HDL) in hardware. The Nios II processor, which is downloaded onto the
FPGA, executes C programs. Custom instructions let us implement the whole system on an FPGA with
better software and hardware partitioning.

The phases of the project were:

Speech sampling at 8§ KHz and encoded as 16-bit PCM.
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PC
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v
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Preprocessing (voice activity detection, autocorrelation analysis, and feature vector extraction).

Training (codebook generation, finding codebook index of uttered word, Baum-Welch for training

HMM).

Recognition (Viterbi decoding and maximum likelihood estimation).
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The following table shows the methods we used and their purpose.

Methods Used

Method Purpose
Threshold detection Detects the voice activity.
LPC analysis Extracts the feature vector.
HMM Characterizes real signals in terms of signal models.
Viterbi decoding Detects the unknown word.
Maximum likelihood estimation Chooses the best matching digit.

We used the following software and hardware to develop the design:
Sound recorder

MATLAB version 6

C — DevC++ with gcc and gdb

Quartus II version 5.1

SOPC Builder version 5.1

Nios II processor

Nios II IDE version 5.1

MegaCore® IP library

Altera Development and Education (DE2) board

Microphone and headset

RS-232 cable

Speech Acquisition

Speech acquisition requires a microphone coupled with an amplified ADC to receive the voice speech
signal, sample it, and convert it into digital speech for input to the FPGA. The DE2 development board
has a WM8731 audio codec chip connected both to the microphone input pins and the Altera Cyclone 11
FPGA pins through an 12C serial controller interface. The WM8731 is a versatile audio codec that

provides up to 24-bit encoding/decoding of audio signals in various sampling rates ranging from 8 to
96 KHz.

The codec clock input is generated by dividing the system clock by four using a custom hardware block.
The block combines the clock divider logic and the I2S digital audio interface logic as well as options
for programming the control registers. The DE2 board’s microphone input port connects the
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microphone and headset for speech acquisition. The following table shows the codec’s control register
settings:

Codec Register Settings

Register Setting
ADCDAT 16 bit
USB/normal mode Normal mode
Master/slave mode Master
Digital audio interface 12S interface
MCLK input 50 MHz divided by 4
Bit oversampling rate 256 fs
ADC sampling rate 8 KHz
Serial control mode 2-wire interface

These settings are programmed by setting or resetting of various bits in the control registers as shown
in the following table:

Control Register Settings

Register Address Register Name Value
RO 0000000 Left line in 0017
R1 0000001 Right line in 0217
R2 0000010 Left headphone Out 047F
R3 0000011 Right headphone Out 067F
R4 0000100 Analog audio path control 0838
R6 0000110 Power down control 0CO00
R7 0000111 Digital audio interface format 0EC2
R8 0001000 Sampling control 1030
R9 0001001 Active control 1201

The I2S digital audio interface connects to the Nios II processor via a UART. The UART has two
additional pins, one for serial transmit data and one for serial receive data, and SOPC Builder connects
the UART to the Nios II processor via the Avalon bus. The UART is also supported by the HAL, which
makes it easy to get the input from the codec through the UART by reducing communication to simple
file-handling functions. The fopen() function opens the UART (/dev/micinput) as a file and the
fread () function reads 16 bits by 16 bits whenever required. The data is stored directly in the
SDRAM, which contains a buffer array in the heap region. The buffer array is a circular buffer that loads
the speech samples and overwrites with new samples when processing finishes.

Preprocessing

Preprocessing takes the speech samples as the input, blocks it into frames, and returns a unique pattern
for each sample. Figure 3 shows the preprocessing block diagram.
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Figure 3. Preprocessing Block Diagram
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Voice Activity Detection

The system uses the endpoint detection algorithm to find the start and end points of the speech. The
speech is sliced into frames that are 450 samples long. Next, the system finds the energy and number
of zero crossings of each frame. The threshold energy and zero crossing value is determined based on
the computed values and only frames crossing the threshold are considered, removing most background
noise. We include a small number of frames beyond the starting and ending frames so that we do not
miss starting or ending parts that do not cross the threshold but may be important for recognition.

Pre-Emphasis

The digitized speech signal s(n) is put through a low-order LPF to flatten the signal spectrally and make
it less susceptible to finite precision effects later in the signal processing. The filter is represented by
the equation:

H(z) = 1 - az”! where a is 0.9375.

Frame Blocking

Speech frames are formed with a duration of 56.25 ms (N =450 sample length) and an overlap of
18.75 ms (M = 150 sample length) between adjacent frames. The overlapping ensures that the resulting
LPC spectral estimates are correlated from frame to frame and are quite smooth. We use the equation:

Xq(n) = s(Mq + )

withn=0toN-1andq=0to L - 1, where L is the number of frames.
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Windowing

We apply a Hamming window to each frame to minimize signal discontinuities at the beginning and
end of the frame according to the equation:

x’q(n) = xq(n). w(n)

where w(n) = 0.54 = 0.46 cos(2nn/N - 1).

Autocorrelation Analysis

We perform autocorrelation analysis for each frame and find P + 1 (P = 10) autocorrelation coefficients
according to the equation:

N-1-m
rgm = Z X'q(MX'q(n+m)
n=0

wherem=0,1,...,P
The zeroth autocorrelation coefficient is the energy of the frame, which was previously used for VAD.

LPC
The system performs LPC analysis using Levinson and Durbin’s algorithm to convert the
autocorrelation coefficients to the LPC parameter set according to the following equations:

EQ =1 0)

L-1
K= 1r,-1 Ya' P rdi=phts E
i=1

for 1 <i <P

aV =k

a® =2l i 0D

ED = (1 - k2 EGD

where a,,'0 1 <m <P are the LPC coefficients.

Cepstral Coefficient Conversion
The cepstrum coefficients provide a more robust, reliable feature set than the LPC coefficients. We use
the following equations:

co= Inc®

where Gis the gain of the LPC model.
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k=1
forP< m<Q

Parameter Weighing

Because the lower-order cepstral coefficients are sensitive to the overall slope and the higher-order
coefficients are sensitive to noise, we need to weigh the cepstral coefficients with a tapered window to
minimize the sensitivity. We weighed the coefficients using a band-pass filter of the form:

Wy, = [1 + (Q/2). sin (tm/Q)] for 1 <m <Q

Temporal Cepstral Derivative

We can obtain improved feature vectors for the speech frames using temporal cepstral derivatives. We
use them with the cepstral derivative if the cepstral coefficients do not have an acceptable recognition
accuracy.

Vector Quantization

A codebook of size 128 is obtained by vector quantizing the weighted cepstral coefficients of all
reference digits generated by all users. The advantages of vector quantization are:

B Reduced storage for spectral analysis information.
B Reduced computation for determining the similarity of spectral analysis vectors.

B Discrete representation of speech sounds. By associating phonetic label(s) with each codebook
vector, choosing the best codebook vector to represent a given spectral vector is the same as
assigning a phonetic label to each spectral speech frame, making the recognition process more
efficient.

One obvious disadvantage of vector quantization is the reduced resolution in recognition. Assigning a
codebook index to an input speech vector amounts to quantizing it, which results in quantization errors.
Errors increase as the codebook size decreases. Two com algorithms are commonly used for vector
quantization: the K-means algorithm and the binary split algorithm.

In the K-means algorithm, a set of L training vectors can be clustered into M (<L) codebook vectors,
as follows:

B [nitialization—Arbitrarily choose M vectors as the initial set of codewords in the codebook.

B Nearest neighbour search—For each training vector, find the codeword in the current codebook
that is closest and assign that vector to the corresponding cell.
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B Centroid update—Update the codeword in each cell using the centroid of the training vectors
assigned to that cell.

B [teration—Repeat the above two steps until the average distance falls below a preset threshold.

Our implementation uses the binary split algorithm, which is more efficient than the K-means algorithm
because it builds the codebook in stages as described in the following steps:

1. Design a 1-vector codebook, which is the centroid of the entire training set and hence needs no
iteration.

2. Double the codebook by splitting each current codebook y, according to the rule:
Yo' =Ya(l+e)

Yo =Ya(l -¢€)
where n varies from 1 to the codebook size and e is the splitting parameter.
3. Use the K-means iterative algorithm to obtain the best set of centroids for the split codebook.

4.  Iterate the above two steps until the required codebook size is obtained.

Training

The system trains the HMM for each digit in the vocabulary. The same weighted cepstrum matrices for
various users and digits are compared with the codebook and their corresponding nearest codebook
vector indices is sent to the Baum-Welch algorithm to train a model for the input index sequence. The
codebook index is the observation vector for the HMM model. The Baum-Welch model is an iterative
procedure and our system limits the iterations to 20. After training, we have three models for each digit
that correspond to the three users in our vocabulary set. We find the average of the A, B, and n matrices
over the users to generalize the models. Figure 4 shows the HMM training flow chart.
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Figure 4. HMM Training Flow Chart
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Recognition

The system recognizes the spoken digit using a maximum likehood estimate, i.e., a Viterbi decoder. The
input speech sample is preprocessed to extract the feature vector. Then, the nearest codebook vector
index for each frame is sent to the digit models. The system chooses the model that has the maximum
probability of a match. Figure 5 shows the recognition flow chart.
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Figure 5. Recognition Flow Chart
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PC Software for Storage

Data goes to the PC for storage as shown in Figure 6.
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Figure 6. Text Storage on PC Flow Chart
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Design Features

Our system has the following features:
B Itis a standalone system for converting speech to text without using a PC for recognition.

B It optimally uses resources with custom instructions implemented as custom hardware blocks and
peripherals.

B Runtime data acquisition and recognition makes the system suitable for practical use in ATMs,
telephones, etc.

Storing the output text to a PC aids logging and archiving.

B Ituses a variety of features and components available for Nios II-based development, such as PIO,
UART, and RS-232 communication.

In the future, we would like to implement a TCP/IP stack so that we can provide a standalone speech-
to-text conversion engine/server on the network.
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Performance Parameters

The important performance parameters for our project are:

B Recognition accuracy—The most important parameter in any recognition system is its accuracy.
A recognition accuracy of 100% for all digits, independent of the speaker, is the goal.

B Recognition speed—If the system takes a long time to recognize the speech, users would become
restless and the system loses its significance. A recognition time of less than 1 second is required
for the project.

B Resource usage—Because the system is implemented in an FPGA, the resources required to
implement the project are important. The FPGA has limited resources, such as logic blocks,
memory cells, phase-locked loops (PLLs), hardware multipliers, etc. that must be used efficiently.
Our project had to fit into a Cyclone Il EP2C35F672C6 device, which has 33,216 logic elements,
82,016 memory bits, 475 pins, 4 PLLs, and 70 embedded multiplier elements.

Although we tried to maximize the system performance, there were some bottlenecks. The following
sections describe the actual system performance.

Recognition Accuracy

We studied the recognition accuracy for four cases:
B Case [—Used samples from speakers 1, 2, and 3 that were also used for training.
B Case 2—Used samples from speakers 1, 2, and 3 that were not used for training.

B Case 3—Used samples of 3 untrained speakers (4, 5, and 6) whose voices were not used for
training.

B Case 4—Used samples from speakers 1, 2, 3, 4, 5, and 6 to obtain the overall recognition
performance.

The results are summarized in the following table.

Recognition Accuracy Test Results

Digit Recognition Percentage
Casel Case 2 Case 3 Case 4
0 100 100 85.7 95.2
1 100 85.7 71.4 85.7
2 100 85.7 57.1 80.9
3 100 85.7 57.1 80.9
4 100 100 71.4 90.5
5 100 100 71.4 90.5
6 100 85.7 57.1 80.9
7 100 100 71.4 90.5
8 100 100 57.1 85.7
9 100 100 71.4 90.5
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Our system had an overall recognition accuracy of more than 85%.

Recognition Speed

The recognition time of the system was 3.54 seconds for a vocabulary of ten digits.

Resource Usage

The Cyclone II FPGA on the DE2 board provided many more resources than we needed to implement
our system: we used fewer than 20% of the available resources. The following table summarizes the
resource usage of the vitercopy custom instruction and the overall system. Refer to the Screenshots
section for more information.

vitercopy Custom Instruction Resource Usage

Resource vitercopy Custom Complete System
Instruction Usage Usage

Total combinational functions 389 3,650

Logic element usage by number of LUT inputs

4 input functions 85 1,809
3 input functions 168 1,146
<=2 input functions 136 695
Combinational cells for routing 0 1
Logic elements by mode
Normal mode 222 3,147
Arithmetic mode 167 503
Total registers 264 2,699
I/O pins 109 47
Total memory bits 10,848 82,016
Maximum fan-out node clk 4
Maximum fan-out 281 1
Total fan-out 2593 CLOCK_50
Average fan-out 3.23 2684
Conclusion

Our project implements a speech-to-text system in which a Nios II processor performs the recognition
process. The Nios II processor is very useful for implementing the application logic using C code. We
implemented computationally intensive tasks as custom blocks and the SOPC Builder helped us
integrate these blocks into the Nios II system.

The Cyclone I FPGA, DE2 board, Quartus II software, Nios II IDE, and SOPC Builder provided a
suitable platform for implementation our embedded system, which required both hardware and
software designs.

Our speech-to-text system has a recognition time of about 3 seconds and a recognition accuracy of
~85%.

Screenshots

The following figures provide additional information.
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The Final Project Block Description File
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Synthesis Report of Custom Hardware Block
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Compilation Report of Custom Hardware Block

Flow Status: Successful - Sat Sep 30 13:35:37 2006
Quartus Il Version: 5.1 Build 176 10/26/2005 SJ Web Edition
Revision Name: viterbi
Top-level Entity Name: vitercopy
Family: Cyclone |l
Device: EP2C35F672C6
Timing Models: Preliminary
Met timing requirements: Yes
Total registers: 264
Total virtual pins: 0

Total pins Total wirtual pins Teotal memory bits

A o 1o MM g0k

332 il R 145K 338K

380 : . 96K / 387K

427 : 48K 435K
475 0 483K

Embedded Multiplier 3-bit elements Total PLLs Total logic elements

35 16608
28 42 13286 19930

9965 23251

6643 / 26573

3322 29894
0 33216
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Synthesis Report of Complete Design
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SOPC-Based Speech-to-Text Conversion

Compilation Report of Complete Design

Flow Status: Successful - Sat Sep 30 14:56:44 2006
Quartus Il Version: 5.1 Build 176 10/26/2005 SJ Web Edition
Revision Name: new
Top-level Enfity Name: new
Family: Cyclone |l
Device: EP2C35F672C6
Timing Models: Preliminary
Met timing requirements: No
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Total virtual pins: 0
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Training Software and Output

==] x|

Pr

Exe

h Debug  Tools  CWS Window  Help

|9€ 0NEE E|~~|BEG0H NN/

Project lEIassesl Debugl D]_samchepst.cl DZ_codeboDkgen.c! U3_frameindek.cl 04_traiking.c  05_brain_avo.c DSa_pc2niosIogvaI.cl 06_digi_4 I 4

1 # include "definitions.h" -
2

3 #idefine NW NO OF DIGITS

4 fHdefine WV NO_BF_ETTER

5 int main()

6 {

7 int i,3,k,p,numn;

8 float a[¥] [N] [M],b[V] [N] [H],x,avg[N] [N],bvg[M] [H] ;

9 char £ia[50], £ik[50],a£[50],bE[50]

i8 FILE *fa,*fh, *fpl;

11 for( i=0; i<NW; i++)

12 {

13 for( p=i*V+1; p<=i*V4V; p++)

14 {

15 Airead state tramsition probebility matrixz a

Training and Averaging over,
HMM models complete.. Press any key..._

T 1
BE Compilerl @] Hesourcesl d]]] Compile Logl Qf Debugl @ Find Hesullsi
| | | [Ready

iﬂstartHJ ‘_'_'jH:'l,baIas(T.‘.l ‘;]H:\,balas'l,n...l QPa\nt Shop‘..l @Dncument...l EDEV’C++ | BN\ WINNT... |J E e E_ﬁ Qj{ 4:35 PM

Nios Il Program Code Memory Usage

=10 ]
File Edt Mavigate Search Run Project Tools ‘Window Help
5 |& -0 - |®5 [Ha- - ]§ ]
= M_Nawgatnr‘ = 0| @ final.c 83\., 0| 2= outline 32 =@
0] MR, w /% The final recognition file as on 29th sepcembég L'o\z " \QE @ -
# do sudio acquisition W stdon =
= W nioszh ™
o -2l system b
#include <stdio.h> B sysfak_slarm.h
#include "niosZ.h" B0 sysfalt_timestamp.h
#include "system.h'” w Sl alt_types.h
#include "sys/alt_alarm.h" Wl stdlibuh
#include "sys/alt timestawp.h" ol string.h
#include "alt_types.h" W math.h
# include <stdlib.h> # o
# include <string.h> # vl
# include <wath.h> o # L
- THRZ
#define vitOidataa,datah) _ builtin custom iniif - #  THRE
#define vitl(dataa,datsh) _ builtin custom iniif z EI
i i Q I
# define FL 450 # A
# define THRZI 7 # slacK
# define THRF 2 # sLackl
# define PI 3.1416 . # CODEBOCKSIZE
# define P 10 _ILI o # YECTORSIZE
4 | ; e tb W &
(Problems | ] Cansole 52 Praperties | Progress| 8 Z|lx2-=0O
C-Build [news_try]
../final.c:i40: warning: unused varisble “timel!' ;l
../final.c:41: warning: unused variable ‘time2'
Linking new_try.elf...
Info: (new_try.elf) 209 KBytes program sSize (code + initialized data).
Info: 7982 EKEBytes free for stack + heap.
Euild completed j
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Sample Output for Digit 5

=olx|
File Edit Navigats Search Run Project Tools Window  Help
[ & |%-0-a-|@85 |[0e- -]
i [Prablems FES Pmparties‘ngrass| ‘ B | =#E-=8
) |mewe_try Mios 1T HW configuration [Nios 1T Hardware] Mios 11 Terminal Windov (3{30/06 £:35 PM)
= IniopsZ-terminal: connected to hardware target using JTAG UART on cable ;I

niosz-terminal: "USB-Blaster [USBE-0]", dewvice 1, instance O
niosZ-terminal: (Use the IDE stop button or Ctrl-C to terminate)

total nuker of frames 39
After seg number of frames 9
weightedeepstral ok

the frame size

is 70

is 115

is 109

a
index for frame 0O
g
2

index for frame 3 is 110
4
5
3
-

index for frame
index for frame

index for frame is 23
is 19
is 19
is 22
index for frame & is 97
probabilicty for digic 0
probability for digit 1
probability for digit 2
probability for digit 3 is &DFOE
probabilicy for digic 4 is GED70
probability for digit 5 is 1DDS4

[

7

=)

9

index for frame
index for frame
index for frame

i=s 5F7DF
iz BC365
iz 7899E

probabilicy for digic is 4ACB3
probabilicty for digit is 4CDOS
probabilicy for digitc is 54FDS
probability for digic 9 is GD1E1

The digit is: §
Recognition Successful!

| =
{ I _'l_l
: ()

VB Program for PC Storage

_iEx
[;] Ele Edit Wiew Project Format Debug Run Query Diagram Tools AddIns Window Help o ﬂ|ﬂ|
|B-4-Bled s oc], a8 2YR 0,0
I(General] j |(Declarmiuns) J
= |
Dim buf(l) As Byte o
Dim buffer is 3tring =) E Project1 {Projectl.vbp}

B Formi {Formi.frm)
1 rormi (test.Frm)

Private Sub lommandl Click()

End Sub

o varr Recever TR

Private Sub Form Load()
comToFPGA.PortOpen = True

Sialel e STATUS

Private Sub Timerl Timer () Receiving Text.

VI exrapdatscTexs = FSend [File™ Thet

'Dim filehandle%

LE ilehmncklese o PrrEf ] e

!Open "test.txt"™ For Input As #filehandle% probability for digit 8 is 54FD5 ;I
'Do Until EOF (filehandle%) probability for digit 9 is B01E1

'Line Input Efilehandle%, buffer The digitis 5

' Print (CInt(buffer]) Recognition Successfull

'comToFPGA.Output = CInt (buffer) ﬂ
'Loop

YEnd: T

§a5tart|“ _@H:\halastTEST...l {_jH:lhaIas1nlnsc...| QPalnt Shop Pro | &Prn]actl -Mltr.‘.”ﬁunn'[ Receiv... |J i e m (ﬂ 32 FM
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