
Black Box for Robot Manipulation
Second Prize

Black Box for Robot Manipulation

Institution: Hanyang University, Seoul National University, Yonsei University

Participants: Kim Hyong Jun, Ahn Ho Seok, Baek Young Min, Sa In Kyu

Design Introduction 
Today’s robot manipulators need ever more precise control capability. There are two important 
prerequisites for precise control: the number of fingers in the manipulator and accessable hardware/ 
software control. In the first case, the number of system I/O pins is determined by the number of fingers 
that must be controlled. In the second case, the developer should be able to easily design the system, 
taking into account the system requirements. 

Conventional systems use several CPUs because it is difficult to control all motors in the system using 
a single CPU. Each CPU has control over a servo motor, and the CPUs communicate with each other 
to simultaneously control the manipulator. This methodology can have problems with unsynchronized 
movements or time delays. In contrast, FPGAs have many I/O pins, and the developer can design the 
system to fit in one FPGA. This FPGA can then control all of the motors by distributing the servo-motor 
dedicated processors. We chose to use an Altera Cyclone® II FPGA, which gave us easy, natural control 
over the manipulator. Our design implemented the Nios® II processor with custom instructions, which 
helped achieve faster processing capability and precise system control, providing a robust FPGA 
solution. Our ultimate goal was to develop the control module using this hardware/software strategy.

The robot manipulator has two arms and uses the Development and Education (DE2) board, which 
contains the Altera Cyclone II FPGA. The application used the μC/OS-II RTOS and custom 
instructions. Communication to and from this control module is performed via an external Ethernet 
link.

Function Description
In a hardware/software co-designed system, the interaction of the software and hardware is critical. The 
hardware logic is implemented in an FPGA and tends to be fast and robust. The software logic is 
comparatively slow due to its sequential flow, instructions, and operand fetch stages that involve read/
write memory access. Software, however, is significantly easier to develop and modify because it 
resides in memory and not in the dedicated gates of the switch fabric.
285



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
The black box for robot manipulation (BRM) operates via a standalone controller, which controls the 
DC and servo motors, and has communications ability via Ethernet and serial peripheral interface (SPI) 
connections. Our goal was to make a high-performance, usable system. The project involved two 
phases. 

■ In phase one, we developed and operated the manipulator like a microcontroller unit (MCU) robot 
system. Hardware implemention included a DC motor controller and encoder with programmable 
I/O (PIO), a servo motor controller with a pulse width modulator (PWM), and a hand module 
controller using the SPI master peripheral, and an Ethernet peripheral with the dm9000 Ethernet 
device.

In the software phase, we used the μC/OS-II RTOS running on the Nios II processor. We created 
the design using SOPC Builder, and implemented a lightweight TCP/IP (LWIP) stack, and 
defined the Ethernet and SPI communication packet, and added controls for the DC motor, DC 
motor encoder, and servo motor at the RTOS task level. 

■ In phase two, we planned to use PWM generator and pid calculation using the Nios II C-to-
Hardware Acceleration Compiler (C2H Compiler) and custom instructions. An important issue is 
whether the project can be used for home and space automation. 

Performance Parameters
We used the Cyclone II FPGA on the Altera DE2 board, and ran the μC/OS-II RTOS on the Nios II 
processor. With this setup, it took one second to send a command four times to all eight DC motors, and 
one servo motor. It took an additional one second for SPI communication with the hand module and 
external Ethernet device. If a command is sent more than four times, the BRM system issues a fault 
indication.

Design Architecture
Figure 1 shows the BRM’s hardware block diagram.
286



Black Box for Robot Manipulation
Figure 1. Robot Manipulator Block Diagram

The external device, which is controlled by the BRM, has five components:

■ DC motor

■ DC motor encoder

■ Servo motor

■ Hand module with SPI communication

■ An Ethernet device (dm9000)

Three joints in the arm use a DC motor. One wrist joint uses a servo motor. The whole system has eight 
joints that use DC motors, and two that use servo motors. At the end of the arm is the hand module. The 
AVR MCU controls it with 4 DC motors and four servo motors via SPI slave communication. Figure 2 
shows a computer-aided design (CAD) drawing of the robot arm.

Robot Arm

DC Motors: 4
Servo Motor: 1

Total Actuators

DC Motors: 6
Servo Motors: 22

Robot Arm Robot Arm

Robot Arm

DC Motors: 4
Servo Motor: 1

Robot
Hand

Robot
Hand

Robot Hand

Ready to Receive
SPI Packet
Using AVR

Robot Hand

Ready to Receive
SPI Packet
Using AVR

Black Box for Robot Manipulation

PIO, PWM,
Encoder, SPI

Signal

PIO, PWM,
Encoder, SPI

Signal

Altera DE2 Board
Using Cyclone II FPGA

& Circuit

Main Robot Control Scheduler
(PC Application)

Ethernet
287



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 2. Robot Arm CAD Drawing

Figure 3 shows the software system block diagram.

Figure 3. System Block Diagram

The software does not have a general device driver. To maintain consistency with the RTOS, we 
assigned the task to the I/O subsystem. Figure 4 shows the software flow chart.

DC Motor
Control Task

PIO

DC Motor
Left: 4

Right: 4

Servo Motor
Control Task

PWM Generator

Servo Motor
Left: 1

Right: 1

Other Device
Control Task

SPI Master

Hand Module
Left: 1

Right: 1

LWIP for μC/OS-II

dm9000

External Control
Unit (Robot

Main Scheduler)

External Packet
Manager

μC/OS-II Application

μC/OS-II for Nios II Processor

Nios II 
Processor
288



Black Box for Robot Manipulation
Figure 4. Software Flow Chart

Design Description
We used the Altera DE2 board, which has a Cyclone II device, to implement the design. The main clock 
frequency is 100 MHz, and we used a total of 39 external general-purpose I/O (GPIO) pins for the DC 
motor, DC motor encoder, servo motor, and the hand control of the SPI master. We modified the 
DE2_WEB source code, and did not change the name of the top-level design. The design has the 
following modules:

■ DC_MOTOR_CONTROL—We implemented this module using the PIO output-only peripheral. 
It has a 32-bit data register, which we needed because one DC motor requires two signals (positive 
and negative).

■ DC_MOTOR_ENCODER—We implemented this module using the PIO input-only peripheral. It 
catches the rising edge of the encoder pulse, and it has a 32-bit data register. The DC motor 
encoder requires two signals (for the forward and reverse motor states).

Initialize DC Motor
(Using Limit Switch)

DC Motor Task

DC Motor Task Creation

Servo Motor Task

Servo Motor Task Creation

Hand Control Task

Hand Control Task Creation

Ethernet Packet Manager

Ethernet Task Creation

BRMManager Task

BRM Manager
Task Creation

out: Hand Command for SPI Packet
in: Sensor Value for SPI Packet
(Using SPI Master Peripheral)

out: Hand Sensor Value & BRM State 
(Ready, Processing, Stopped)
in: BRM Command (#n Gesture)
(Using DM9000 Peripheral)

out: 8 PWM Signals
in: Encoder Edge Counter
(Using PIO Peripheral)

out: 2 PWM Signals
(Using PWM Generator Peripheral)

Processing:
1. After Initialization, Wait to Get Ethernet
Command Packet from Main Control System.
2. If Get Command Packet, Parse the Packet 
& Pick the Arm & Hand Command.
3. Command DC & Servo & Make Arm Action.
4. Command Hand & Make Hand Action.
5. Maintain DC & Servo until Hand Module
Responds (OK, Error).
289



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
■ SERVO_MOTOR_CONTROL—This module uses the PIO output-only peripheral. It has a two-bit 
data register because one servo motor requires one PWM signal. The operating system (OS) task 
generates the PWM pulse.

■ HAND_CONTROL—The module uses the SPI master peripheral. The hand module acts in SPI 
slave mode. It has a clock of 11/128 MHz. 

We built the Nios II processor using SOPC Builder, as shown in Figure 5.

Figure 5. Nios II implementation in SOPC Builder

Figure 6 shows the Quartus® II-generated project summary.
290



Black Box for Robot Manipulation
Figure 6. Nios II Implementation in the Quartus II Software

Figures 7 and 8 show the circuit and hardware that are required to connect the external devices, such as 
the DC motor, encoder, and SPI slave module.

Figure 7. Completed Circuit
291



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 8. DC Motor Driver and Power Circuit

The DC motor driver circuit has four L298 driver devices, and the power circuit has uses the LM2576-
3.3 device, which operates at 5 volts. Figure 9 shows the signal divider circuit and external DE2 header. 

Figure 9. Signal Divider Circuit and DE2 External GPIO Header

Figure 10 shows our testbench system.
292



Black Box for Robot Manipulation
Figure 10. Combination with Our Testbench Robot System

Design Features
Our design has the following features:

■ Processor—Nios II processor

■ Operating System—μC/OS-II RTOS using LWIP

■ Interfaces—SPI and Ethernet communication

■ I/O Signal—Motor control and sensing (34 I/O pins)

We developed our robot manipulator for robust control. The software generates the signals required for 
elaborate control while the Altera Cyclone II FPGA solves time delay problems. With this combination, 
the system performs well, with all of the parts working together. Furthermore, this implementation 
solves the synchronization problems experienced by the conventional manipulation method, which uses 
many CPUs to control many motors. Our control module is easy to control externally, because we use 
I2C to control orders from external devices. Additionally, we implemented the robot’s operating system 
easily by using custom instructions with the Nios II processor.

Conclusion
It was very difficult to adapt the FPGA system to the robot embedded system. To design the robot 
system with an FPGA, we divided the project into two parts: developing the MCU-based model and 
developing the FPGA-based model. Changing from MCU-based development to FPGA-based 
development will have a huge impact on the industry design flow. Originally, we considered using the 
ARM microprocessor to control the robot. However, after using the FPGA-based system, we found that 
we prefered using the FPGA to using ARM or an MCU. So, the design worked better than we expected. 
The Nios II processor, Quartus II software, SOPC Builder, and Nios II Integrated Development 
Environment (IDE) made it easy for us to develop our design, showing the usefulness of these tools in 
the design process.
293



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
294


	Black Box for Robot Manipulation
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Description
	Design Features
	Conclusion


