
Driver Assistance Tool
Third Prize

Driver Assistance Tool

Institution: Hanyang University

Participants: Jonguk Song, Hwanjun Kang, Kangsub Kwack

 

Design Introduction
This driver assistance tool detects the presence of a human voice and adjusts the volume of a car’s audio 
system accordingly. Car audio system manufacturers are the primary customers for such a device.

Our project implements a complete product that can play .wav files and adjust to the system’s 
environment (in this case, the presence of a human voice). The design has two parts: an MP3 player  and 
a voice-activated volume adjustment mechanism. Each part uses a Nios® II processor.

Function Description
When a human voice is detected, the system pauses playback of the MP3 audio file and then resumes 
playing. The volume is adjusted as the music streams. To perform this function, the design contains:

■ A Nios II processor (named CPU0) that plays the MP3 file and controls the system delay and the 
attenuation coefficient of the car’s audio system.

■ A secure digital (SD) memory card that contains the MP3 files to be played.

■ An audio codec that interfaces with the speaker that plays the MP3 files and the microphone that 
detects the driver’s voice.

■ A fast Fourier transform (FFT) block that transforms the audio signal into its real and imaginary 
frequency components.

■ A second Nios II processor (named CPU1) that monitors the magnitude of the driver’s voice and 
instructs the audio codec function to reduce the volume.
15



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
The system’s operation is described as follows:

1 One data frame (512 bytes) is read from the SD memory card and is saved into a digital-to-analog 
converter (DAC) buffer. 

2. The data, which eventually becomes the MP3 sound, is multiplied by an attenuation coefficient, 
thereby setting the volume. The result is saved to a delay buffer.

3. The CPU0 processor delays the raw data by sending a delay value to the delay buffer. 

4. The audio codec converts the human voice data received from the microphone and digitizes the 
audio using an analog-to-digital converter (ADC). The delayed data is then subtracted from the 
ADC data.

5. The resulting data stream feeds into the FFT block, which transforms the data into its frequency 
components and stores the real and imaginary components into the Real_Result_FIFO and 
Imaginary_Result_FIFO buffers, respectively. 

6. The CPU1 processor monitiors the magnitude of the FFT result, which is filtered to respond to the 
audio range of the human voice. 

7. If the magnitude of the FFT result (i.e., the volume of the driver’s voice), is greater than a preset 
trigger level, the CPU1 processor commands the audio codec to reduce the volume and tells the 
CPU0 processor to set another attenuation coefficient and delay.

Design Architecture
Figure 1 shows our project’s design architecture. The .wav file to be played is saved into a buffer and 
the microphone receives a .wav file of a human voice. The system subtracts the .wav files with delay 
and gain and performs an FFT on the result. Next, the system measures the magnitude of the voice 
frequency region and sets the music volume for the received voice level.

Figure 1. Design Architecture

SD Card CPU0
(Audio Play)

DAC FIFO

Audio
Codec

Speaker

Microphone

Attenuated
& Delayed
Data FIFO

FFT Result FIFO

FFT

CPU1
(Volume 
Control)

Real Imaginary
16



Driver Assistance Tool
Design Description
We built our design using the following general steps:

1 Using SOPC Builder, we created a DAC FIFO buffer to play the MP3 files. Additionally, we 
created attenuated and delayed data FIFO buffers to subtract the recorded data from the original 
data. The design sends the subtracted data to the FFT block.

2. We designed an I2C control module as an audio codec that is controlled by a Nios II processor. 
We can control the audio codec with software written using the Nios II Integrated Development 
Environment (IDE).

3. We incorporated the FFT MegaCore® function into our design. 

4. We linked all of the modules and assigned addresses and interrupt requests (IRQs) to each 
module.

Design Features
Our design consists of two Nios II processors and several intellectual property (IP) functions. 

■ One processor has an MPEG audio decoder (MAD) application, making it function as an MP3 
player.

■ The other processor communicates with the correlator and FFT blocks, and determines whether 
the driver is speaking. This processor also controls the MP3 player’s volume.

■ The correlation block compares input sounds with MP3 sounds, and computes the delay between 
the input and MP3 sounds.

■ The FFT block analyzes the input sounds and decides whether the sounds are human.

We used system-on-a-programmable-chip (SOPC) concepts to implement the design. SOPC Builder 
helped us to select IP blocks easily. The Quartus® II Compiler automatically recognized the IP blocks 
selected for the design and generated the required IP block device drivers and added them to the system 
library that the application software uses.

Conclusion
This project was a good experience for us. We learned a variety of things during this project, including:

■ We learned how to design hardware with the Development and Education (DE2) board.

■ We learned how to use the Quartus II software, SOPC Builder, and Nios II IDE. We think they are 
very useful for creating digital  architectures.

■ We learned how to work on a team project, including how to cooperate, how to divide tasks among 
members of the team, and how to create a schedule.
17



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
18


	Driver Assistance Tool
	Design Introduction
	Function Description
	Design Architecture
	Design Description
	Design Features
	Conclusion


