
Network Data Security System Design with High Security Insurance
First Prize

Network Data Security System Design 
with High Security Insurance

Institution: Department of Information Engineering, I-Shou University

Participants: Jia-Wei Gong, Jian-Hong Chen, and Zih-Heng Chen

Instructor: Professor Ming-Haw Jing

Design Introduction
Because of the availability of relatively large bandwidth, computers worldwide are connected via a 
network. Computer users can transfer information and exchange data easily on the Internet, and as a 
result, many network data servers have been set up. With this growth, ensuring data security during 
storage and transmission has become very important. In our project, a channel coding and encryption 
system protects data, ensuring data security in case of network invalidation. It also prevents data loss 
for cases in which a single packet of data is revealed (including losing an encryption key). Our goal is 
to make a new network data security system with high-security insurance.

A traditional network data security system (e.g., network-attached storage devices or a storage area 
network) achieves high security through encryption/decryption algorithms such as advanced encryption 
standard (AES), data encryption standard (DES), RC6, and other symmetric key cryptosystems. 
However, with these schemes data errors have become more frequent, particularly as network 
transmissions enter the gigabit per second (Gbps) range. Therefore, our new network data security 
system must consider data accuracy and privacy.

We used the AES block cipher to encrypt the data and we used an RSA algorithm to encrypt the AES 
key. The key and encypted data are encoded using a Reed-Solomon (RS) encoder and stored, via 
Ethernet, onto multiple archive data servers. When the data is read from the server, the reverse process 
occurs and decoding is performed on each server. Because of fault tolerance mechanisms, the server 
works normally even when data errors occur during transmission or if the server is damaged.

To develop our proposed embedded system, we used a Nios® II processor (a 32-bit RISC soft-core 
processor) to integrate various peripherals that we downloaded via the Internet. The design’s AES, RS 
encoder, RSA algorithm, and network communication protocol require many look-up tables (LUTs) 
and hardware design. We used system-on-a-programmable-chips (SOPC) concepts and hardware/
software co-design to shorten the design process.
197



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
The Nios II processor supports user-defined custom instructions as well as hardware acceleration. It can 
also perform other functions such as processing, controlling, decision making, and ordering. These 
features allow the software designer to write the control flow program in C/C++, while most of the 
computing is done in hardware. The software application includes a custom instruction that operates as 
a high-speed, hardware-accelerated computing module. In addition to supporting custom instructions, 
the Nios II Integrated Development Environment (IDE), which includes the GNU C/C++ assembler and 
Eclipse IDE, is ideal for the entire design process. Furthermore, the designer can perform simulation, 
development, debugging, integration, and validation in real time on the Development and Education 
(DE2) board. All of these features make development efficient.

Design Concepts
Using hardware/software co-design helped us complete the network data security system rapidly. The 
design can be divided into 3 parts, as shown below:

■ System—The Nios II processor performs the major system control functions. These functions 
include flow control, general computing, system monitoring, event decision making, receiving 
and sending data, user interfacing, and implementing an interrupt service routine.

■ Hardware—The hardware includes an RS encoder, AES, and RSA high-speed operation 
components, charge-coupled device (CCD) image capture components, dual-port SDRAM 
controller, Ethernet controller, VGA controller, and SRAM controller.

■ Software—The software provides a testing and validating platform for the communication 
between the software and the hardware. We also use it for software simulation and development.

Figure 1 shows the test platform for the system.

Figure 1. Network Data Security System Test Platform

The AES algorithm has two parts: encryption and decryption (see Figure 2). Table 1 shows the 
operation of these parts (which are described in detail later in this paper). 

Virtual Server Virtual Server Virtual Server Virtual Server Virtual Server Virtual Server

Network

Cyclone II Device

Nios II Processor
AES + RS

Original Data
(CCD Camera)

PC
(Simulation Platform)
198



Network Data Security System Design with High Security Insurance
Figure 2. AES Encryption/Decryption Conceptual Diagram

We use four key components to implement the AES block cipher: SubBytes, ShiftRows, MixColumes, 
and AddRoundKey. AES security is based on the encryption/decryption key. Therefore, we transmit the 
key with an open-key encryption system (RSA), which is performed in hardware. See Figure 3. Because 
the RSA component requires a large amount of integral power and modular operation, we implemented 
it as a custom instruction and incorporated it into the Nios II arithmetic logic unit (ALU) to improve 
overall efficiency (see Figure 4). Other hardware elements include the (Inv)SubBytes, (Inv)ShiftRows, 
(Inv)MixColumes, and (Inv)AddRoundKey AES functions.

Figure 3. Open-Key Encryption/Decryption Conceptual Diagram

Table 1. AES Work Flow

AES Encryption AES Decryption
AddRoundKey

for round=1 to N-1
SubBytes
ShiftRows
MixColumes
AddRoundKey

end for
SubBytes
ShiftRow
AddRoundKey

(Inv)AddRoundKey
for round=1 to N-1

(Inv)ShiftRows
(Inv)SubBytes
(Inv)AddRoundKey
(Inv)MixColumes

end for
(Inv)ShiftRows
(Inv)ShbBytes
(Inv)AddRoundKey

Cryptographic
Key

AES
Decryption

Plain Text Original Plain TextCipher TextAES
Encryption

Plain Text
Message, m

Encryption
Algorithm

Decryption
Algorithm

Plain Text
Message, m

m = d (e (m))b g

Private Decryption 
Key, dg

Public Encryption 
Key, eg

Cipher Text e (m)g
199



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 4. RSA Decoder Custom Instruction

Our design implements an RS encoder and decoder (see Figures 5). Both functions are made up of basic 
mathematical operations, including multipliers, inverses, and finite field squares. The encoder uses 
Berlekamp-Massey and chain search concepts, and is implemented in hardware.

Figure 5. RS Encoder/Decoder Conceptual Diagram

The core infrastructure has the following elements, as shown in Figure 6:

■ High-Speed Data Processor—Includes the RS encoder/decoder, AES, and RSA operations.

■ CCD Controller—Connects to the CCD camera via a programmable I/O (PIO) and direct memory 
access (DMA) to capture images.

■ VGA Controller—Displays the image captured by the CCD camera on a computer display.

■ SDRAM Controller—Reads/writes data at high speed.

■ Network Controller—Performs network card initialization, receives packets, and sends interrupt 
processing and user datagram protocol (UDP) communications.

■ System Software—Provides LUT operation, hardware core component control, peripheral control, 
operation control, data flow control, interface control, interrupt control, etc.

Nios II Embedded Processor

+--

&

<<>>

Out

result

A

dataa

Nios II
ALU

B

datab
Custom 
Logic

Combinatorial

Multi-Cycle

Parameterized

dataa

datab
clk

clk_en
reset
start

n

a

b

c

32

32

8

5

5

5

32
result

status/Flag

RSA Decoder

Encoder

I0 I 1 I k - 2 I k - 1...

C0 C 1 C k - 2 C k - 1... Cn - 2 Cn - 1...

I(x) d(x)
C(x)

I(x)

(n,k) RS
Encoder Decoder

C0 C 1 C k - 2 C k - 1... Cn - 2 Cn - 1...

C(x)

r(x)

(n,k) RS
Decoder

r0 r 1 r k - 2 r k - 1... r n - 2 r n - 1...
200



Network Data Security System Design with High Security Insurance
Figure 6. Core Infrastructure

The system’s communication interfaces are UART, USB, and Ethernet. They use DMA technology to 
increase CPU usage time, and they are connected via the Avalon® bus, allowing improved data channel 
and SDRAM efficiency (see Figure 7).

Figure 7. Communication Interfaces

Application Scope
Our project can be used in the following applications:

■ Distributed archive security system

■ Archive server

Nios II 
Processor

On-Chip
Debugging

Reliable &
Secure

Encoding
Kernel

(AES + RS)

DMA
Controller

Data Memory

Instruction Memory

SDRAM Controller

UART

USB

PIO

Ethernet 10/100

Avalon
Bus

SRAM Controller

CCD Camera VGA Controller M4K RAM

On-Chip

Nios II CPU

Instruction
Master

Data
Master

DMA Controller

Write
Master

Read
Master

Avalon Bus Module

Data
Flow

Data
Flow

Avalon Bus Module

ArbitratorUART
PIO
USB
etc.

SRAM Flash Ethernet MAC
201



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
■ Network hard drive or mail server

■ High-speed database storage system

■ Disk array

Target Users
Our project targets the following users:

■ Companies that need a high-security data storage system

■ Designers of network data security systems that require high security insurance

■ Portable communication or storage system producers

■ Personal data storage system designers

Development Board
Our design uses the Altera® DE2 development board, which contains a Cyclone® II EP2C35F672C6 
FPGA, EPCS16 serial configuration device, 8-Mbyte SDRAM, 512-Kbyte SRAM, 4-Mbyte flash, 
secure digital (SD) memory card slot, 10/100 Ethernet, RS-232 port, infrared port, etc. See Figure 8.

Figure 8. DE2 Development Board

Function Description
This section describes the function of our design.
202



Network Data Security System Design with High Security Insurance
Development Steps
We used the following general steps to implement the design.

1. Implement the design’s operational blocks (AES, RSA, and RS encoding) in HDL (VHDL and 
Verilog HDL) using the Quartus® II development environment. 

2. Capture an image using a CCD camera, which is displayed in real time with a VGA controller. 
The captured image is the data source to be encoded and encrypted. The SDRAM image data on 
the DE2 development board outputs from the computer over the network.

3. Transmit data for real-time encoding/decoding using Ethernet and DMA control.

4. Develop custom instructions to implement the RSA decoder. Return the result directly to the 
ALU.

5. Build the entire system using SOPC Builder. Complete the hardware/software co-design and 
demonstration.

6. Simulate AES-128 encryption and RS (6,4,1) encoding/decoding with C++ Builder.

7. Use C++ Builder to complete the network communication GUI interface with the DE2 
development board.

8. Simulate several data servers with one PC (for example, it could simulate a situation in which the 
service of one or more servers is suspended).

9. Test the systems using test data.

Implementation
This section describes how we implemented the design.

Create the Components
Using the Quartus II software version 5.1, we created the AES, RSA and RS encoding functions in 
VHDL and Verilog HDL. Specifically, we:

1. Analyzed the AES algorithm and developed its four key components. We integrated the encoding 
and decoding functions for increased CPU efficiency and data property. This functionality is 
recursive.

2. Analyzed the RS function. We implemented the RS decoder and encoder using a general reliable 
error-correcting mechanism.

3. Created all components according to the input requirements: multiplier, square, and finite field 
inverse, KeyExpansion, (Inv)SubBytes, (Inv)ShiftRows, (Inv)MixColumes, (Inv)AddRoundKey, 
RSA decoder, RS decoder, and RS encoder.

4. Developed the VHDL components using the Quartus II software version 5.1, and performed 
functional validation and timing simulation.
203



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Capture and Display the Image
We captured an image via a CCD camera and displayed it in real time on-screen using a VGA controller. 
The captured image is the data source to be encoded and encrypted. The following steps describe this 
process.

1. Use Verilog HDL to connect the CCD controller and VGA controller with the Nios II processor 
(using a PIO function) as shown in Figure 9.

2. Display the captured image on-screen using a VGA controller. Alternatively, use the Nios II 
processor to transmit it back to the PC via Ethernet for use by the software and hardware 
encryption/decryption and encoding validation.

Figure 9. CCD and VGA Controller

Transmit the Data
We implement real-time data encoding/decoding transmission via Ethernet, the USB interface, and 
DMA control as described in the following steps.

1. Incorporate the Ethernet and USB interfaces by selecting the components in SOPC Builder as 
shown in Figure 10.

2. Set the arbitration parameter and connect the interfaces with the Avalon bus as shown in 
Figure 11.

3. Use the Ethernet port to transfer encoding/decoding data between the PC validation platform and 
the virtual server on the network.

DMA VGA

CCD Control & VGA Controller

GPIO Bus

PIO Bus
204



Network Data Security System Design with High Security Insurance
Figure 10. SOPC Builder Components

Figure 11. Avalon Bus and Arbitration

Generate the System
We generated the entire system with SOPC Builder as described in the following steps.

1. Open the Altera-provided Cyclone II standard CPU example.

2. Add the user-defined PIO pins, as shown in Figure 12. Table 2 shows the setting of each pin.

3. Design the system infrastructure with SOPC Builder, and generate the system.h header file, 
peripheral drives, and EDIF file.

4. Generate the executable file using the GNUPro encoder, which is downloaded to the Cyclone II 
device after validation and debugging.
205



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 12. Add User-Defined Pins

Table 2. User-Defined Pin Functions

Name Size (Bits) Direction Functions
CCD_KEY ? Output Control the CCD control.

CCD_SW 18 Output Initialize the CCD micro-adjusting.

SRAM_SEL 1 Output Control the SDRAM.

CODE_KEY 32 Output Set the encryption key.

CODE_KEY_SEL 6 Output Control the number of keys.

CODE_REST 1 Output Initialize the encoding hardware core component.

CODE_SEL 1 Output Control encoding/decoding.

CODE_iDATA_A~F 32 Input Transmit encrypted data.

CODE_oDATA_A~F 32 Output Transmit encrypted data.
206



Network Data Security System Design with High Security Insurance
Encrypt and Encode Data
We used C++ Builder to complete 128-bit AES encryption and RS encoding/decoding as described in 
the following steps.

1. Write a user interface program with C++ Builder. Figure 13 shows an example of the parameter 
settings.

Figure 13. Parameter Settings

2. Write reference rules according to the specification of the Federal Information Processing 
Standard Publication 197 and RS encoding concepts. 

3. Finish the software testing platform gradually and use the platform as the reference for the whole 
system (see Figures 14 through 20).

Figure 14. Validate Whether the Encoding/Decoding Is Correct
207



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 15. Primary Data

Figure 16. Encode a Large Amount of Data
208



Network Data Security System Design with High Security Insurance
Figure 17. Encoded Data (Encrypted via AES)

Figure 18. Encoded Data (Redundancy Encoded Using an RS Code)
209



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 19. Decode the Data

Figure 20. Decoded Data
210



Network Data Security System Design with High Security Insurance
4. The software application checks whether the encoded data is the same as the decoded data, and 
later validates it with the data encoded by the Nios II processor for development and debugging.

Create the GUI
We built the GUI interface that communicates with the DE2 development board using C++ Builder as 
described in the following steps.

1. Use the UDP communication protocol to communicate with the DE2 development board over 
Ethernet. 

2. Transmit the CCD image from the virtual server to the Nios II processor for validation, as shown 
in Figure 21.

Figure 21. Transmit the CCD Image to the Validation Software

In this case, the data source of the validation software on the PC side will vary, which makes the data 
more flexible. Additionally, the network function makes sending/receiving of data between virtual 
servers possible.

Simulate
We simulated several data servers using one PC, including simulating situations in which service for 
one or more servers is suspended. We wrote the back-end GUI using C++ Builder, as shown in 
Figure 22.
211



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 22. Back-End GUI

We simulated the situation in which service is suspended for one or more servers, as shown in Figure 23.

Figure 23. Service Suspension Simulation
212



Network Data Security System Design with High Security Insurance
Test the System
We used test data to test the system for the four modes shown in Table 3. 

If a single server is suspended, the data is sent to the virtual server after encoding by the Nios II 
processor, and then is downloaded to the software validation platform for decoding through the network 
(as shown in Figures 24 through 27). This flow completes the mode shown in test number 3 in Table 3.

Figure 24. Primary Image Data Captured by CCD

Table 3. Test Modes

Test 
Number

Test Data Encoding Mode Decoding Mode Performance 
Comparison

1 CCD camera Nios II encoding Nios II decoding Fastest

2 CCD camera Validation software encoding Nios II decoding Second fastest

3 CCD camera Nios II encoding Validation software decoding Third fastest

4 CCD camera Validation software encoding Validation software decoding Slowest
213



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 25. Data after Software Encoding

Figure 26. Data Sent to Virtual Server In Case of Service Suspension
214



Network Data Security System Design with High Security Insurance
Figure 27. Decoded Result

DE2 Development Board Operation
We used the DE2 development board in this design as described below:

■ If SW1 is 0 and Key0 is unlocked, the CCD camera captures images and saves them to SDRAM.

■ If SW1 is 0 and Key1 is unlocked, the CCD camera stops capturing images.

■ If SW1 is 0 and Key2 is unlocked, the Nios II processor transmits the CCD camera image back to 
the validation software for display on the network.

■ If SW1 and SW0 are 0 and Key3 is unlocked, the Nios II processor encodes the CCD camera 
image and transmits it to the virtual server over the network.

■ If SW1 is 0, SW1 is 1, and Key3 is unlocked, the Nios II processor downloads the data from the 
virtual server through the network and transmits it to the validation software, which displays it 
after decoding.

■ If SW1 is 1 and Key0 is unlocked, the Nios II processor waits for the validation software to 
transmit the new AES key back so that the RSA decoding process can update the key.

Performance Parameters
Our design provides channel encoding, and after encoding, the data is transmitted over the network. We 
analyzed the performance of the encoding/decoding process. For test purposes, we used the low-level 
graphic data of the CCD camera as data source (see Figure 16). 
215



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 28. CCD’s Low-Level Data Sequence

After the CCD camera captures an image, two sets of image data are generated: RG (8 bits of red and 
8 bits of green) and BG (8 bits of blue and 8 bits of green). Because we set the CCD camera to capture 
640 x 480 images, our encoded graphics are composed of 640 x 480 pixels at 16 bits times 2 (RG and 
BG). AES encoding processes 128 data bits at a time, therefore, it needs to encode 640 x 480 x 16 x 2/
128 = 76,800 times total. RS encoding can process 192 data bits at a time, therefore, it needs to decode 
640 x 480 x 16 x 2 x 1.5/192 = 76,800 times. Each encoding/decoding process uses a large amount of 
memory for the reads/writes (we use the SDRAM as the memory). Tables 4 and 5 show the performance 
analysis.

Table 4. Encoding Performance

Function Description Memory Expected 
Cycles (Times)Read (Times) Write (Times)

Load the encoding data from memory (128 bits) 4 4 200

Encoder 16 24 500

Add the encoded data into memory (192 bits) 6 6 300

Flow and peripheral control 0 0 1,000

Table 5. Decoding Performance

Function Description Memory Expected 
Cycles (Times)Read (Times) Write (Times)

Load the encoding data from memory (192 bits) 6 6 300

Decoder 24 16 500

Add the encoded data into memory (128 bits) 4 4 200

Flow and peripheral control 0 0 1,000

Column Readout Direction

Row
Readout
Direction

...

...

G R G R G R G

B G B G B G

G R G R G R G

B G B G B G B

G R G R G R G

B G B G B G B

Pixel
(26,8)

Black Pixels

B

216



Network Data Security System Design with High Security Insurance
Table 6 shows the performance for the software encoding/decoding (on the PC) and Nios II encoding/
decoding. We found that the Nios II encoding/decoding performance is significantly faster than the 
PC’s software encoding/decoding.

Tables 7 and 8 show our performance analysis.

We set the network packet size at 1,200 bytes, and there must be some delay betwen packet 
transmissions. Table 9 shows the overall network transmission performance. 

Although the network performance is not as good as we expected, the frequency is good enough. If we 
can improve the network frequency speed, the overall system performance would improve significantly.

Table 6. DE2 and PC Performance

CPU Type CPU Frequency Memory Types & Frequencies
PC AMD Athlon XP 2600+ DDRAM, 400 MHz

DE2 Nios II processor at 50 MHz SDRAM, 50 MHz

DE2 Nios II processor at 100 MHz SDRAM, 100 MHz

Table 7. Performance Anaylsis (50 MHz)

Operation Expected Nios II 
Implementation 

Duration (s)

Nios II at 50 MHz 
(Time/Data Rate)

PC Software 
(Time/Data Rate)

Performance 
Improvement 

(Times)
Encoding [200 + 500 + 300 + 1000] x 20 

ns x 76,800 = 3.072 (s)
2.46 s/3.996 Mbps 101 s/0.097 Mbps 41.057

Decoding [200 + 500 + 300 + 1000] x 20 
ns x 76,800 = 3.072 (s)

2.46 s/3.996 Mbps 107 s/0.092 Mbps 43.435

Table 8. Performance Analysis (100 MHz)

Operation Expected Nios II 
Implementation 

Duration (s)

Nios II at 100 MHz 
(Time/Data Rate)

PC Software 
(Time/Data Rate)

Performance 
Improvement 

(Times)
Encoding [200 + 500 + 300 + 1000] x 

10 ns x 76,800 = 1.536
2.26 s/4.350 Mbps 101sec./0.097 Mbps 44.691

Decoding [200 + 500 + 300 + 1000] x 
10 ns x 76,800 = 1.536

2.26 s/4.350 Mbps 107sec./0.092 Mbps 47.345

Table 9. Network Performance

Network Platform 
Used

Expected 
Network Speed 

(Mbps)

Packet Delay (ms) Actual Network Speed 
(Mbps)

Nios II processor at 50 MHz 20 4 3

PC 20 2 to 4 3 to 6

Nios II processor at 100 MHz 20 2 6

PC 20 2 to 4 3 to 6
217



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Design Architecture
This section describes our design architecture for the project.

System Development Flow
Figure 29 shows the project development flow.

Figure 29. Development Flow

System Design
Figure 30 shows the system design. The client must have the device acquire the functions of a new 
network data security system. 

Compose CPU

Select & Compose
IP & Periphery

Connect Blocks

Generate

Processor
Component Library

Peripheral
Component Library IP Modules

Verify & DebugAssemble &
Install

GNU Pro Compiler

AES + RS

SOPC Builder InterfaceDefine System

Generate SOPC System

Define System

EDIF Files
HDL Source Files
Testbench

C Header File
User Library
Peripheral Driver

User-Defined IP
Altera
SOPC

On-Chip
Debugging

JTAG Interface

Quartus II Software

User Code
Library RTOS

GNU Pro Tools

Hardware Development Software Development
218



Network Data Security System Design with High Security Insurance
Figure 30. System Design

Table 10 shows the parameters in the system user link library. 

Hardware Design
This section describes the hardware design.

AES-128 Encryption/Decryption
We designed the AES components recursively. Figure 31 shows the AES hardware diagram. Figure 32 
shows the waveform after AES combines with the RS code. We used this design for the following 
reasons:

■ The AES algorithm repeats four specific components many times. If we used a parallel or 
pipelined design, it would use a substantial number of LEs (about 23,000) although the speed 

Table 10. System User Link Library

Parameter Function
ethernet_interrupts Interrupts the adapter.

InitHardware Sets the hardware initialization.

StartCCDToCatchImg Captures the CCD images and sends them to SDRAM.

StopCCD Stops capturing the CCD images.

CatchImgSendToPC Sends the captured CCD images to the PC verification software through the Internet.

CodeDdata Encodes and decodes data and sends/receives it to the virtual server/PC verification 
software.

splitPackage Splits network packets to be sent.

combinePackage Combines the received network packets.
219



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
would be very high (throughput is about 13 Gbps). Additionally, this number of LEs does not 
provide real-time data. Therefore, we did not adopt this design. 

■ Using the AES algorithm, encryption and decryption are almost the same. Therefore, we can co-
design both functions and use a multiplexer to select which function to use.

■ By setting one round as the unit element and designing the AES algorithm recursively, we reduced 
the LE usage significantly (about 2,300) but the design is slower. However, the overall efficiency 
is sufficient because the hardware computes the AES algorithm rapidly (the CPU can receive a 
value 3 cycles after sending datd).

Figure 31. AES Hardware

Figure 32. AES and RS Code Waveform 

(Inv)SubBytes
We implemented the (Inv)SubBytes function using a LUT. The encryption LUT is referred to as S-Box, 
and the decryption one is referred to as Inverse S-Box. Both LUTs are 256 bytes and are stored in M4K 
RAM. A muliplexer selects whether encryption or decryption is performed (see Figure 33). In contrast, 
parallel computing of the encryption /ecryption requires 16 LUTs and the overall design requires a 
memory space of 256 x 2 x 16.
220



Network Data Security System Design with High Security Insurance
Figure 33. Realize (Inv)SubBytes Components Using a LUT

(Inv)MixColumes
We use the xtime component, mentioned by Rijndael (the author of the AES algorithm) in the 
specifications, to design the (Inv)MixColumes component. a(x) represents a 4-byte polynomial 
expression and the xtime component effect is the value of mod (x4 + 1) after multiplying x by the a(x) 
polynomial. We needed to use the component many times in the (Inv)MixColumes function, so we 
decided to co-design the encryption/decryption MixColumes components. The MixColumes 
component has two outputs and a multiplexer that selects which function to use. See Figures 34 and 35.

Figure 34. (Inv)MixColumes Design

xtime xtime xtime xtime

a0 a1 a2 a3

0 b1 b2 b3b0 b1 b2 b3b' ' ' '

xtime

xtime

xtime

xtime

MixColume Output (Inv)MixColume Output
221



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 35. (Inv)MixColumes Implementation

(Inv)ShiftRow and (Inv)AddRoundKey
We created the (Inv)ShiftRow component by changing lines of hardware (see Figure 36). 
(Inv)AddRoundKey is composed of XOR components (see Figure 37). These designs are quite simple, 
so we will not describe them further.

Figure 36. (Inv)ShiftRow Components

Figure 37. AddRoundKey Components

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S0,0 S0,1 S0,2 S0,3

S1,3 S1,0 S1,1 S1,2

S2,2 S2,3 S2,0 S2,1

S3,1 S3,2 S3,3 S3,0

S0,0 S0,1 S0,2 S0,3

S1,1 S1,2 S1,3 S1,0

S2,2 S2,3 S2,0 S2,1

S3,3 S3,0 S3,1 S3,2

S'

Line the Wire

S0,1 S0,2 S0,3

S1,1 S1,2 S1,3

S2,1 S2,2 S2,3

S0,0

S1,0

S2,0

S3,0 S3,1 S3,2 S3,3

S'0,0 S'0,1 S'0,2 S'0,3

S'1,3 S1,0 S'1,1 S'1,2

S'2,2 S2,3 S'2,0 S'2,1

S'3,1 S3,2 S'3,3 S'3,0

S0,c

S1,c

S2,c

S3,c

l = round * Nb
S'0,c

S'1,c

S'2,c

S'3,c

XOR

W l Wl+2 Wl+3

Wl+c
222



Network Data Security System Design with High Security Insurance
RS Encoder/Decoder (6,4,2)
The RS algorithm uses system encoding. It replenishes the r(x) with m(x) during encoding. After 
encoding, the message can remain on the string; therefore, this method greatly improves the decoding 
efficiency. 

RS Encoder
Figures 38 and 39 show the RS encoder hardware design. The original data, M(X), is divided, 
generating r(x), which is added to m(x) and forms a new codeword. Figure 40 shows the RS encoder 
waveform.

Figure 38. RS Encoder Conceptual Diagram

Figure 39. RS Encoder Hardware

Figure 40. RS Encoder Waveform

RS Decoder
Figures 41 and 42 show the RS decoder hardware design. The decoder decodes the codeword that was 
output from the encoder via the hardware kernel. The error location and value can be obtained using the 

Multiply

Divide

Adder

Codeword = M(X) Xn-k R(X)

System Encoding
M(X)

Xn-k

G(X)

Control Signal

Control Signal

R(X)

C(X)
223



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Berlekamp-Massey algorithm and Forney algorithms, respectively. Figure 43 shows the RS decoder 
waveform.

Figure 41. RS Decoder Conceptual Diagram

Figure 42. RS Decoder Hardware

0

0

0

0

Multiplexer

G(X) Control Signal

Codeword

S1

S2

A-1

A2

A-1

Error Location

Error Value
224



Network Data Security System Design with High Security Insurance
Figure 43. RS Decoder Waveform

RSA Decoder
In the RSA decoder, one byte is a unit. Table 11 shows the RSA parameters. RSA decoding involves 
integer powers and modular arithmetic, and is time consuming. Therefore, we used a multi-cycle 
custom instruction that operates using three cycles. Table 12 shows the pin descriptions. Figure 44 
shows the RSA decoder waveform.

Table 11. RSA Software Pseudo-Code

Variable Name Value
p 31

o 11

n = pxo 341

z = (p - 1) x (q - 1) 300

e: public encryption key 79

d: primate decryption key 19

Table 12. RSA Pins

Pin Name Direction Description
dataa Input Operand 1

datab Input Operand 2

result Output Result

clk Input Frequency

Clk_en Input Frequency enabled

reset Input Reset

done Output Signals are finished

start Input Capture operand
225



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 44. RSA Decoder Waveform

Software Flow
This section describes the software flow.

Function Flow
Figure 45 shows the function flow. The flow is also described as follows.

■ Software encoding/decoding simulation—Send the captured CCD camera images to the DE2 
development board to the verifying software. Then send the images to the virtual server through 
the Internet via the software-simulated coding. The virtual server then ends its active state. 
Download the data via the Internet to the verifying software to decode and verify the result.

■ Hardware encoding/decoding—Upload the captured CCD camera images to the DE2 
development board and upload the encoded data to the virtual server via the Internet. The virtual 
server then ends its active state. Download the data via the Internet to the DE2 development board 
to decode. Send the data back to the verifying software and check the result.

■ Software encoding and hardware decoding—Send the captured CCD camera images to the DE2 
development board to the verifying software. Then, upload them to the virtual server through the 
Internet via the software-simulated encoding. The virtual server ends its active state. Download 
the data via the Internet to the DE2 development board to decode. Return the data to the verifying 
software and check the result.

■ Hardware encoding and software decoding—Upload the captured CCD camera image to the DE2 
development board and upload the encoded data to the virtual server via the Internet. The virtual 
server then ends its active state. Download the data via the Internet to the verifying software to 
decode and check the result.
226



Network Data Security System Design with High Security Insurance
Figure 45. Software Function Flow

Software Pseudo-Code and Function Description
Table 13 shows the software pseudo-code.

Table 14 describes the software functions.

Table 13. Software Pseudo-Code

Encoder Decoder
Load data from DE2 (CCD).
Show data on simulation platform.
Encode data.
Send data to virtual server.

Download data from virtual server.
Decode data.
Show data on simulation platform.

Table 14. Software Functions

Function Description
Encoder AES + RS encoding core

Decoder AES + RS decoding core

splitPackage Network package split

combinePackage Network package combine

LowDataToRGB Transform the low data of captured CCD images into 
RGB

Encryption AES encryption core

Decryption AES decryption core

RS-Encoder RS encoding core

RS-Decoder RS decoding core

Virtual Server
(Can Shut Down
Any One Server)

CCD Camera (DE2)

Encoder (DE2)

Show Data
(PC Simulation Platform)

Encoder
(PC Simulation Platform)

Decoder
(PC Simulation Platform)

Send UDP Packet

Send UDP Packet

Download

Decoder (DE2)

Download

Show Data
(PC Simulation Platform)
227



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Function Highlights
The function highlights are:

■ Environment setting—The user can set environment variables and increase the use of flexible 
spaces (see Figure 46).

■ Image processing—The data resources are diversified, as shown by the captured CCD camera 
images on the DE2 development board (see Figure 47).

■ Data encoding—We provide functions such as encoding/decoding time analysis optimization (see 
Figure 48).

■ Upload to the virtual server through the Internet—The user uploads the encoded data through the 
Internet (see Figure 49).

■ Virtual server stops operation—The user can easily stop the virtual server with a button (see 
Figure 50).

■ Download from the virtual server through the Internet—The user downloads data onto the virtual 
server via the Internet (see Figure 51).

■ Data decoding—The application decodes the downloaded data and provides specific time 
analysis and decoding optimization (see Figure 52).

Figure 46. Environment Setting
228



Network Data Security System Design with High Security Insurance
Figure 47. Image Processing

Figure 48. Data Encoding
229



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 49. Upload to Virtual Server

Figure 50. Stop Virtual Server
230



Network Data Security System Design with High Security Insurance
Figure 51. Download from Virtual Server

Figure 52. Data Decoding
231



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Design Methodology
The process we used to create our design is described as follows:

■ Define the system—Include processors, memory, peripheral components, and pins that connect 
the peripheral components.

■ Generate the system—Use SOPC Builder to create a .ptf file, which is used by the Nios II IDE to 
generate the system.h file. This file contains all of the component information.

■ Create the hardware design—Use VHDL code to write and build the required components. 
Combine, encode, decode, and simulate the circuit.

■ Create the software design—Use the Nios II IDE to create relevant header files and drivers. Write 
applications, and encode and decode them to .elf files.

■ Simulate—Use the ModelSim software to simulate. If problems occur, modify the system and 
redesign the software and hardware.

■ Verify—Download the software and hardware through JTAG to the RAM on the Cyclone II 
development board and perform physical verification.

■ Test—Test the system using the PC GUI to send test data.

SOPC Builder provides a platform to integrate software and hardware, and provides an environment for 
mutual development. Our design has three major parts: logic (intellectual property (IP) design), storage 
(RAM), and the computing core (CPU or digital signal processor). The design procedure is as follows:

■ Select the algorithms and IP functions—We use Rijndael’s AES algorithm and RS algorithm. The 
dynamic table generated after the addition of input variables is stored in on-chip RAM. Then we 
use the Nios II CPU to control the AES + RS encoding and decoding.

■ Select IP and custom IP components—For our project, we used ready-made IP components; the 
Altera web site provides documentation that aids in designing the software and hardware. We also 
developmed custom IP components according to the project requirements. These components are 
attached to the Avalon bus.

■ Software/hardware design—We used the hardware/software co-design for the project. Co-design 
is challenging because software development involves the planning and distribution of hardware 
resources and plays an important role in the performance of the entire system. SOPC Builder and 
the Nios II IDE provide an integrated hardware/software design system, which sped up the 
development process.

Design Features
Our design’s features are as follows:

■ Create dynamic tables to accelerate operation—AES encryption/decryption requires many finite 
field mathematical calculations. Replacing finite field mathematical calculations with LUTs can 
increase the design’s speed.

■ Connect ten slaves to the Avalon bus—Include data memory, instruction memory, CCD controller, 
SDRAM controller, UART, PIO, Ethernet, AES algorithm, and RS encoding operation 
components. Implement complicated IP integration and use the LEs in the Cyclone II device 
efficiently.
232



Network Data Security System Design with High Security Insurance
■ Accelerate instruction calculations—RSA encoding/decoding uses many multiplication and 
modulus calculations. Compiling this function in custom instructions and adding them to the 
Nios II ALU improves the effectiveness of complicated mathematical and logic calculations.

■ Connect custom IP outside of the Nios II core—The Nios II embedded processor can be modified 
easily, so users can design PIO pins for external communication according to their own needs. We 
also integrated the AES + RS hardware core to speed up encoding and decoding.

■ Provide high data security, data fault tolerance, and correction capability—Academic circles 
have recognized the safety of AES encryption/decryption technology. A user can only open the 
encrypted text if he/she possesses the golden key. The golden key is further protected by RSA 
encryption. Data fault tolerance is implemented using the RS coding technology, i.e., normal 
services can be provided when one server host is inactive. We performed sophisticated 
calculations on the FPGA and improved efficiency by using the Nios II CPU to control the 
operation components, implement custom instructions, and support peripheral resources.

■ Provide a user-friendly demo program—The user-friendly software GUI displays the flow of a 
whole set of AES + RS encoding/decoding, helping users quickly grasp the design concept.

■ Use storage space efficiently—Traditionally, encrypted data (such as network-attached storage, 
storage area networks, etc.) is stored by copying data to the file servers. Data on each file server 
belongs to the same stock, so the space occupation is N x S (where N is the number of servers and 
S refers to the occupied space). When reclaiming data, data is taken from a close server.

In our new network data security system, however, the storage encodes a stock of data with the 
RS code and disperses them on several file servers. The data is then drawn in an orderly fashion 
from the file servers. The occupied space is S because the same stock of data is dispersed to 
several file servers during storage. Additionally, the RS encoding technology enables normal 
service when one server host is inactive. In our experiments, tests can be facilitated using several 
I/O mechanisms, including 0/100 Ethernet, USB, and RS-232. We tested all of these connections 
using the DE2 development board.

Conclusion
Our design team benefited greatly from the Altera Nios II Design Contest 2006. Our work included 
system integration, hardware development, and software design:

■ System integration—SOPC Builder and the Nios II IDE enable the flexible design and 
prototyping of soft CPUs. With this solution, the designer first develops network interfaces and 
then builds development and test platforms on PCs to accelerate the development process. This 
contest familiarized our design team with the importance of integration, providing faster 
development flow for consumer electronic products that have increasingly shorter life cycle, and 
reducing the costs of human resources and materials. We believe this flexible system design will 
become the mainstream in the near future. Our only problem was that the network performance 
of the DE2 development board was not good enough for our project and could not implement 
dynamic image processing.

■ Hardware development—Hardware/software co-design is a hot topic. The costs and timing of 
developing hardware are higher than that of software development; therefore, making full use of 
hardware is critical. In this contest, we learned that using hardware to perform repeated operations 
improves system efficiency. However, this effect must be achieved by using the Nios II processor 
because it contains highly integrated interfaces, such as the Avalon bus, PIO, and custom 
instructions, which integrate the hardware and software interfaces. With this combination, a 
designer can easily implement hardware/software co-design.

■ Software design—I feel honored to have participated in the Nios II design contest. I am 
responsible for the software interfaces, focusing on the communication and information exchange 
with the Nios II processor. We used Ethernet to do the work, and learned how to transmit 
233



Nios II Embedded Processor Design Contest—Outstanding Designs 2006
information. We use the C++ Builder to finish the software design and use it as a verifying tool. 
The software verifies the design’s correctness and implementes the Nios II communication 
debugger to test each phase. During the design process, we learned Nios II internal 
communication and information exchange. Now that the contest is over, I feel that I know more 
about the Nios II processor hope to continue my learning process.
234


	Network Data Security System Design with High Security Insurance
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion


