
Nios II Embedded Electronic Photo Album
Second Prize

Nios II Embedded Electronic Photo
Album

Institution: Electrical Engineering Institute, St. John’s University

Participants: Hong-Zhi Zhang, Wei-Ming Yeh, and Wei-Min Yang

Instructor: Rui-Xi Chen

Design Introduction
Digital photos are very popular on the Internet; unfortunately, unauthorized distribution and use of these
photos is very common. To prevent unauthorized use, an author can place a watermark on the image,
but this technology has not been implemented in an embedded system. Without an instant watermark
and encryption option on digital cameras and e-albums, the user must manipulate online photos with a
computer or leave them unmarked.

To protect the author’s copyright effectively, we used hardware/software co-design to create a Nios® II
embedded photo album that provides instant raw data preset processing. Typically, digital photos are
saved in compressed JPEG format. To encrypt a digital watermark, you must recover the photo from
the archive in which it was saved. However, if you encrypt the photo before it is compressed, you do
not have to perform as many operations. We implemented the watermark encryption technology using
the μClinux v2.6.11 embedded system and a hardware drive.

Our design can be incorporated into digital cameras and camera phones that can save photos or deliver
them to the Internet via a wireless network instead of a computer. If the author’s watermark is added to
the photo before it is stored into an archive, the photo can then be uploaded to the Internet directly
without requiring additional processing software.

Function Description
Our watermark encryption technology and the resulting marked photos must be transparent, robust,
secure, and unambiguous. Additionally, the embedded system watermark (ESWM) photos can display
109

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
functions of the picture. We used the Nios II processor and hardware/software co-design concepts to
perform the following functions:

■ Use a discrete cosine transform (DCT) operation to separate the major images and the elements
that are not sensitive to the human eye.

■ Determine which frequency domain to use when adding the watermark so that the photo is not
damaged.

■ Use random number seeds to scatter the watermark.

■ Retrieve the scattered image points.

■ Store the program and photo onto a compact flash (CF) card.

■ Migrate the μClinux 2.6.11 kernel, establish a file system, create a Boa network server and
application program.

■ Use a built-in network server to display the watermarked photo on a web site.

■ Directly embed the watermark.

Performance Parameters
The time it takes to compute an algorithm determines whether hardware is more efficient for the
operation. We used profiling software to detect the time spent on all of the the ESWM program’s
operations. Additionally, the profile software assessed the algorithm’s efficiency for each sector.

We used a standard test image of “Lena” (a 24-bit, 128 x 128 color image) as the photo to watermark.
See Figure 1.

Figure 1. Standard Testing Image of Lena

We use a grayscale 32 x 32 image for the watermark (see Figure 2).
110

Nios II Embedded Electronic Photo Album
Figure 2. Watermark

When we execute the ESWM program, we receive information that can be used to apply or remove the
watermark. Figures 3 and 4 show the efficiency analysis for applying and removing the watermark. The
colored pie slices represent the amount of time spent on a specific operation.

Figure 3. Efficiency Analysis of the Watermark Application Program

Figure 4. Efficiency Analysis of the Watermark Removal Program

When we analyzed the efficiency of the watermark application and removal process, the color space
converter (CSC), discrete cosine transform (DCT), and rearrange (embedding and quantization)
operations occur most frequently and use the most resources. Seen from the program code of the photo,
the CSC and DCT functions read pixel information to operate; therefore, the number of operations
performed vary with the size of the photo. That is, the bigger the photo, the more time is required for
the computation. The embedding and quantization process uses a random number generator. If the
generator repeats numbers, it will cause collisions when the application rearranges the photo. Most
collisions are resolved by re-selecting the random numbers. A larger photo leads to a greater possibility
of collision, which is the source of the bottleneck.

CSC

DCT

SHA1

Rearrange

Embed
Mean

CSC

DCT

SHA1

Rearrange

Extract

Mean
111

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
When we created our Nios II system, we used our watermark application and removal program, as well
as the operational analysis. When the system applies the watermark, it first treats the photo with a
picture process (PICP) program that includes CSC and a forward discrete cosine transform (FDCT).
Then, we apply the watermark process (WMP) operations (CSC, FDCT and quantization (Q)). Finally,
we integrate the frequency domain and recover the three areas of the operation program in the time
domain. Table 1 shows the watermark application process for the 128 x 128 Lena photo and the 32 x 32
watermark implemented on a Cyclone® II EP1C20 50-MHz device.

Notes to Table 1:
(1) PICP: CSC (RGB to YCbCr) + FDCT
(2) WMP: CSC (RGB to YCbCr) + FDCT + Q
(3) Integration Process: Embedded + inverse discrete cosine transform (IDCT) + CSC (YCbCr to RGB)

To remove the watermark, the program executes the decode watermark process (DeWMP), performs
dequantization, returns from the frequency to the time domain, and converts from the YCrCb to RGB
color space. This process provides a deintegration operation, which occurs in two areas to remove the
watermark.

Notes to Table 2:
(1) Deintegration Process: Dequantization + inverse DCT (IDCT) + CSC (YCbCr to RGB)
(2) DeWMP: CSC (RGB to YCbCr) + FDCT + Extracted

Design Architecture
Figure 5 shows the system architecture.

Table 1. Watermark Application Process

Process CSC
(Types)

DCT
(Types)

Q
(Types)

Embed
(Types)

PICP
(1)

WMP
(2)

Integration
Process (3)

Total
Time

FLOAT_CESWM Float Float Float Short 24.1 3.23 10.47 37.77

FLOAT_CI _CESWM Float
custom
instruc-
tion (CI)

Float CI Float CI Short 4.34 0.72 2.82 7.88

Table 2. Watermark Removal Process

Process CSC
(Types)

DCT
(Types)

Q
(Types)

Extract
(Types)

Deintegration
(1)

DeWMP
(2)

Total
Time

FLOAT_CESWM float float Float Short 21.91 3.17 25.08

FLOAT_CI _CESWM float CI float CI float CI Short 4.11 0.41 4.52
112

Nios II Embedded Electronic Photo Album
Figure 5. System Architecture

Figure 6 shows the system block diagram.

Figure 6. System Block Diagram

Design Methodology
This section describes our design methodology, including the method we used to apply the watermark
and the steps we used to implement the system. To apply the watermark, we used a DCT to convert the
image to the frequency domain, examined the position of the frequency band, and added random
number functions to scatter the watermark throughout the photo, making it robust. To implement the
system, we used a watermark algorithm as the program code. We tested each stage and did not add new
functions until the established functions were stable. According to our efficiency analysis, we needed
to hardware accelerate the CSC and DCT operations.

User Program

C Standard
Library

μC Linux
API

HAL API

Device
Driver

Device
Driver

Device
Driver...

Nios II Processor System Hardware

JTAG
Debug Module

JTAG Connection
to Software Debugger

Nios II Processor Core

FloatSDRAM
Memory

SDRAM
Controller

UART

Timer1

Timer2

LCD Display Driver

General-Purpose I/O

Ethernet Interface

Compact Flash
Interface

On-Chip ROM

Tri-State Bridge to
Off-Chip Memory

Flash
Memory

SRAM
Memory

Avalon
Switch
Fabric

Data

Instruction

TXD
RXD

LCD
Screen

Buttons,
LEDs, etc.

Ethernet
MAC/PHY

Compact
Flash

Reset Clock
113

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Implementation Method
Figure 7 shows the architecture for applying the watermark.

Figure 7. Watermark Application Architecture

We used the following method to apply the watermark.

1. Read the original image and perform a CSC operation, converting the original image from RGB
to YCbCr.

2. Starting with YCrCb in the original image, perform an FDCT conversion and work out the DCT
coefficient of the image. Look in the coefficients to find a medium or low frequency parameter
that will be the starting position to apply the watermark.

3. Read the user’s passwords, use an encryption algorithm to create two groups of random number
seeds, read in the watermark (converting it from RGB to YCrCb), and use the first group of
random number seeds for embedding and Q to scatter the watermark.

4. Perform an FDCT conversion of the scattered watermark to obtain the watermark’s DCT
coefficient. Take the average of the medium frequency, and let the quantification form make a
digital quantization of all the coefficients, thus obtaining the quantified watermark DCT
coefficient.

5. Use the second group of random number seeds on the quantified watermark DCT coefficient to
replace, in random order, the low frequency parameter value of the original image.

Host Image

RGB -> YUV

FDCT

Watermark

YUV -> RGB

Random Rearrange PasswordKey1

FDCT

CalcMFMean

GenQTable

Quantization

Random Rearrange
Key2

Embed

IDCT

YUV -> RGB

Output

SaveQTTable

PICP WMP

Integration
114

Nios II Embedded Electronic Photo Album
6. Perform an IDCT conversion of the modified image to get the YUV image embedded with
watermark information. Perform a CSC operation, converting from YCbCr to RGB, thus
obtaining the image embedded with the watermark.

Figure 8 shows the architecture for removing the watermark.

Figure 8. Watermark Removal Architecture

We used the following method to remove the watermark.

1. Read the watermarked image and perform a CSC operation, converting from RGB to YCbCr.

2. Perform an FDCT conversion of YCbCr. Find the position of the medium and low frequency
parameter and use it as the starting point to remove the watermark.

3. Read the user’s password. Create two groups of random number seeds with an encryption
algorithm. Use the second group of random number seeds to remove the watermark from the
medium and low frequency parameters in a non-random order.

4. Read the quantization form and perform dequantization processing of the material that is
removed. Perform an IDCT operation on the processed information to obtain the original
watermark.

5. Use the first group of random number seeds to non-randomly rearrange the watermark. Convert
from YCbCr to RGB to the original watermark image.

Software Implementation
When we began this project, we started by creating a basic flow and then added functionality. We tested
the software at each stage to ensure that it operated correctly. The basic flow in our first ESWM

Watermarked Image

RGB -> YUV

FDCT

Random Rearrange PasswordKey2

Dequantization

IDCT

Random Rearrange

YUV -> RGB

Output

Key1

Deintegration

DeWMP

Extract

LoadQTTable
115

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
software version was: read the archive, perfom FDCT, incorporate the watermark into the image,
perform IDCT, and output to the archive. The following sections describe the functionality we added to
subsequent versions of the ESWM software.

ESWM v0.2: Reading and Managing the Watermark Image
We used a bitmap (BMP) file as our watermark image. The BMP image format is easy to use and is
universal. Additionally, the color information in BMP files is stored as RGB and is not compressed,
making it easy to work with.

ESWM v0.4: Applying and Removing the Watermark
In this version we implemented basic watermark application and removal functions, such as FDCT,
IDCT, quantization, and frequency domain analysis, and experimented with different ways of applying
the watermark. We needed to add a strong watermark that could resist attack. The major technologies
we used are described as follows:

■ DCT—The DCT operation is divided into FDCT and IDCT, with conversion from space domain
information to frequency domain information and back. This operation allowed us to distinguish
the photo’s high, medium, and low frequencies and designate the correct area in which to add the
watermark.

■ Quantization—Quantization adjusts the information after the watermark image goes through
DCT conversion, so that the watermark information value is similar to the value of the medium
and low frequency parameters of the original image to be watermarked. This process cushions the
impact of the watermark on the original photo.

ESWM v0.6: Using a Random Number Technique
In this version, we focused on keeping the watermark from damaging the original image. In our
previous software version, applying the watermark only uses FDCT and IDCT, and a slight breakage
can cause massive loss of the hidden watermark media (see Figure 9). To solve this problem, we added
a random number function before applying the watermark to protect the watermark even if the image is
damaged. Essentially, we scattered the physical breakage to each part of the watermark so that the
watermark would still be distinguished (see Figures 10 and 11).

Figure 9. Damaged Image
116

Nios II Embedded Electronic Photo Album
Figure 10. Watermark Removed without Random Number Technique

Figure 11. Watermark Removed with Random Number Technique

ESWM v0.8: Improving JPEG Compression Resistance
In this version we focused on improving resistance to breakage during JPEG compression. Before
applying the watermark, we used the YCbCr function and then performed the CSC operation on the
original photo. Then, we converted from RGB to YCbCr and hid the watermark in the Y data,
preserving the watermark when the image is JPEG compressed. Additionally, we improved software
efficiency. These improvements are described as follows:

■ YCbCr—YCbCr is also a color space. JPEG compression converts the information in the RGB
color space into YCbCr, in which Y refers to the brightness, and Cb and Cr refer to the chroma.
The data is converted into this mode because the human eye is more sensitive to brightness than
to chroma. Therefore, JPEG compression preserves the brightness data but only preserves part of
the chroma by sampling some proportion of it to reduce the information. Hiding the watermark in
the Y segment protects the watermark from any damage resulting from reducing the samples.

■ Quantified Breakage of JPEG Compression—JPEG compression also involves quantization
processing. The JPEG built-in standard quantization form removes most of the DCT high-
frequency coefficients, leaving only half of the information. That is, half of the DCT coefficient
values in an 8 x 8 area are changed to 0, according to the device and adjustment standard for the
compression quality. The quantization affects the amount of information saved in the images. To
strengthen the ability of the watermark to resist JPEG compression, we performed numerous tests
to find the most appropriate place to store the watermark information.

ESWM v1.0: Use a Hash Function for Security
Previous versions of the ESWM program used fixed random number seeds to execute the scattering
work. In this version, we used a secure hash algorithm (SHA-1) encryption technique to ensure the
117

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
security of the system. We added a function to request the user to enter a password. Then, we used the
SHA-1 to convert the password into two groups of random number seeds to improve security.

ESWM v1.2: Improve DCT Conversion
In this version, we used the quick DCT calculating program created by Mr. Takuya Ooura to enhance
software efficiency. The ESWM software can execute the algorithm correctly, read the bitmap image,
and apply a watermark. Alternatively, it can remove the watermark from a watermarked image.

CSC and DCT Principles and Architecture
This section describes the CSC and DCT functions, which we implemented in hardware to accelerate
the functionality.

CSC and Improving Logic Efficiency
The CSC operation requires many multiplication and addition operations. Converting an RGB pixel to
a YUV pixel requires 9 multiplication and 6 addition operations, which equates to 2,359,296
multiplications and 1,572,864 additions for a 512 x 512 image. Because the software spends a long time
on these operations, we decided to use the Nios II processor with a CSC hardware accelerator to
enhance the circuit’s efficiency. We define the CSC matrix algorithm in Petri net mode.

Petri net N = (P, T, A, w,) of the CSC operation has the following architectures:

P = {p0, p1, p2, p3,.... p14}

T = {t1, t2, t3,.... t9}

A = {(p1, t1), (t1, p2), (p2, t2), (t2, p2), (p3, t3), (t3, p1), (t1, p4), (t2, p5), (t2, p6), (t3, p7), (p4, t4),
(p5, t7), (p6, t5), (p7, t6), (p8, t4), (p8, t5), (p8, t6), (t4, p11), (t5, p9), (t6, p10), (p9, t8), (p10, t9),
(p11, t7), (t7, p12), (p12, t8), (t8, p13), (p13, t9), (t9, p14)}

This model is concurrent, including 14 places, 9 transitions, and 28 arcs. See Figure 12.
118

Nios II Embedded Electronic Photo Album
Figure 12. Petri Net Algorithm of the CSC Accelerator

As shown in Figure 12, the CSC algorithm circuit architecture we implemented is a four-layer pipeline
with a two-layer value mode adjustment and a limitation pipeline. See Figure 13.

Figure 13. CSC Implementation Architecture

Figure 14 shows the CSC simulation waveform.
119

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 14. CSC Simulation Waveform

DCT Algorithm
According to the efficiency testing we performed, the DCT operation is a bottleneck in the watermark
algorithm. Therefore, we decided to implement the DCT by integrating hardware and software to
improve performance. For the two-dimensional DCT/IDCT, we implemented a straightforward design
that compresses and decompresses the image using a Nios II processor.

1-dimensional (1D) DCT formula:

c(n)= { 1/(square root of 2) if n = 0 1, otherwise }

To simplify the cosine operation in 1D DCT conversions, it helps to establish the value of the DCT
cosine ahead of time, as shown in Figure 15. Because floating-point operation is not ideal for
implementation in a hardware circuit, the values in Figure 15 are multiplied by 256 (i.e., moved left 8
bits) to determine the closest fixed-point numbers (see Figure 16).

Figure 15. DCT Cosine Values
120

Nios II Embedded Electronic Photo Album
Figure 16. Fixed-Point Values

Figure 17 shows the equation for the case of the eight-point 1D DCT operation.

Figure 17. 8-Point 1D DCT Operation Equation

Design Features
Our design contains the following features:

1. Provides digital watermarking technology as the core function. Using this technology, the design
allows the user to embed a signature and establish a photo authentication mechanism to protect
the rights of the owner.

2. Develops the system for a Cyclone II EP1C20 device using the Nios II processor and μClinux
environment.

3. Makes it difficult to break the watermark, and uses the most appropriate frequency domain for the
tests.
121

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
4. Allows image manipulation functions, such as rotating, cutting, and changing the image size. The
watermark can still be identified in the edited photos.

5. Uses CF cards to store the images and display the watermarked images on a web site.

Conclusion
In our project, the Nios II embedded e-album, the watermark encryption algorithm uses YUV space
conversion, as well as DCT, to convert the image to the frequency domain. Quantization processing
enhances the image robustness, and we explore the appropriate frequency band in which to apply the
watermark to achieve transparency and resistance to JPEG compression breakage. We added a random
number function to the embedded algorithm to scatter the watermark throughout the image, protecting
the watermark even if the photo is cut or damaged.

After completing the watermarking software, we analyzed the time required for each function using
profile software to determine the efficiency. We added in the Nios II version 6.0 floating-point ordering
command, accelerating the operational speed of the CSC, DCT, and quantization floating points. We
then compared the time differences when using the floating-point ordering command, not using it, or
using only software. Our result showed that using the floating-point ordering command is 5 times faster
than not using it.

To fully implement the e-album, we needed to have a strong combination of input, output, and human-
computer interface. Therefore, we used the μClinux version 2.6.11 kernel on a Cyclone II EP1C20
device and established a file system. Then we created the application program, controlled the CF
storage device, generated a Boa web server to display the results, and used a web site as the
development environment for the whole system. To implement these functions, we used the Nios II
architecture to deploy the relevant algorithms, generate the major input and output (I/O) devices, and
drive the program. When selecting operating system features, we needed to consider support,
adjustability, and memory allocation flexibility of the Nios II system and the required device so the
system can perform properly.
122

	Nios II Embedded Electronic Photo Album
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

