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Design Introduction
For our design, we wanted to provide a specialized in-home medical monitoring system. The following 
sections provide background information about health issues and telemedicine.

Background
Our project focuses on several issues, including:

■ Medical—In medicine today, the focus has shifted from disease treatment to prevention and 
health care. People care more about their health, and while disease prevention and health care have 
become an indispensable part of their lives, daily care for current physical conditions can 
eliminate problems and pain that could result from untreated conditions. 

■ Social—With increasing attention on health and technological progress both home and abroad, 
home health care engineering (HHCE) is an emerging discipline. It advocates the concepts of 
medical treatment at home, self health care, and remote diagnosis, and combines technology with 
medical treatment. While addressing the trends of an aging society, soaring medical expenses, and 
increasing health demands in the 21st century, HHCE enables medical resource sharing and 
improves medical care in remote areas, making it well received by society.

■ Technological—Modern science and technology provides a technological basis for these designs. 
Embedded technology provides a leap forward and enables a diverse array of electronic products. 
Meanwhile, advancing network communications allows networked devices to share all kinds of 
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information easily. With improving manufacturing processes, chips are becoming more integrated 
and the resulting products are more portable and simplified.

Telemedicine
Telemedicine, which integrates network and medical technology, generally comprises remote 
diagnosis, expert consultation, information service, online checkups, remote communication, etc. 
Based on computers and network communication, it implements remote transfer, storage, query, 
comparison, display, and sharing of medical data, video, and audio information. See Figure 1.

Figure 1. Telemedicine Networking Structure

Telemedicine has the following benefits:

■ When used for home health care at the proper location, telemedicine can greatly reduce the time 
and cost of transporting patients.

■ Medical centers, receiving photos, can perform management and home medical service 
assignments.

■ Doctors can share medical records and diagnosis photos without geographical barriers, 
contributing to clinical research development.

■ Medical staff in remote areas can receive better medical education.

Design Considerations
Our design accounts for the following considerations:

■ The existing medical, social, and technological background shows that medical monitoring is 
moving towards personalized, portable, multi-functional systems. Systems and equipment are 
needed to meet this trend, which is the starting point of this design.

■ Telemedicine will expand the network of existing HHCE equipment to every corner of the world. 
Benefits of telemedicine prove that medical equipment will play a greater role in a networked 
environment.

■ The research in China is still in its infancy; for example, the remote network simply stores and 
transfers medical data in the database rather than truly combining the network with medical 
equipment. In other countries, although many funds have been invested in research, medical data 
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is still collected by expensive equipment, and data acquisition and network diagnosis are 
completed based on a PC and the Internet. Our design will provide a breakthrough in this respect.

■ Many design solutions exist today. Systems based on embedded processors such as monolithic, 
digital signal processors (DSPs), ARM processors, and the Nios® II processor are good solutions. 
We decided to use the Nios II soft-core processor for the following reasons:

● Altera’s flexible, efficient system-on-a-programmable-chip (SOPC) solution integrates the 
Nios II processor, memory, I/O interface, and other functional modules onto a single FPGA to 
form a programmable system-on-chip. It boasts a flexible design, many available intellectual 
property (IP) cores, as well as clipping, expansion, and upgrading.

● As an embedded soft-core processor, the Nios II processor features flexibility, high 
performance, low cost, and a long life cycle. Additionally, it comes with technical 
documentation and examples. Combined with an FPGA, you can develop anything that you 
can imagine, which is the key benefit of the Nios II processor and other soft-core CPUs. The 
Nios II processor supports μC/OS-II, μClinux, and many other real-time operating systems 
(RTOS), a light-weight TCP/IP (LwIP) stack, and zip file system, allowing users to add custom 
instructions and custom hardware accelerators, and to migrate customized peripherals and 
interface logic seamlessly. These features facilitate user designs while improving 
performance.

● Altera is at the forefront of FPGA embedded system development. As soft-core embedded 
technology evolves, we will have a competitive edge in this field by mastering it early.

Based on these considerations, we decided to focus our design on user terminals that provide 
convenient, appropriate, operable, and Internet-enabled home telemedicine monitoring equipment for 
the aging population, young people, and children whose lives rely on technology (e.g., those suffering 
from accidents, disabilities, and congenital diseases), chronic disease patients, terminal cancer or AIDS 
patients, and special people (e.g., newborn babies or pregnant women). 

Function Description
The design offers an effective, convenient medical monitoring solution for home, community, and 
home-care doctors. Designed mainly for user terminals, the monitoring equipment allows individuals 
to easily check and analyze their health conditions by themselves and obtain physical information (e.g., 
biomedical signals such as ECG, EEG, EMG, respiration, temperature, etc). The equipment displays 
these signals in graphics or waveforms so that individuals know intuitively whether their health 
indicators are normal. Additionally, the caretaker can make preliminary pathological diagnosis using 
the equipment’s analysis function. The system stores the physical information for subsequent data 
analysis and processing. With the development of telemedicine, the system can connect patients to 
medical service (e.g., a hospital, private practitioner, or monitoring center) and deliver the physical 
information in real time to a remote database or doctor through the network. This feature helps manage 
medical information databases and provides remote monitoring and diagnosis, allowing individuals to 
enjoy timely and effective diagnosis without leaving home. See Figure 2. 
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Figure 2. Functional Diagram

The design in Figure 2 has the following functionality:

■ Multi-way acquisition of biomedical signals—Simulated biomedical signals are collected 
modularly, e.g., a medical sensor and signal filtering/amplification modulation circuit and 
separate regulating cards collect different parameters. Because the physical signals frequency 
bands are below 2 K, we use an analog-to-digital (A/D) conversion chip with a 40 K sampling rate 
A/D conversion, and reserve a data port for card access.

■ Real-time display of physical information (graphics and data)—The design uses serial input for 
data acquisition, saving I/O interface resources and eliminating the synchronization problems 
caused by parallel input. The collected data is transferred to SDRAM cache by direct memory 
access (DMA), reducing the CPU load. A display cache is created in SDRAM, while DMA 
technology transfers data to the liquid crystal display (LCD) for viewing. We designed the A/D 
acquisition and LCD interface control IP ourselves.

■ User-friendly operating interface and diversified processing and analysis functions—We used a 
320 x 240 thin-film transistor (TFT) LCD; migrating μC/GUI makes the interface more friendly 
and attractive. We provide four functional areas: monitoring, analysis, storage, and detection, and 
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multiple sub-functions simplify the operations. We compiled algorithms for detection, analysis, 
and processing to the signal characteristics, ensuring high accuracy.

■ Multiple functional interfaces (e.g. for network, compact flash (CF) or secure digital (SD) card) 
to facilitate data storage and transfer—We used an SD card as the storage device and 
implemented an SD mode. We used the FAT16 file system for data access. A PS/2 interface 
enables interaction with the monitoring equipment.

■ Scalable interface and software upgrades—For hardware, we provided a USB port, serial port, 
Integrated Development Environment (IDE) interface, and drivers for platform updates. The 
design adopts a RTOS to support application installation and upgrading.

■ Embedded web server allows the monitoring equipment to access and receive data via Ethernet—
We used the DM9000A network interface chip that has chip control IP that allows us to access the 
network easily. In the protocol layer, Altera provides a LwIP software component that comprises 
all protocols required by the network. We used a socket application programming interface (API) 
to write web server programs that made network communication easy. The design allocates an IP 
block for the monitoring equipment or uses DHCP. DHCP allows a remote PC to access the 
monitoring equipment through the Internet to obtain real-time data and parameters and send 
diagnosis information to local monitoring equipment through the web page’s input area, 
implementing remote monitoring. Additionally, data can be saved to a remote database for 
management.

Performance Parameters
The following sections provide the design’s resource usage and performance parameters.

Resource Usage
Figure 3 shows the design’s system resource utilization given by the Quartus® II software. The system 
has 109.90-MHz fMAX performance.

Figure 3. System Resource Utilization

The one-way A/D sampling controller uses 203 logic elements (LEs) and 8,192 memory bits 
(corresponding to a 512 bytes x 2 cache). It has a sampling frequency in the range of 0 to 1.667 MHz 
because the TLC549 sampling controller’s maximum frequency is 40 kHz and the system’s sampling 
frequency must be 0 to 40 kHz. If the sampling frequency set in software is 1,000 Hz, the output 
sampling frequency is 999.98 Hz. Figure 4 shows the A/D chip sampling rate.
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Figure 4. A/D Chip Sampling Rate

The system software uses 3,046 Kbytes for storage. 

Design Performance Parameters
The following sections describe the performance parameters of the design.

Front-End Acquisition Board
Table 1 shows the pre-amplifier channel bandwidth test. The pre-amplifier gain is stable between 
frequency bands of 1 to 1 kHz, i.e., the channel bandwidth is ≥ 1 kHz.

Table 2 shows the amplifying power of the amplifier for different signals. At 20- and 50-Hz frequencies, 
the amplifier gains are stable when the input signal amplitude changes.

Table 3 shows the trapper’s trap feature test. The attenuation degree is increased by compromising trap 
impedance, i.e., a proper point is adjusted to obtain the attenuation and trap impedance.

Table 1. Pre-Amplifier Gain Changes with Frequency

f (Hz) 1 5 10 20 50 100 200 500 1,000

G (Vpp = 10 mV) 12.1 12.4 12.3 12.4 12.0 12.1 12.1 12.1 12.1

Table 2. Pre-Amplifier Gain Changes with Input Signal

Vpp (mV) 40 60 80 100 120 150 300 400 800

G f = 20 Hz 11.9 12.3 12.4 12.6 12.5 12.7 12.5 13.0 13.3

f = 50 Hz 11.9 12.3 12.4 12.9 12.7 12.9 12.4 13.1 13.3

Table 3. Change of 50-Hz Trapper with Frequency

f (Hz) 1 10 20 40 45 47 48 49 50 51 52 53 55 60 80

G (Vpp = 50 mV) 6.4 6.4 6.8 4.5 2.8 2.0 1.5 1.0 0.6 0.9 1.3 1.6 2.4 4.3 6.1
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SD Card Parameter Test
The test uses 100 16-bit data for reading/writing text files, which takes 40 ms. Assuming that the front-
end data sampling is 2 kHz and 2,000 data points are collected every second, the storage time would be 
(2,000/100) x 40 ms = 800 ms. The test result shows that the collected data is not lost. See Table 4. 

Network Speed Test
We set the monitoring equipment’s IP address to 192.168.220.236 in the test using the Linkwan.com 
web site test tool. Figure 5 shows the test result.

Figure 5. IP Address Test

We tested the operation of the built-in ping command as shown in Figure 6.

Figure 6. Ping Command Test

ECG Signal Detection Result
Table 5 shows the R-wave detection results and Table 6 shows the data compression result. The data 
source is the MIT/BIT ECG database, with 250-Hz sampling, 8-bit quantification, and four signal 
groups collected for detection. The ECG detection algorithm’s average R-wave false detection rate is 

Table 4. SD Card File Operation Functions

Operation Function
File system start/exit FS_EXIT(), FS_INIT

Open/close file FS_FCLOSE(), FS_FOPEN()

Read/write file data FS_FREAD(), FS_FWRITE()

Locate file FS_FSEEK(), FS_FTELL()

Remove file/file directory FS_REMOVE()

Create/close file directory FS_MKDIR(), FS--_CLOSEDIR()

Open/read/locate directory FS_OPENDIR(), FS_READDIR(), FS_REWINDDIR()
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0.58%, the data compression ratio is as high as 13.75 times, and the correlation coefficient (CC) reaches 
98.9%. The indicators are generally at a high level.

Design Architecture
The monitoring equipment mainly consists of three modules (see Figure 7): 

■ Front-end collection and modulation

■ Signal processing, storage, and transfer platform

■ Remote monitoring

Figure 7. System Structure

Table 5. R-wave Detection Result

Signal Total Heart 
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Sddb-30 1,545 4 1 5 0.32

Sddb-32 2,013 6 7 13 0.66

Sddb-35 3,326 15 14 29 0.87

Sddb-37 2,111 4 6 10 0.47

Table 6. Data Compression Result

Signal CR Compression Ratio (%) PRD (%) Correlation Coefficient (%)
Sddb-30 19 7.3 99.7

Sddb-32 11 16 98.8

Sddb-35 12 23 97.9

Sddb-37 13 13 99.2
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The hardware platform is the Development and Education (DE2) board, which contains the Altera® 
Cyclone® II EP2C35F672C6 FPGA. The hardware integrates the Nios II soft-core processor, memory, 
IP functions, and I/O ports on a single FPGA via SOPC technology. Peripheral hardware, including the 
data acquisition module, network, LCD screen, touch screen/keyboard, USB/SD memory, etc., are 
extended with a scalable I/O interface to facilitate system upgrades. Figure 8 shows the hardware 
platform.

Figure 8. SOPC Hardware Platform

Because our hardware platform is designed using SOPC concepts, the Nios II system is written using a 
hardware abstraction layer (HAL) driver, including the A/D conversion control IP core, LCD control 
core, network control IP, SD card control core, PS2 IP, etc. For multi-tasking, we used μC/OS-II for 
system dispatching. Additionally, we migrated μC/GUI and μC/FS as our graphical interface and file 
system, respectively. The LwIP protocol stack is a part of the software layer, and performs TCP/IP 
network communication. Other applications include a web server, operating interface, signal 
processing, fast Fourier transform (FFT) algorithm, and data compression. Figure 9 shows the software 
layer structure.
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Figure 9. Software Layer Structure

Design Methodology
This section describes our design methodology.

Biomedical Signal Regulation Card Design
The biomedical signals are collected modularly, including the medical sensor, signal filtering 
amplifying modulation circuit, and A/D sampling circuit. The modulation circuit selects different filters 
and the amplified circuit according to the spectrum and scope of different biomedical signals. Using 
ECG as an example, the signal is amplified via the pre-amplification block, including a right leg driver 
to suppress common mode interference, a shield wire driver to eliminate lead wire interference, and the 
tenfold set gains. 

We designed the pre-amplification block using the Analog Devices AD620 medical amplifier. The 
AD620 device is based on a modification of the classic three operational amplifier approach and is 
integrated using a co-phase differential amplifier in parallel. The AD620 device has a wide power 
supply range (± 2.3 V to ± 18 V), small size, and low power (it uses only a 1.3 mA maximum supply 
current), making it a good fit for low-voltage, low-power applications. Other advantages include a high 
common-mode rejection ratio, sound temperature stability, amplified bandwidth, and low noise. The 
amplified signal is further magnified using filtering and a 50-Hz trap filter. The post gain is set as 1 to 
100. Because the maximum ECG signal is several mV and the A/D conversion input signal is over 1 V, 
the total gain is set as 1 to 1,000. Filtering uses a voltage-controlled voltage source second-order high 
(low) pass filter to eliminate signals interference such as myoelectricity beyond 0.05 to 100 Hz, as well 
as other high-order industrial frequency harmonics. Additionally, we used an active twin-T band-stop 
filtering circuit to curb the 50-Hz industrial frequency interference.

The A/D sampling chip is the Texas Instruments (TI) 8-bit serial TLC549 device. It uses a serial 
peripheral interface (SPI) to provide collection control and data transmission using three wires. It 
provides an on-chip system clock that typically operates at 4 MHz, as well as a software/hardware 
controlled circuit with a conversion time of less than 17 μs and a sampling rate of 40 kilosamples per 
second (KSPS). With a differential voltage reference, the TLC549 device can measure a minimum 
value of 1,000 mv/256, i.e., 8-bit resolution can be obtained without amplifying the 0- to 1-V signal. 
Figure 10 shows the ECG signal regulating card structure and Figure 11 shows the circuit diagram.
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Figure 10. ECG Signal Regulating Card Structure

Figure 11. ECG Collection Circuit Diagram

SOPC Hardware Platform Design
We designed the hardware platform based on the Nios II processor. For our work, we first implemented 
the IP design, such as the A/D conversion control, LCD control, and data storage/transfer using a 
custom peripheral.

A/D Conversion Control IP Design
The A/D module design prevents the front-end signals from distortion and loss and deal synchronizes 
the data because of the multi-channel acquisition.

A/D Sequence Control Module
The system’s A/D conversion chip is the TI TLC549 (TLC548) device, which is a low-cost, high-
performance, 8-bit A/D converter. It implements A/D conversion using an 8-bit switched-capacitor 
successive-approximation approach. With a conversion speed of less than 17 μs, the TLC549 device can 
easily connect to various microprocessors using a three-wire serial interface to form various low-cost 
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test and control application systems. With a differential voltage reference, the TLC549 device can 
measure the minimum value of 1,000 mv/256, i.e., we can obtain 8-bit resolution without amplifying 
the 0- to 1-V signal. Sequence control is generated according to the sequence diagram shown in 
Figure 12.

Figure 12. TLC549 Sequence Diagram

According to the sequence, the following tasks are performed when eight external clock signals are 
input at the TLC549 device’s I/O clock: read the previous A/D conversion result, sample and reserve 
the input analog signal converted currently, and initiate A/D conversion.

To implement the TLC549 analog controller in the FPGA, we designed the simulation with a 
Verilog HDL control state machine as shown in Figure 13:

Figure 13. State Machine Sequence

din is the serial input of data collected, and the clock is obtained through frequency division coefficient. 
fsm is the sampling control clock to adjust sampling speed as required.

Double-Buffered Operating Technology
Because A/D sampling is short, it is impractical to query or read data with interrupts. Therefore, the 
buffer design must reduce the interruption time by temporarily storing the converted data for N times 
in the buffer memory. To collect data continuously and correctly implement a seamless buffer, we use 
a ping-pong operation structure with double-buffer storage that takes advantage of the FPGA’s design 
flexibility. The ping-pong operation is a handling technique for the data stream (see Figure 14). The 
data buffer module can be any storage unit and in this design we use dual-port RAM (DPRAM).
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Figure 14. Ping-Pong Operation

During ping-pong operation, the input data streams are distributed to two data buffer areas through the 
input data selection unit. The data buffer module can be any storage module, and the common storage 
units include DPRAM, single-port RAM (SPRAM), FIFO, etc. In the first buffer period, the input data 
stream is cached into data buffer module 1. In the second buffer period, the input data stream is cached 
into data buffer module 2 using the input data selection unit switch while the first period data in data 
buffer module 1 is output through the output port and the output data selection unit. In the third buffer 
period, the input data stream is cached into data buffer module 1 with the input data selection unit while 
the second period data in data buffer module 2 is switched by the output data selection unit and output 
via the output port for operation. The process repeats as required. 

The ping-pong operation’s unique feature is the collaborative switching of the input and output data 
selection units according to a meter, which sends the buffered data streams to the data stream processing 
unit for operation without pausing. The ping-pong operation module is an independent function and the 
input and output data streams are continuous at the sides of the module; therefore, the design can 
process data streams in the form of a pipeline. Ping-pong operation is usually applied in a pipeline 
algorithm for seamless data buffering and processing.

This design implements a data cache by alternatively storing an A/D sampling sequence controller into 
two 512-byte DPRAM blocks. When DPRAM1 is full, the data is stored in DPRAM2 with one interrupt 
so that the system has enough time to move the data out of DPRAM1 when the controller writes data 
into DPRAM2. Figure 15 shows the DPRAM buffer system timing diagram.

Figure 15. DPRAM Buffer System Timing Diagram

IP Design
The final IP core in the A/D sampling module includes an A/D conversion sequence controller, a 
double-buffer ping-pong operation module, a control register such as a sampling clock frequency 
division controller, and a bus control signal. Figure 16 shows the A/D conversion control IP core 
structure, which can connect directly to the Avalon® bus and can be added to the system if necessary. 
Four cores are added to the system.
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Figure 16. AD Conversion Control IP

Each IP core has an independent double buffer and control register, which work in parallel. Control 
registers include a sampling clock controller (FSAMPLE), A/D-enabled control (EN_AD), etc. The 
sampling speed is controlled by setting the value of the sampling clock controller. For example, if we 
want to perform 10-kHz sampling for the analog signal with a 5-MHz control clock, the core just writes 
10,000 in FSAMPLE and then a 1 in EN_AD to initiate the A/D conversion.

DMA Transmission
Our design uses the DAM core to move data blocks from DPRAM to SDRAM in the A/D conversion 
IP core. This process needs to write control instructions into the DMA control register to initiate the 
data transmission process. The status, read address, write address, length, and control registers require 
initialization. The DAM operation is initiated using the system’s DAM subprogram. In the HAL API, 
the party with an auto-incremental address opens a receiving or sending channel and configuration 
address; the fixed-address party sets the alt_dma_rxchan_ioctl() parameters (using 
ALT_DMA_RX_ONLY_ON or ALT_DMA_TX_ONLY_ON) and the configuration address. For data 
transmission from DPRAM to the SDRAM, that is, when both source and destination are in auto-
incremental address mode, we use the following DMA data transmission code:

tx = alt_dma_txchan_open(“/dev/dma_0”);
dma_res = alt_dma_txchan_send(tx, ad_buf, 32, NULL, NULL);  
// ad_buf is the source address

rx = alt_dma_rxchan_open(“/dev/dma_0”);
dma_res = alt_dma_rxchan_prepare(rx, ad_buf, 32, dma_done, NULL); 
// ad_buf is the destination address, dma_done() is the call back function 
// employed upon the completion of DMA.

LCD IP Design 
Our design requires a display device to show the collected signals and data waveforms in a format that 
is easy to understand. We used an LCD screen with the Terasic TRDB_LCM expansion board. The 
board has a Toppoly TD036THEA1 compact LCD module, can process an 8-bit (RGB or YUV) digital 
signal, and supports TSC and PAL sequences. It has a three-wire register control for display and 
function selection as well as embedded contrast, brightness, and rectification modules. It supports band 
color filtering 960 x 240 (TH mode, three primaries (red, green, and blue) virtualization, and YUV 
input). The expansion board is connected to the DE2 board’s GPIO_0 expansion port.

We use progressive scanning, and the LCD clock is 25.175 MHz. The design uses a three-wire LCM to 
configure the IP. The IP core’s main function is to compile the state machine according to the control 
sequence in the data sheet and deliver configuration data. Figure 17 shows the TRDB_LCM block.
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Figure 17. I2S_LCM Block

The LCD module does not have a display controller, so we designed it independently with Verilog HDL. 
The controller supports multiple color modes, including 18, 16, and 8 bpp, and self-defined mode. The 
image memory uses an on-chip FIFO buffer, which is adjustable according to design needs. A 256-color 
look-up table also adopts on-chip RAM. The image information can be read automatically from 
memory with DAM using the Avalon bus’s main module transmission port. Figures 18 and 19 show the 
system.

Figure 18. LCD IP Core Structure
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Figure 19. LCD IP Core RTL

The LCD core has four modules: the interface module, memory module, color conversion module, and 
sequence module.

The interface module operates the controller and reads the state. It contains a control register, state 
register, DMA address register, and interrupt register. See Table 7. 

The control register’s EDMA initiates the DMA, PMODE selects the color pallet mode (18, 16, and 
8 bpp, and self-defined), and EIRQ enables interrupts. The state register queries the interrupt state. The 
DMA address register sets and queries the DMA start address. The interrupt register clears interrupts.

The memory module reads the SDRAM’s FRAMEBUFFER data independently into an on-chip FIFO in 
DMA mode using a state machine that reads/writes the Avalon master port. Based on the sequence, the 
state machine has three states: idle, address, and data. In idle state, it waits for the DMA start-up signal 
and initializes the module transmission and DMA start address number. When the DMA enable signal 
is initiated and the on-chip FIFO buffer is idle, it jumps to the address state. In address state, the wait 
signal on the wait bus is cancelled to enter a data read state. In data read state, the read signal begins to 

Table 7. LCD Controller Registers

A1-A0 Register Read/write Description/Register Bit
31…5 4 3 2 1 0

0 Control register Read & write EIRQ PMODE EDMA

1 State register Read & write Status Inquiry

2 DMA address register Read & write Write the start address of DMA transmission

3 Interrupt register Read Clear interrupt
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read the SDRAM address data, and the module counter reduces by 1 for each consecutive data block. 
It returns to address state after reading a data block and adds the address automatically. It returns to idle 
state after reading a frame of data and waits for the transmission of the next frame. See Figure 20.

Figure 20. DMA State Machine

The color conversion module converts the read data according to four color modes. The 8 bpp and self-
defined modes require a color look-up table because they have insufficient colors. The self-defined 
mode can preset the color pallet’s address manually to define the color output.

The sequence module is compiled strictly according to the sequence of the LCD. The LCD clock is 
25 MHz. The FIFO data output is initiated by controlling the data enable signal, and is displayed with 
a progressive scan. Meanwhile, the design must check whether there is data in the FIFO buffer before 
the data effective signal arrives to decide whether to read and transmit data. The color pallet mode is set 
and locked during frame transmission to avoid errors. Different read time periods are determined 
according to the bpp mode: BPP_18 must be read every time, BPP_16 is read every two times, and 
BPP_8 is read every five times.

We verified that the core outputs data and synchronous signals are stable, and sets display mode and 
RGB data bits through the register. Figure 21 shows the LCM analog sequence signal output to the DE2 
board’s GPIO_0 expansion port.

current_burst_count - 0
end_of_displaysize = 1

current_burst_count = 0 &
end_of_displaysize = '0' &
fifo_ready_for_data = '1'

enable_data = '1' &
fifo_ready_for_data = '1'

wait_request = '0'
Idle

data_phase

address_phase
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Figure 21. Analog Sequence of LCM Signal Output to GPIO_0 of DE2 Expansion Port

SD Card Interface Design
One of the design’s functions is to store the monitoring data. We use the DE2 board’s SD card interface 
for large-volume data storage. The highly integrated SD card flash memory has serial and random 
access capabilities. It allows access through the specified serial interface with optimized speed and 
reliable data transmission, and we can stack several externally connected cards together. The interface 
completely complies with the SD card system standard defined by the SD card system specification, 
which is the latest consumer standard. The SD card clock is generated by the internal clock generator, 
and the interface driver unit synchronizes the external clock’s DAT and CMD signals with the internal 
clock. The SD card has two communication protocols: SD and SPI. Comparing the two protocols, the 
biggest advantage of SD is that it has fast reads/writes, up to a theoretical 25 Mbytes/second for a single 
data line. The SD card interface in our system uses a single data line, DATA0. Three parallel I/O (PIO) 
IP blocks are used in the SOPC design as SDATA, SCLK, and SCMD SD card single data lines.

We compiled the SD card protocol in software and migrated the file system to save FPGA resources 
without any impact on the read/write speed. See “Software Platform Design” on page 356 for details.

HAL Network Driver-Based Design
The Nios II system takes HAL as a BSP to provide a unified peripheral interface in the embedded 
system. The HAL device driver abstraction, the main service provided by the HAL system library, is 
highly integrated into the SOPC design, allowing later software development to facilitate development 
and updates without hardware impact. The DM9000A-based HAL device driver development has two 
steps: designing the DM9000A read/write driver and migrating the DM9000A driver in HAL-based 
driver mode.

DM9000A Read/Write Driver
The DM9000A device is an integrated 10/100 Mbyte adaptive Ethernet control chip on the DE2 board. 
It has low cost and fast speeds, and features a common processor interface, 10/100 Mbyte adaptive, and 
16 Kbit static access memory. Its simple design allows easy development of software drivers for 
different systems.

The DM9000A device cannot directly access the in-chip registers, but it can read/write using the data 
and index ports, which are controlled by the CMD pin. When CMD is high, it is a data port, and when CMD 
is low, it is a control port. The process to read/write any register is as follows:

1. Enable the DM9000A device by setting AEN and SA7 low, and SA8 and SA9 high (this step is 
generally done in hardware without setting it in software). 

2. Set the CMD pin low using software.
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3. Input the register location to be read/written on the index port.

4. Set CMD pin high.

5. Input/output the register data to be read/written at the material port. See Figures 22 and 23. 

Figure 22. DM9000 Read Process

Figure 23. DM9000 Write Process

Develop DM9000A HAL Network Device Driver
Because the DM9000A device provides a complete bus interface, we need the Avalon bus and 
DM9000A interface logic in SOPC Builder. The DM9000A device communicate with the Nios II 
processor as an Avalon slave. Creating a HAL device driver includes creating device instances and 
registering the character device.

By referring to the HAL device driver development documentation and focusing on the lightweight IP 
(LwIP) driver structure, we defined the following structure DM9000A alt_dev structure: 

typedef struct 
{

alt_lwip_dev_list   lwip_dev_list;
int base_addr;
int irq;

[7:6]=01: PHY addtess
[7:6]=00: EEPROM address

Read EEPROM: Write in 04H
Read PHY: Write in 0CH

During Accessing EEPROM or 
PHY Register, bit[0]=1, and
Turns to 0 Automatically upon
Completion

PHY Address [4:0]
EEPROM Address [5:0]

Read EEPROM > 40 μs
Read Phy < 5 μs

Clear Read:
EEPROM: Write in 00H
Phy: Write in 08H

Write Address in EPAR

Set Control Bits of EPCR

Wait for Addressing and Write
Read Data in EPDR_H & EPDR_L

Clear EPCR Control Bits

Read Data from EPDR_H & EPDR_L

[7:6]=01: PHY addtess
[7:6]=00: EEPROM address

Write EEPROM: Write in 124H
Write PHY: Write in 0AH

During Accessing EEPROM or 
PHY Register, bit[0]=1, and
Turns to 0 Automatically upon
Completion

PHY Address [4:0]
EEPROM Address [5:0]

Read EEPROM > 5000 μs
Read Phy < 5 μs

Clear Read:
EEPROM: Write in 00H
Phy: Write in 08H

Write Address in EPAR

Set Control Bits of EPCR

Wait for Addressing and Write Data

Clear Control Bits of EPCR

Write Data from EPDR_H & EPDR_L
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u_char hwaddr[6];
int index_offset;
int data_offset;
int dm9k_tx_space;
int dm9k_linked;
sys_sem_t arp_semaphore;
sys_sem_t tx_semaphore;

} alt_avalon_dm9k_if;

When the Nios II processor starts running, the device is initialized in alt_sys_init(), allowing the 
program to identify the driver.

#define ALTERA_AVALON_DM9K_INSTANCE(name, dev) \        /*instantiate device*/
alt_avalon_dm9k_if dev = \
{\

{\
ALT_LLIST_ENTRY,\
{\

0,\
name##_NAME,\
alt_avalon_dm9k_init, \
alt_avalon_dm9k_rx,\

},\
},\
name##_BASE, \
name##_IRQ,\
{ 0x00, 0x90, 0x00, 0xAE, 0x00, 0x01}, \
0, 1, 2\

}

#define ALTERA_AVALON_DM9K_INIT(dev)alt_lwip_dev_reg(dev) //initialize 
//devices, register in HAL.

SOPC Builder
The Quartus II software’s SOPC Builder integrates a hardware system in an FPGA, including writing 
the CPU, memory, interface IP blocks, timer, and Avalon bus in a hardware description language, and 
presenting it in the form of an IP block. Using the DE2 development board and considering the design 
functionality, we created the SOPC system.See Figures 24 and 25. 
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Figure 24. Nios II CPU Customization

 

Figure 25. 4-Mbyte Flash and 8-Mbyte SDRAM Controller Customization

         

The custom peripheral includes the A/D conversion control IP block, LCD control IP block, DM9000A 
bridge IP block, PS2 protocol resolution IP block, etc. See Figure 26. 

Flash Control IP Customized Interface SDRAM Control IP Customized Interface
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Figure 26. Custom Peripheral Interface

Figure 27 shows the system in SOPC Builder. The system clock is 100 MHz and peripheral clock is 
50 MHz. The clock is derived from an external phase-locked loop (PLL) that generates a double 
frequency clock. Designing our embedded system with SOPC Builder minimized our development 
time.

Figure 27. SOPC Builder Interface

Figure 28 shows the SOPC Builder-generated schematic diagrams in the Quartus II software. 
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Figure 28. SOPC Builder-Generated Modules

 

355



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
We added a PLL in the Quartus II software to distribute pins, and we generated the hardware SRAM 
Object File (.sof) after compilation. This step completed our project’s hardware platform, and we next 
entered the software phase.

Software Platform Design
This section describes the software development for our design.

μc/OS-II Multi-Tasking Design
Because our system involves many tasks, such as collection, display, networking, storage, etc., we used 
the real-time μC/OS-II operating system to manage the entire system, resulting in smooth operation of 
the hardware modules and application program. μC/OS-II has already been migrated to the Nios II 
Integrated Development Environment (IDE), so we only needed to select it in the IDE. We divided the 
main tasks as: 

■ Display

■ Collection

■ Data storage

■ Network tasks

■ Signal processing

■ Input device

Display is the highest priority task. All main tasks have other relative subtasks. Figure 29 shows the 
relationship of the main tasks. 
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Figure 29. System Task Relationships

The GUI display update task is the highest priority. An input device interrupt sends messages in the 
interrupt program. Then, the boot input device task and input device task judge messages. The system 
sends a semaphore to different operations, including the data storage, network, and A/D conversion 
tasks. The storing task stores data in the SD card and then the file system’s internal task begins. The 
Ethernet task performs web server functions; it receives and sends messages to a remote PC and 
executes HTTP internal tasks to finish sending and reading web page data. The signal processing task 
implements data acquisition detection and analysis as well as data compression. 

μC/GUI Migration
μC/GUI, a graphic support software for embedded applications, provides an application that has one 
graphic LCD with an effective graphical user interface (GUI) independent of processor and LCD 
controller. It can operate in a single-task or multi-task environment and works with any size physical or 
virtual display that uses an LCD controller or CPU. The modular design consists of layers of varied 
modules. One layer, called the LCD driver, contains all accesses to the LCD. Additionally, μC/GUI 
works for all CPUs because it is compiled purely in the ANSI C language.

In past projects, we wrote data into the LCD display memory (with starting address 0x00f00000) to 
display graphics on the LCD. But this method had many problems—such as unstable graphics display, 
monotone color, only simple images, and difficult design—because the algorithm between the display 
memory data address and LCD display is complicated. In this project, we wanted to solve those issues 
by migrating μC/GUI to the Nios II processor. 

Successful migration means that the public GUI source code can operate on the hardware platform we 
design, i.e., it acts according to our commands. Once we migrate μC/GUI, we can display images and 
graphics directly on the LCD by invoking functions from within application programs, such as an API 
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drawing function. We can create fascinating, innovative images and graphics, implement a multi-
tasking LCD, e.g., multiple windows, controls, anti-aliasing, etc., and be free from basic tasks such as 
the graphic data location in the LCD display memory. Undoubtedly, this method will greatly facilitate 
our future LCD development. 

Figure 30 shows the μC/GUI software system.

Figure 30. μC/GUI Software System

Modifying the GUIconf.h and LCDconf.h files is an important migration step (see Figure 31). Some 
of the files we modify are described below.

■ GUICONF.h—In this file, we configure the GUI migration options for different operating 
systems. In our design, we configure migration to μC/OS-II and allow multi-tasking to invoke μC/
GUI functions. 

■ LCDconf.h—In this file, we define various attributes related to hardware, such as the LCD size, 
color, and interface function. The LCD driver interprets μC/GUI functions into the LCD interface 
function defined in the LCDConf.h file, which is not applicable to the hardware connection. 
Using the driver, the μC/GUI and LCD hardware interface converts the hardware interface 
function into an LCD read/write function as defined in the LCDConf.h file.

■ LCDDDummy.c (LCD drivers)—These two functions, LCD-L0-SetPixelIndex(int x, int 
y, int PixelIndex) and LCD-L0-GetPixelIndex(int x, int y), constitute the basic 
low-level LCD drive function and connect directly with the hardware. Some basic functions such 
as LCD-L0-DrawHLine, LCD-L0-DrawVLine and LCD-L0-FillRect are also defined in 
driver. They are invoked from LCD-L0-SetPixelIndex(int x, int y, int PixelIndex) 
and LCD-L0-GetPixelIndex(int x, int y). 
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Figure 31. LCD Configuration
#ifndef LCD-BUSWIDTH 
#define LCD-BUSWIDTH (32)—LCD data line is 32 digits. 
#endif 
#define LCD-READ-MEM (off) IORD-32DIRECT (0X01F40000, (Off<<2))-for operating hardware 
#define LCD-WRITE/MEM (Off, data) IOWR-32DIRECT (0X01F40000, Off*4, data)--- for operating hardware 
#define LCD_WRITE_REG0(data) 
IOWR_altera_AVALON_LG_LCD_CONTROLLER_CR(LG_TFT_LCD_CONTROLLER_0_BASE,data)       
#define LCD_WRITE_REG2(data) 
IOWR_altera_AVALON_LG_LCD_CONTROLLER_NBAR(LG_TFT_LCD_CONTROLLER_0_BASE,data)    
#define LCD_READ_REG1    
IORD_altera_AVALON_LG_LCD_CONTROLLER_SR(LG_TFT_LCD_CONTROLLER_0_BASE)      #define LCD_READ_REG3   
IORD_altera_AVALON_LG_LCD_CONTROLLER_ISR(LG_TFT_LCD_CONTROLLER_0_BASE)   

----Four #defines above are operation over four registers of LCD. 
Initialize LCD controller 
#define LCD_INIT_CONTROLLER() LCD_WRITE_REG2(0X01F40000);\

LCD_WRITE_REG0(000001);
#endif

SD Card-Based File System Migration 
Figure 32 shows the μC/FS structure, which, like μC/GUI, is public source code. Figure 33 shows the 
card-based layers.

Figure 32. μC/FS Structure

API Layer

File System Layer

Logical Block Layer

Device Driver

<stdio.h> like functions, such as
FS_fopen, FS_fread, etc.

Translation of File Operations to
Sector Operations

Synchronization od Device Operations
for Different File Operations

Low Level Routines to Access Sectors
of a Device and to Check Status
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Figure 33. SD Card-Based FS Layer

Some key points when migrating the file system (FS) are:

■ Because of μC/OS-II, we reduced unnecessary operating system (OS) source code in the FS to 
conserve storage space. 

■ We modified the fs-port.h file to implement a data type that the Nios II processor can recognize. 
For the fs-conf.h file, we modified the relevant FS configuration, such as the number of opened 
files, names of supported devices, etc.

■ We determined the lowest level FS device driving function and added the SD card device-driven 
function. 

In the SD card protocol, the host sends CMD first and then the card sends RES. If there is data to be 
transferred, it is transferred on the DATA line. Except for copyright protection commands, the SD 
protocol has 34 total commands. For users, configuring SD card means that the system reads/writes the 
register. The main registers include CID, CSD, and OCR. We used the C language to compile an SD driver 
in the Nios II IDE, i.e., one that performs initialization and data read/write functions. 

In μC/FS, a low-level device driver invokes functions directly as shown in the following code and our 
SD card driver is implemented in the four functions listed. 

const FS__device_type FS__SDdevice_driver=
{
"SD",
_GENDEV_DevStatus,
_GENDEV_DevRead,
_GENDEV_DevWrite,
_GENDEV_DevIoCtl,
};

We defined the card initialization process as SD-card-init() in μC/FS; GENDEV-DevStatus( ) 
invokes the process to perform the following functions: 

1. Reset the card and its control module, and keep card frequency at no more than 25 MHz during 
the reset process. The card can be reset using the CMD method (CMD0.CMD52).

2. Determine whether the input card is an SD card or MMC using CMD55.

Application

Embedded File System

SD Memory Card Driver

SD Memory Card

File System Layer

Device Driver Layer

Hardware
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3. Obtain the card ID (CID) by transmitting CMD2. The CID is integrated in the card and each card 
has only one CID. Once CID is obtained, the card can enter certification status.

4. The relative card address (RCA) is the unique symbol that controller uses to access the card. 
Dynamic distribution is available using CMD3.

5. Set the read/write block size. According to the FAT and FS settings, we can set a read/write block 
as 512 bytes. 

We enable the card reading/writing using the data block and every read/write is an integral multiple of 
the block. CMD17/CMD18 and CMD24/CMD25 read/write one or many data blocks over the card, 
respectively. In μC/FS, we implemented reading/writing in SD-read-Iba(Unit, Sector, 
pBuffer) and SD-write-Iba(Unit, Sector, pBuffer). 

Data always has an attached cyclical redundancy check (CRC) code. In μC/FS, CRC codes are 
implemented with the GetCRC16() function. 

Operating Interface Design
All main monitor operations are merged onto the LCD; therefore, a user-friendly operating interface is 
key to the design. When we migrate the GUI, developing GUI-based operating interfaces will become 
faster and more efficient. Figure 34 shows the operating interface process. 
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Figure 34. Operating Interface Process

Web Server Design
The network communications design is based on the TCP/IP protocol. The key to successful 
communication is to embed the protocol into the system and migrate the network interface control chip 
driver to implement communication at the physical layer. At the application layer, we can implement 
communication by writing different applications according to the required services. 

The LwIP protocol stack, is already integrated into the Nios II processor, accelerating the network 
development. Therefore, we only needed to focus on designing the network interface driver and 
developing the application. 
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LwIP Overview
LwIP was originally written for embedded system by Adam Dunkels of the Swedish Institute of 
Computer Science. It can be migrated to an OS or operated independently. LwIP has the following 
features:

■ Supports IP forwarding with multiple network interfaces.

■ Supports the Internet control message protocol (ICMP).

■ Includes an experimental user datagram protocol (UDP).

■ Includes congestion control, round-trip time (RTT) estimation, TCP of fast recovery, and fast 
retransmission.

■ Provides a dedicated raw API for improving application performance.

■ Includes an optional Berkeley interface, an API (in case of multi-threading).

■ Supports the point-to-point protocol (PPP) in the latest version.

■ Has increased IP fragment support in the latest version.

■ Supports the DHCP protocol and dynamic IP address allocation.

To adapt to different operating systems, LwIP adds an OS-encapsulated layer between LwIP and the 
OS instead of using system calls and data structures relating to a certain OS. The layer provides a 
unified interface for OS service (timing, process synchronization, and messaging), uses semaphone for 
process synchronization, and mbox for messaging. The following code shows the OS encapsulated 
layer’s main functions:

void sys_init(void)//system initialization
sys_thread_t sys_thread_new(void (* function)(void *arg), void *arg,int prio

)//create a new process
sys_mbox_t sys_mbox_new(void)//create a new mailbox
void  sys_mbox_free(sys_mbox_t mbox)//release and delete a mailbox
void  sys_mbox_post(sys_mbox_t mbox, void *data) //send a message to the mailbox
void sys_mbox_fetch(sys_mbox_t mbox, void **msg)//wait for a message in the mailbox
sys_sem_t sys_sem_new(u8_t count)//create a new semaphore
void sys_sem_free(sys_sem_t sem)//release and delete a semaphore
void sys_sem_signal(sys_sem_t sem)//send a semaphore
void sys_sem_wait(sys_sem_t sem)//wait for a semaphore
void sys_timeout(u32_t msecs, sys_timeout_handler h, void *arg)//set a timeout event
void sys_untimeout(sys_timeout_handler h, void *arg)//delete a timeout event

The Nios II processor includes LwIP, including the source code and corresponding design environment 
(EDS). Using LwIP with the Nios II processor is based on the μC/OS-II multi-threading environment; 
therefore, we must implement μC/OS-II before using LwIP. The Nios II variant of LwIP is based on 
HAL, which includes a socket API function.

Connection between DM9000A Driver and LwIP
LwIP functions are invoked using the netif structure (see Figure 35).
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Figure 35. netif Structure

After the DM9000A device driver is encapsulated into the HAL library, the initialization function 
registers functions related to the device driver in the netif structure. This process allows LwIP to 
recognize the DM9000A driver while invoking the network interface layer after system start-up, 
invoking the chip at the physical layer. See Figure 36. 

Figure 36. Hierarchy Chart for Migration of Drivers to LwIP

HTTP Services Application Development
After successfully migrating LwIP, we can use the socket API to design applications. The socket is 
made up of interfaces that forms the middleware abstraction layer for communication between the 
application layer and TCP/IP protocol suite. In design mode, a socket is a facade that hides the complex 
TCP/IP protocol suite: the user only deals with a simple set of interfaces while the socket organizes the 
data to adapt to the specified protocol. 
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For network communication with a socket, the system initializes the socket, binds it to a port, listens on 
the port, invokes congestion acceptance, and waits for a client connection. If a socket is initiated and 
the server successfully connects to at least one client, the client/server connection is established. The 
client sends a data request while the server accepts and processes the request and sends response data 
to the client. The client reads the data, closes the connection, and the interaction ends. See Figure 37. 

Figure 37. Client/Server Socket Communication Process

To allow remote PCs to obtain the monitoring equipment data and communicate with the equipment via 
a web page, we designed a simplified web server that provides services for web browser requests. We 
wrote our web page in HTML; therefore, the request-response transfer is based on HTTP. The client 
runs programs on the browser, connects to the server, and sends a request. The server responds with a 
status line (including the message’s protocol version), a success or error code, and a message that 
consists of server information, entity information, and other possible content. The web uses client/
server mode, so our design establishes socket connection. The monitoring equipment waits for a remote 
connection, analyzes HTTP upon connection, and starts HTTP tasks, including analyzing the HTTP 
request, executing requests, sending responses, closing the HTTP communication, etc. Figure 38 shows 
the HTTP application software process.
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Figure 38. HTTP Application Software Process

ECG Signal Detection and Compression Algorithm
During real-time acquisition and signal display, the monitoring equipment can automatically detect and 
store abnormal signals, allowing the user to analyze the situation and make an initial diagnosis. The 
following sections describe the detection, analysis, and compression of ECG signals.

Waveform Detection
ECG signal pre-processing is followed by detection of ECG characteristics, which is essential because 
the characteristic waveform directly reflects the heart’s health status. A normal ECG waveform consists 
of a group of characteristic waves and its transition period. Each cardiac cycle includes a P-wave, PR 
interval, QRS combination waves, ST segment, T-wave, and QT interval as shown in Figure 39.
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Figure 39. ECG Waveform

Detection of ECG characteristic points is the basis and key to automatic ECG detection and diagnosis. 
With this method the system must find various parameters, including the starting/ending points and 
voltages of each waveform in the ECG, the vertex and voltage of each characteristic waveform, the ST 
segment, etc. Then, the system analyzes each characteristic segment and performs a diagnosis of the 
monitored patient’s heart status.

QRS waves are different from other ECG signals, accounting for a large proportion of energy. They are 
distributed in medium-high frequency compared to the other ECG signals, with a peak value between 
10 and 20 Hz and distinct amplitude characteristics. Therefore, QRS waves are always located first 
when detecting ECG characteristic waveforms, and analysis of other waveforms are based on the R 
peak value, i.e., QRS detection is the premise for detecting all waveforms. The primary methods for 
waveform detection currently include:

■ Difference threshold—Determine the QRS wave’s negative edge by combining the first/second 
difference of the filtered signal application with the threshold. The system then locates the QRS 
wave vertex using a window and threshold.

■ Template matching—Separate the QRS wave into a series of templates (segment or peak); the 
characteristic parameter of each template is indicated by a series of characteristic factors. The 
QRS wave is confirmed if the detection signal symbol sequence characteristics comply with those 
of the QRS template sequence. This method prevents recognition errors in the difference threshold 
method for a QRS wave with a lot of waveform variation and few parameter changes; however, 
the analysis is slow.

■ Wavelet analysis—Wavelet transformation, a time-frequency local analysis method that has 
“micro” capability in areas with high signal frequencies, is particularly suitable for detecting the 
characteristic points of ECG signals. Singular points of a transient signal always contain 
important information. Detecting the location of the signal’s singular points and determining the 
singularity is a concern and is a key part of a wavelet transformation application. 

Our design uses a discrete dyadic wavelet transformation, which can be calculated using the following 
formula:
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QRS wave detection is a primary concern in ECG waveform detection as well as an important reference 
for arrhythmia diagnosis. The other ECG details are not analyzed until the QRS wave is confirmed. 
Based on further analysis of the detection principle for the singularity of wavelet transformation, 
comprehensive analysis, and comparison of the detection methods already discussed, we chose a 
quadratic differential wavelet to detect the ECG waveform. We designed the wavelet filter by taking the 
second derivative of a Gaussian function (i.e., Marr wavelet) as the generating function.

We created a Marr wavelet decomposition filter based on a scaling function and a wavelet function 
according to a two-scale equation. Table 8 shows the filter coefficients.

The process for the whole R-wave detection algorithm is summarized as follows:

1. The discrete dyadic wavelet transformation is performed on ECG digital signal f(n) with a Marr 
filter coefficient according to the Mallat algorithm presented in the discrete dyadic wavelet 
transformation formula, and  and  (for j = 0, 1, 2, 3, and 4) are acquired.

2. Based on a signal segment with a clear waveform, the system determines the initial threshold  
of the modulus maxima at different scales. 

3. In the wavelet transformation  with scale a = 24, find all modulus maxima with a higher 

threshold, and obtain a set of locations  (for k = 0, 1, 2, 3, ... N).

4. In the wavelet transformation with scale a = 23, find the modulus maximum in the neighborhood 

of  (for k = 1, 2, ... N) with a threshold greater than  and with the same symbol as the wavelet 

transformation at , and define its position as . If there is more than one modulus maxima near 

 at the scale a = 23, choose the one with the largest amplitude value; however, if the largest 
modulus maximum is smaller than 1.2 times other modulus maxima, choose the maximum point 

nearest to . If no modulus maximum is found in the  neighborhood, define , , and  

as zero. Then acquire a set of locations  (where k = 0, 1, 2, 3, ... N). According to our 
experience, we take 10 ms as the neighborhood scope, i.e., if the signal sampling frequency is 

360 Hz, a neighborhood of 10 ms around  will be .

5. Similar to the process in step 4 above, find the modulus maxima locations at scale a = 22 and 

a = 21, respectively and obtain two sets  (for k = 0, 1, 2, 3, ... N) and  (for k = 0,1, 2, 3, ... N).

6. According to the modulus maxima location set for a characteristic scale, the set of modulus 

maximum series { , , ,  (for k = 0, 1, 2, 3, ... N)} is acquired; excluding the modulus 

maximum series with value = 0, the rest series set is { , , ,  (for k = 0, 1, 2, 3, ... N) }. 

Table 8. Filter Coefficients

k -5 -4 -3 -2 -1 0 1 2 3 4 5
h0 k 0.0032 -0.0132 0.0393 0.0450 0.2864 0.4317 0.2864 0.0450 0.0393 -0.0132 0.0032

h1 k 0.0039 0.0062 -0.0226 -0.1120 -0.2309 0.7118 -0.2309 -0.1120 -0.0226 0.0062 0.0039
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7. Determine whether the time interval of two adjacent modulus maxima at scale a = 21 is larger than 
1.7 times the average RR interval. If yes, halve the threshold in this time period and search for the 
R peak again.

8. Amend the modulus maxima according to refractory period and L.E. index to remove some 

pseudo R peaks. After steps 7 and 8, the set of rest modulus maximum series is { , , ,  
(for k = 0, 1, 2, 3, ... N) }.

9. Determine the location of the R wave in the original signal according to the set  (for k = 0, 1, 
2, 3, ... N).

Compression Processing
The ECG data compression methods include a direct method, transformation, and parameter extraction. 
The first two methods apply in the case of waveform restructuring. Compared to the direct method, the 
discrete cosine transformation (DCT) we used in this design features high quality, noise reduction, 
simple restructuring, and a smooth waveform. The main reason DCTs are used widely in ECG data 
compression today is the low compression ratio (typically 3 times) during application. Signals can be 
processed by segments according to the ECG characteristics to improve the compression effect. 

To implement ECG data compression, we first adopted DCT compression data sequences and divided 
them into shorter sequences by frames. Considering the waveform completeness and data processing 
timeliness, the system takes the sampling data sequence of each cardiac cycle waveform as a data 
sequence frame. In actual data processing, the central point of two adjacent R peaks is the preferred 
frames break point. Because there are many proven QRS wave detection methods available, it makes 
sense to choose the QRS waveform as high frequency. After extracting the high frequency, the system 
uses linear difference (usually inserting 2 to 4 points) to connect the low-frequency waveforms at both 
ends into one segment through a smooth migration.

As the distribution of signal energy in the DCT domain features low frequency, high amplitude and high 
frequency, low amplitude while maintaining a certain fidelity of the restructured waveform, only M 
times the DCT components with low frequency need to be kept: C(0), C(1), ... C(M-1). We can then set 
a threshold Eth and require that the total energy of the M times components accounts for >= Eth of the 
total energy, i.e., Ef(M-1) x 100 >= Eth. The threshold Eth is determined according to the required fidelity 
of the restructured waveform. C(0), representing the direct current video component in the time domain 
waveform, only decides the horizontal baseline value of the restructured waveform, and can be rejected. 
Each DCT component that is kept should be converted to 8-bit integer data (7-bit integer data plus1-bit 
symbol data ). Then we set the transformation scale factor of low frequency as 1 (which can be rejected) 
while keeping the ratio (two bytes) between the high frequency and low frequency scale factors.

Compared to other data compression methods, segmented DCT compression provides a high data 
compression ratio, high-fidelity waveform restructuring, and significant noise reduction.

System Integration and Effect
Because the system involves many software and hardware modules, we used software/hardware 
codesign. The following points are worth noting:

■ We used IP design for hardware, all drivers are based on the HAL layer, the system clock is unified 
as 100 MHz, and the peripheral clock is 50 MHz.

■ The OS tasks are prioritized according to different module weights.

■ For the file system and GUI in the IDE, we defined the header file path using compiler options.

■ We simulated the software algorithm in the MATLAB software before completing the 
implementation. 
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Figures 40 through 42 illustrate the system operation after software/hardware integration.

Figure 40. Demo

    

Figure 41. Remote Web Page Logon

Figure 42. Human-Machine Interface Operation
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Design Features
Our design has the following features:

■ Conception—While HHCE is becoming part of our lives, real home medical monitoring 
equipment is not available. HHCE is not effectively implemented because the existing portable 
monitoring equipment provides functions that are too simple or too expensive. Seeing this 
opportunity and feasibility, we chose to do the design. The Nios II processor gives our product 
superiority over its competitors in terms of size and price.

■ Function—The product is modern with competitive features, such as the simultaneous 
measurement of multiple parameters, high-capacity data storage, network communication, more 
signal processing algorithms to support more functions, etc. Meanwhile, its diversified functions 
prove the flexibility and high performance of the Nios II system.

■ Hardware design—SOPC techniques make our design simple and clear. We can complete each 
module independently and integrate them easily to form a system. We can embed several main 
devices (including the A/D converter and LCD IP blocks) for data transfer to reduce the CPU load 
while updating hardware modules rapidly. We can easily connect an IP block to the bus at the 
touch of a button, which was impossible for previous chip-based SOC systems. All IP blocks use 
the Avalon bus architecture and a unified synchronous clock. 

■ Software algorithm—Our design is complex, including many modules and complicated 
algorithms. These difficulties are also features of our design. Algorithms such as waveform 
detection, data compression, and spectrum conversion are not fully applied in existing monitoring 
equipment. With these algorithms, our product will be more specialized, providing users more 
medical diagnosis methods and allowing them to enjoy medical treatment at home. 

■ Upgrades—According to the requirements of different hospitals, communities, and homes, the 
multi-function, portable, medical monitoring system can be configured or upgraded quickly by 
selecting different front-end data acquisition modules and corresponding data processing CF 
cards without replacing the whole system platform. 

■ Remote monitoring—The networking function enables more comprehensive monitoring. With the 
Internet, users can communicate remotely at any time. Doctors can monitor patients remotely 
through the network to determine the monitored patient’s health status while updating software or 
managing a database in real time. The Nios II protocol stack eased network development.

Conclusion
With this project, we gained a broader understanding of SOPC concepts and learned how to perform 
embedded development with the Nios II CPU. Altera’s SOPC solution provides a powerful design 
platform that allows us to develop hardware, drivers, and applications to develop systems rapidly and 
efficiently. 

The two-month effort we put into the contest brought us the final design as well as more experience. 
We found the “real sense” of the design process, including IP cores, pre-simulation, post-simulation, 
and application optimization. Embedded development requires developers to have a systematic view 
and patience; program debugging is time-consuming but beneficial.

We found that design tools such as the embedded logic analyzer, SOPC Builder, C-to-Hardware 
Acceleration (C2H) Compiler, IDE, and DSP Builder accelerated our development. Although tasks 
differ, we learned how things relate and felt the power of teamwork.

After participating in the Nios II design contest several times, we are impressed with the Nios II 
processor’s flexibility and transparency, which distinguishes it from other embedded systems. We can 
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see the full transparency from the bottom layer implementation to the application layer design, 
supporting better system design than any other embedded system.

Until now, we have had many problems to solve, for example, how to accelerate an interface switch, 
how to truly connect databases, how to improve the system’s DSP performance, and how to implement 
a more accurate biomedical signal waveform detection algorithm. These areas need our continuous 
efforts.

Finally, we would like to express our appreciation to all our teachers and classmates who helped us with 
the design, as well as our sincere gratitude to the host and judges of this contest. We will move ahead 
on our road of SOPC development. 
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