
Portable Telemedicine Monitoring Equipment
Second Prize

Portable Telemedicine Monitoring
Equipment

Institution: HuaQiao University

Participants: Huafeng Hong, Qianjiang, Yongjie Li

Instructor: Ling Chaodong

Design Introduction
For our design, we wanted to provide a specialized in-home medical monitoring system. The following
sections provide background information about health issues and telemedicine.

Background
Our project focuses on several issues, including:

■ Medical—In medicine today, the focus has shifted from disease treatment to prevention and
health care. People care more about their health, and while disease prevention and health care have
become an indispensable part of their lives, daily care for current physical conditions can
eliminate problems and pain that could result from untreated conditions.

■ Social—With increasing attention on health and technological progress both home and abroad,
home health care engineering (HHCE) is an emerging discipline. It advocates the concepts of
medical treatment at home, self health care, and remote diagnosis, and combines technology with
medical treatment. While addressing the trends of an aging society, soaring medical expenses, and
increasing health demands in the 21st century, HHCE enables medical resource sharing and
improves medical care in remote areas, making it well received by society.

■ Technological—Modern science and technology provides a technological basis for these designs.
Embedded technology provides a leap forward and enables a diverse array of electronic products.
Meanwhile, advancing network communications allows networked devices to share all kinds of
333

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
information easily. With improving manufacturing processes, chips are becoming more integrated
and the resulting products are more portable and simplified.

Telemedicine
Telemedicine, which integrates network and medical technology, generally comprises remote
diagnosis, expert consultation, information service, online checkups, remote communication, etc.
Based on computers and network communication, it implements remote transfer, storage, query,
comparison, display, and sharing of medical data, video, and audio information. See Figure 1.

Figure 1. Telemedicine Networking Structure

Telemedicine has the following benefits:

■ When used for home health care at the proper location, telemedicine can greatly reduce the time
and cost of transporting patients.

■ Medical centers, receiving photos, can perform management and home medical service
assignments.

■ Doctors can share medical records and diagnosis photos without geographical barriers,
contributing to clinical research development.

■ Medical staff in remote areas can receive better medical education.

Design Considerations
Our design accounts for the following considerations:

■ The existing medical, social, and technological background shows that medical monitoring is
moving towards personalized, portable, multi-functional systems. Systems and equipment are
needed to meet this trend, which is the starting point of this design.

■ Telemedicine will expand the network of existing HHCE equipment to every corner of the world.
Benefits of telemedicine prove that medical equipment will play a greater role in a networked
environment.

■ The research in China is still in its infancy; for example, the remote network simply stores and
transfers medical data in the database rather than truly combining the network with medical
equipment. In other countries, although many funds have been invested in research, medical data

Traveling

Remote
Hospital

Community
Clinic

PSTN/ADSL

Computer Network

First-Aid
Center

Central
Hospital

Monitoring
Center

Specialized
Hospital

Other
Central

Hospitals

GSM/ADSL

PSTN/ADSL

Home

Satellite/ADSL/PSTN

GSM = Global System for Mobile Communications
ADSL = Asymmetric digital subscriber line
PSTN = Public switched telephone network
334

Portable Telemedicine Monitoring Equipment
is still collected by expensive equipment, and data acquisition and network diagnosis are
completed based on a PC and the Internet. Our design will provide a breakthrough in this respect.

■ Many design solutions exist today. Systems based on embedded processors such as monolithic,
digital signal processors (DSPs), ARM processors, and the Nios® II processor are good solutions.
We decided to use the Nios II soft-core processor for the following reasons:

● Altera’s flexible, efficient system-on-a-programmable-chip (SOPC) solution integrates the
Nios II processor, memory, I/O interface, and other functional modules onto a single FPGA to
form a programmable system-on-chip. It boasts a flexible design, many available intellectual
property (IP) cores, as well as clipping, expansion, and upgrading.

● As an embedded soft-core processor, the Nios II processor features flexibility, high
performance, low cost, and a long life cycle. Additionally, it comes with technical
documentation and examples. Combined with an FPGA, you can develop anything that you
can imagine, which is the key benefit of the Nios II processor and other soft-core CPUs. The
Nios II processor supports μC/OS-II, μClinux, and many other real-time operating systems
(RTOS), a light-weight TCP/IP (LwIP) stack, and zip file system, allowing users to add custom
instructions and custom hardware accelerators, and to migrate customized peripherals and
interface logic seamlessly. These features facilitate user designs while improving
performance.

● Altera is at the forefront of FPGA embedded system development. As soft-core embedded
technology evolves, we will have a competitive edge in this field by mastering it early.

Based on these considerations, we decided to focus our design on user terminals that provide
convenient, appropriate, operable, and Internet-enabled home telemedicine monitoring equipment for
the aging population, young people, and children whose lives rely on technology (e.g., those suffering
from accidents, disabilities, and congenital diseases), chronic disease patients, terminal cancer or AIDS
patients, and special people (e.g., newborn babies or pregnant women).

Function Description
The design offers an effective, convenient medical monitoring solution for home, community, and
home-care doctors. Designed mainly for user terminals, the monitoring equipment allows individuals
to easily check and analyze their health conditions by themselves and obtain physical information (e.g.,
biomedical signals such as ECG, EEG, EMG, respiration, temperature, etc). The equipment displays
these signals in graphics or waveforms so that individuals know intuitively whether their health
indicators are normal. Additionally, the caretaker can make preliminary pathological diagnosis using
the equipment’s analysis function. The system stores the physical information for subsequent data
analysis and processing. With the development of telemedicine, the system can connect patients to
medical service (e.g., a hospital, private practitioner, or monitoring center) and deliver the physical
information in real time to a remote database or doctor through the network. This feature helps manage
medical information databases and provides remote monitoring and diagnosis, allowing individuals to
enjoy timely and effective diagnosis without leaving home. See Figure 2.
335

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 2. Functional Diagram

The design in Figure 2 has the following functionality:

■ Multi-way acquisition of biomedical signals—Simulated biomedical signals are collected
modularly, e.g., a medical sensor and signal filtering/amplification modulation circuit and
separate regulating cards collect different parameters. Because the physical signals frequency
bands are below 2 K, we use an analog-to-digital (A/D) conversion chip with a 40 K sampling rate
A/D conversion, and reserve a data port for card access.

■ Real-time display of physical information (graphics and data)—The design uses serial input for
data acquisition, saving I/O interface resources and eliminating the synchronization problems
caused by parallel input. The collected data is transferred to SDRAM cache by direct memory
access (DMA), reducing the CPU load. A display cache is created in SDRAM, while DMA
technology transfers data to the liquid crystal display (LCD) for viewing. We designed the A/D
acquisition and LCD interface control IP ourselves.

■ User-friendly operating interface and diversified processing and analysis functions—We used a
320 x 240 thin-film transistor (TFT) LCD; migrating μC/GUI makes the interface more friendly
and attractive. We provide four functional areas: monitoring, analysis, storage, and detection, and

Monitoring Interface

Channel 1
Channel 2
Channel 3
Channel 4

Monitoring Interface

Fast Fourier
Transform

(FFT)

Waveform
Analysis

Waveform
Magnification/

Reduction

Send Interface

Window Displaying
Remote Diagnosis

Information

Connect to
Network

Hub

Keyboard

Network
Interface

A/D Conversion Plate

RTD
Grabbing Card

ECG
Grabbing Card

EEG
Grabbing Card

EMG
Grabbing Card

SD Card
Interface

User
Interface

Storage Interface

Save as:
Length:
Channel:
Device:

Save

RTOS
Multitask

Multi-Way
Acquisition

Remote
Monitoring
336

Portable Telemedicine Monitoring Equipment
multiple sub-functions simplify the operations. We compiled algorithms for detection, analysis,
and processing to the signal characteristics, ensuring high accuracy.

■ Multiple functional interfaces (e.g. for network, compact flash (CF) or secure digital (SD) card)
to facilitate data storage and transfer—We used an SD card as the storage device and
implemented an SD mode. We used the FAT16 file system for data access. A PS/2 interface
enables interaction with the monitoring equipment.

■ Scalable interface and software upgrades—For hardware, we provided a USB port, serial port,
Integrated Development Environment (IDE) interface, and drivers for platform updates. The
design adopts a RTOS to support application installation and upgrading.

■ Embedded web server allows the monitoring equipment to access and receive data via Ethernet—
We used the DM9000A network interface chip that has chip control IP that allows us to access the
network easily. In the protocol layer, Altera provides a LwIP software component that comprises
all protocols required by the network. We used a socket application programming interface (API)
to write web server programs that made network communication easy. The design allocates an IP
block for the monitoring equipment or uses DHCP. DHCP allows a remote PC to access the
monitoring equipment through the Internet to obtain real-time data and parameters and send
diagnosis information to local monitoring equipment through the web page’s input area,
implementing remote monitoring. Additionally, data can be saved to a remote database for
management.

Performance Parameters
The following sections provide the design’s resource usage and performance parameters.

Resource Usage
Figure 3 shows the design’s system resource utilization given by the Quartus® II software. The system
has 109.90-MHz fMAX performance.

Figure 3. System Resource Utilization

The one-way A/D sampling controller uses 203 logic elements (LEs) and 8,192 memory bits
(corresponding to a 512 bytes x 2 cache). It has a sampling frequency in the range of 0 to 1.667 MHz
because the TLC549 sampling controller’s maximum frequency is 40 kHz and the system’s sampling
frequency must be 0 to 40 kHz. If the sampling frequency set in software is 1,000 Hz, the output
sampling frequency is 999.98 Hz. Figure 4 shows the A/D chip sampling rate.
337

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 4. A/D Chip Sampling Rate

The system software uses 3,046 Kbytes for storage.

Design Performance Parameters
The following sections describe the performance parameters of the design.

Front-End Acquisition Board
Table 1 shows the pre-amplifier channel bandwidth test. The pre-amplifier gain is stable between
frequency bands of 1 to 1 kHz, i.e., the channel bandwidth is ≥ 1 kHz.

Table 2 shows the amplifying power of the amplifier for different signals. At 20- and 50-Hz frequencies,
the amplifier gains are stable when the input signal amplitude changes.

Table 3 shows the trapper’s trap feature test. The attenuation degree is increased by compromising trap
impedance, i.e., a proper point is adjusted to obtain the attenuation and trap impedance.

Table 1. Pre-Amplifier Gain Changes with Frequency

f (Hz) 1 5 10 20 50 100 200 500 1,000

G (Vpp = 10 mV) 12.1 12.4 12.3 12.4 12.0 12.1 12.1 12.1 12.1

Table 2. Pre-Amplifier Gain Changes with Input Signal

Vpp (mV) 40 60 80 100 120 150 300 400 800

G f = 20 Hz 11.9 12.3 12.4 12.6 12.5 12.7 12.5 13.0 13.3

f = 50 Hz 11.9 12.3 12.4 12.9 12.7 12.9 12.4 13.1 13.3

Table 3. Change of 50-Hz Trapper with Frequency

f (Hz) 1 10 20 40 45 47 48 49 50 51 52 53 55 60 80

G (Vpp = 50 mV) 6.4 6.4 6.8 4.5 2.8 2.0 1.5 1.0 0.6 0.9 1.3 1.6 2.4 4.3 6.1
338

Portable Telemedicine Monitoring Equipment
SD Card Parameter Test
The test uses 100 16-bit data for reading/writing text files, which takes 40 ms. Assuming that the front-
end data sampling is 2 kHz and 2,000 data points are collected every second, the storage time would be
(2,000/100) x 40 ms = 800 ms. The test result shows that the collected data is not lost. See Table 4.

Network Speed Test
We set the monitoring equipment’s IP address to 192.168.220.236 in the test using the Linkwan.com
web site test tool. Figure 5 shows the test result.

Figure 5. IP Address Test

We tested the operation of the built-in ping command as shown in Figure 6.

Figure 6. Ping Command Test

ECG Signal Detection Result
Table 5 shows the R-wave detection results and Table 6 shows the data compression result. The data
source is the MIT/BIT ECG database, with 250-Hz sampling, 8-bit quantification, and four signal
groups collected for detection. The ECG detection algorithm’s average R-wave false detection rate is

Table 4. SD Card File Operation Functions

Operation Function
File system start/exit FS_EXIT(), FS_INIT

Open/close file FS_FCLOSE(), FS_FOPEN()

Read/write file data FS_FREAD(), FS_FWRITE()

Locate file FS_FSEEK(), FS_FTELL()

Remove file/file directory FS_REMOVE()

Create/close file directory FS_MKDIR(), FS--_CLOSEDIR()

Open/read/locate directory FS_OPENDIR(), FS_READDIR(), FS_REWINDDIR()
339

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
0.58%, the data compression ratio is as high as 13.75 times, and the correlation coefficient (CC) reaches
98.9%. The indicators are generally at a high level.

Design Architecture
The monitoring equipment mainly consists of three modules (see Figure 7):

■ Front-end collection and modulation

■ Signal processing, storage, and transfer platform

■ Remote monitoring

Figure 7. System Structure

Table 5. R-wave Detection Result

Signal Total Heart
Rate

False Accept
Rate

Undetected False
Detected

Heart Rate

False
Detection
Rate (%)

Sddb-30 1,545 4 1 5 0.32

Sddb-32 2,013 6 7 13 0.66

Sddb-35 3,326 15 14 29 0.87

Sddb-37 2,111 4 6 10 0.47

Table 6. Data Compression Result

Signal CR Compression Ratio (%) PRD (%) Correlation Coefficient (%)
Sddb-30 19 7.3 99.7

Sddb-32 11 16 98.8

Sddb-35 12 23 97.9

Sddb-37 13 13 99.2

ECG

EEG

EMG

RTD

Grabbing
Card

A/D General-Purpose
I/O (GPIO)

Nios II Processor
& Operating System

Remote Monitoring

Ethernet Network
Control

Chip
SDRAM

DE2 Processing Platform

LCD

PS2P Mouse
Touch Screen

SD Card
340

Portable Telemedicine Monitoring Equipment
The hardware platform is the Development and Education (DE2) board, which contains the Altera®
Cyclone® II EP2C35F672C6 FPGA. The hardware integrates the Nios II soft-core processor, memory,
IP functions, and I/O ports on a single FPGA via SOPC technology. Peripheral hardware, including the
data acquisition module, network, LCD screen, touch screen/keyboard, USB/SD memory, etc., are
extended with a scalable I/O interface to facilitate system upgrades. Figure 8 shows the hardware
platform.

Figure 8. SOPC Hardware Platform

Because our hardware platform is designed using SOPC concepts, the Nios II system is written using a
hardware abstraction layer (HAL) driver, including the A/D conversion control IP core, LCD control
core, network control IP, SD card control core, PS2 IP, etc. For multi-tasking, we used μC/OS-II for
system dispatching. Additionally, we migrated μC/GUI and μC/FS as our graphical interface and file
system, respectively. The LwIP protocol stack is a part of the software layer, and performs TCP/IP
network communication. Other applications include a web server, operating interface, signal
processing, fast Fourier transform (FFT) algorithm, and data compression. Figure 9 shows the software
layer structure.

JTAG
Debugging Module

Nios II
Processor

SDRAM Controller

On-Chip ROM

Tri-State Bridge

DMA

GPIO

SDRAM
Memory

SRAM
Memory

SDRAM
Memory

Software Debugging
Reset Clock

FPGA

DSP Module

Timer

A/D
Interface Module

LCD
Interface Module

Network
Interface Module

SD
Interface Module

USB
Interface Module

Power
Management

Module

A/D
Equipment

LCD Screen

LAN91C111

SD Memory
Card

USB
Equipment

AV
A

LO
N

 S
w

itc
h

B
us

Completion of Data
Collection, Display,

Processing, Storage
and Transport
341

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 9. Software Layer Structure

Design Methodology
This section describes our design methodology.

Biomedical Signal Regulation Card Design
The biomedical signals are collected modularly, including the medical sensor, signal filtering
amplifying modulation circuit, and A/D sampling circuit. The modulation circuit selects different filters
and the amplified circuit according to the spectrum and scope of different biomedical signals. Using
ECG as an example, the signal is amplified via the pre-amplification block, including a right leg driver
to suppress common mode interference, a shield wire driver to eliminate lead wire interference, and the
tenfold set gains.

We designed the pre-amplification block using the Analog Devices AD620 medical amplifier. The
AD620 device is based on a modification of the classic three operational amplifier approach and is
integrated using a co-phase differential amplifier in parallel. The AD620 device has a wide power
supply range (± 2.3 V to ± 18 V), small size, and low power (it uses only a 1.3 mA maximum supply
current), making it a good fit for low-voltage, low-power applications. Other advantages include a high
common-mode rejection ratio, sound temperature stability, amplified bandwidth, and low noise. The
amplified signal is further magnified using filtering and a 50-Hz trap filter. The post gain is set as 1 to
100. Because the maximum ECG signal is several mV and the A/D conversion input signal is over 1 V,
the total gain is set as 1 to 1,000. Filtering uses a voltage-controlled voltage source second-order high
(low) pass filter to eliminate signals interference such as myoelectricity beyond 0.05 to 100 Hz, as well
as other high-order industrial frequency harmonics. Additionally, we used an active twin-T band-stop
filtering circuit to curb the 50-Hz industrial frequency interference.

The A/D sampling chip is the Texas Instruments (TI) 8-bit serial TLC549 device. It uses a serial
peripheral interface (SPI) to provide collection control and data transmission using three wires. It
provides an on-chip system clock that typically operates at 4 MHz, as well as a software/hardware
controlled circuit with a conversion time of less than 17 μs and a sampling rate of 40 kilosamples per
second (KSPS). With a differential voltage reference, the TLC549 device can measure a minimum
value of 1,000 mv/256, i.e., 8-bit resolution can be obtained without amplifying the 0- to 1-V signal.
Figure 10 shows the ECG signal regulating card structure and Figure 11 shows the circuit diagram.

LCD Operating Interface
Application

Data Compression/Signal Processing
Data Analysis/Data Access

Web Server
Application

LCD Driver AD Conversion
Control Driver

SD Card Driver Network Driver Input Device
Driver

LwIP Network
Protocol Stack

μC/GUI μC/FS

μC/OS-II RT0S

HAL API
342

Portable Telemedicine Monitoring Equipment
Figure 10. ECG Signal Regulating Card Structure

Figure 11. ECG Collection Circuit Diagram

SOPC Hardware Platform Design
We designed the hardware platform based on the Nios II processor. For our work, we first implemented
the IP design, such as the A/D conversion control, LCD control, and data storage/transfer using a
custom peripheral.

A/D Conversion Control IP Design
The A/D module design prevents the front-end signals from distortion and loss and deal synchronizes
the data because of the multi-channel acquisition.

A/D Sequence Control Module
The system’s A/D conversion chip is the TI TLC549 (TLC548) device, which is a low-cost, high-
performance, 8-bit A/D converter. It implements A/D conversion using an 8-bit switched-capacitor
successive-approximation approach. With a conversion speed of less than 17 μs, the TLC549 device can
easily connect to various microprocessors using a three-wire serial interface to form various low-cost

Right Leg Driver

Amplify Bandpass Filtering A/D Conversion

Low-Pass
Filter (LPF)

NOTCH
ADC

50-Hz Industrial
Frequency Filtering

High-Pass
Filter (HPF)
343

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
test and control application systems. With a differential voltage reference, the TLC549 device can
measure the minimum value of 1,000 mv/256, i.e., we can obtain 8-bit resolution without amplifying
the 0- to 1-V signal. Sequence control is generated according to the sequence diagram shown in
Figure 12.

Figure 12. TLC549 Sequence Diagram

According to the sequence, the following tasks are performed when eight external clock signals are
input at the TLC549 device’s I/O clock: read the previous A/D conversion result, sample and reserve
the input analog signal converted currently, and initiate A/D conversion.

To implement the TLC549 analog controller in the FPGA, we designed the simulation with a
Verilog HDL control state machine as shown in Figure 13:

Figure 13. State Machine Sequence

din is the serial input of data collected, and the clock is obtained through frequency division coefficient.
fsm is the sampling control clock to adjust sampling speed as required.

Double-Buffered Operating Technology
Because A/D sampling is short, it is impractical to query or read data with interrupts. Therefore, the
buffer design must reduce the interruption time by temporarily storing the converted data for N times
in the buffer memory. To collect data continuously and correctly implement a seamless buffer, we use
a ping-pong operation structure with double-buffer storage that takes advantage of the FPGA’s design
flexibility. The ping-pong operation is a handling technique for the data stream (see Figure 14). The
data buffer module can be any storage unit and in this design we use dual-port RAM (DPRAM).
344

Portable Telemedicine Monitoring Equipment
Figure 14. Ping-Pong Operation

During ping-pong operation, the input data streams are distributed to two data buffer areas through the
input data selection unit. The data buffer module can be any storage module, and the common storage
units include DPRAM, single-port RAM (SPRAM), FIFO, etc. In the first buffer period, the input data
stream is cached into data buffer module 1. In the second buffer period, the input data stream is cached
into data buffer module 2 using the input data selection unit switch while the first period data in data
buffer module 1 is output through the output port and the output data selection unit. In the third buffer
period, the input data stream is cached into data buffer module 1 with the input data selection unit while
the second period data in data buffer module 2 is switched by the output data selection unit and output
via the output port for operation. The process repeats as required.

The ping-pong operation’s unique feature is the collaborative switching of the input and output data
selection units according to a meter, which sends the buffered data streams to the data stream processing
unit for operation without pausing. The ping-pong operation module is an independent function and the
input and output data streams are continuous at the sides of the module; therefore, the design can
process data streams in the form of a pipeline. Ping-pong operation is usually applied in a pipeline
algorithm for seamless data buffering and processing.

This design implements a data cache by alternatively storing an A/D sampling sequence controller into
two 512-byte DPRAM blocks. When DPRAM1 is full, the data is stored in DPRAM2 with one interrupt
so that the system has enough time to move the data out of DPRAM1 when the controller writes data
into DPRAM2. Figure 15 shows the DPRAM buffer system timing diagram.

Figure 15. DPRAM Buffer System Timing Diagram

IP Design
The final IP core in the A/D sampling module includes an A/D conversion sequence controller, a
double-buffer ping-pong operation module, a control register such as a sampling clock frequency
division controller, and a bus control signal. Figure 16 shows the A/D conversion control IP core
structure, which can connect directly to the Avalon® bus and can be added to the system if necessary.
Four cores are added to the system.

Input
Data

Selection
Unit

Data Buffer
Module 1

Data Buffer
Module 1

Output
Data

Selection
Unit
345

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 16. AD Conversion Control IP

Each IP core has an independent double buffer and control register, which work in parallel. Control
registers include a sampling clock controller (FSAMPLE), A/D-enabled control (EN_AD), etc. The
sampling speed is controlled by setting the value of the sampling clock controller. For example, if we
want to perform 10-kHz sampling for the analog signal with a 5-MHz control clock, the core just writes
10,000 in FSAMPLE and then a 1 in EN_AD to initiate the A/D conversion.

DMA Transmission
Our design uses the DAM core to move data blocks from DPRAM to SDRAM in the A/D conversion
IP core. This process needs to write control instructions into the DMA control register to initiate the
data transmission process. The status, read address, write address, length, and control registers require
initialization. The DAM operation is initiated using the system’s DAM subprogram. In the HAL API,
the party with an auto-incremental address opens a receiving or sending channel and configuration
address; the fixed-address party sets the alt_dma_rxchan_ioctl() parameters (using
ALT_DMA_RX_ONLY_ON or ALT_DMA_TX_ONLY_ON) and the configuration address. For data
transmission from DPRAM to the SDRAM, that is, when both source and destination are in auto-
incremental address mode, we use the following DMA data transmission code:

tx = alt_dma_txchan_open(“/dev/dma_0”);
dma_res = alt_dma_txchan_send(tx, ad_buf, 32, NULL, NULL);
// ad_buf is the source address

rx = alt_dma_rxchan_open(“/dev/dma_0”);
dma_res = alt_dma_rxchan_prepare(rx, ad_buf, 32, dma_done, NULL);
// ad_buf is the destination address, dma_done() is the call back function
// employed upon the completion of DMA.

LCD IP Design
Our design requires a display device to show the collected signals and data waveforms in a format that
is easy to understand. We used an LCD screen with the Terasic TRDB_LCM expansion board. The
board has a Toppoly TD036THEA1 compact LCD module, can process an 8-bit (RGB or YUV) digital
signal, and supports TSC and PAL sequences. It has a three-wire register control for display and
function selection as well as embedded contrast, brightness, and rectification modules. It supports band
color filtering 960 x 240 (TH mode, three primaries (red, green, and blue) virtualization, and YUV
input). The expansion board is connected to the DE2 board’s GPIO_0 expansion port.

We use progressive scanning, and the LCD clock is 25.175 MHz. The design uses a three-wire LCM to
configure the IP. The IP core’s main function is to compile the state machine according to the control
sequence in the data sheet and deliver configuration data. Figure 17 shows the TRDB_LCM block.
346

Portable Telemedicine Monitoring Equipment
Figure 17. I2S_LCM Block

The LCD module does not have a display controller, so we designed it independently with Verilog HDL.
The controller supports multiple color modes, including 18, 16, and 8 bpp, and self-defined mode. The
image memory uses an on-chip FIFO buffer, which is adjustable according to design needs. A 256-color
look-up table also adopts on-chip RAM. The image information can be read automatically from
memory with DAM using the Avalon bus’s main module transmission port. Figures 18 and 19 show the
system.

Figure 18. LCD IP Core Structure

Main Device
Signal

Interrupt

Communication
with Memory

Avalon
Master Port

Control Register

State Register

DMA Address Register

Interrupt Register

Color Pallet

Color Processing
Module

DMA State
Machine

Sequence
Control
Module

LCD
Clock

Horizontal
Synchronization

Vertical
Synchronization

Valid DataAvalon
Slave
Port

RGB
On-Chip

FIFO

R (5:0)

B (5:0)

G (5:0)
347

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 19. LCD IP Core RTL

The LCD core has four modules: the interface module, memory module, color conversion module, and
sequence module.

The interface module operates the controller and reads the state. It contains a control register, state
register, DMA address register, and interrupt register. See Table 7.

The control register’s EDMA initiates the DMA, PMODE selects the color pallet mode (18, 16, and
8 bpp, and self-defined), and EIRQ enables interrupts. The state register queries the interrupt state. The
DMA address register sets and queries the DMA start address. The interrupt register clears interrupts.

The memory module reads the SDRAM’s FRAMEBUFFER data independently into an on-chip FIFO in
DMA mode using a state machine that reads/writes the Avalon master port. Based on the sequence, the
state machine has three states: idle, address, and data. In idle state, it waits for the DMA start-up signal
and initializes the module transmission and DMA start address number. When the DMA enable signal
is initiated and the on-chip FIFO buffer is idle, it jumps to the address state. In address state, the wait
signal on the wait bus is cancelled to enter a data read state. In data read state, the read signal begins to

Table 7. LCD Controller Registers

A1-A0 Register Read/write Description/Register Bit
31…5 4 3 2 1 0

0 Control register Read & write EIRQ PMODE EDMA

1 State register Read & write Status Inquiry

2 DMA address register Read & write Write the start address of DMA transmission

3 Interrupt register Read Clear interrupt
348

Portable Telemedicine Monitoring Equipment
read the SDRAM address data, and the module counter reduces by 1 for each consecutive data block.
It returns to address state after reading a data block and adds the address automatically. It returns to idle
state after reading a frame of data and waits for the transmission of the next frame. See Figure 20.

Figure 20. DMA State Machine

The color conversion module converts the read data according to four color modes. The 8 bpp and self-
defined modes require a color look-up table because they have insufficient colors. The self-defined
mode can preset the color pallet’s address manually to define the color output.

The sequence module is compiled strictly according to the sequence of the LCD. The LCD clock is
25 MHz. The FIFO data output is initiated by controlling the data enable signal, and is displayed with
a progressive scan. Meanwhile, the design must check whether there is data in the FIFO buffer before
the data effective signal arrives to decide whether to read and transmit data. The color pallet mode is set
and locked during frame transmission to avoid errors. Different read time periods are determined
according to the bpp mode: BPP_18 must be read every time, BPP_16 is read every two times, and
BPP_8 is read every five times.

We verified that the core outputs data and synchronous signals are stable, and sets display mode and
RGB data bits through the register. Figure 21 shows the LCM analog sequence signal output to the DE2
board’s GPIO_0 expansion port.

current_burst_count - 0
end_of_displaysize = 1

current_burst_count = 0 &
end_of_displaysize = '0' &
fifo_ready_for_data = '1'

enable_data = '1' &
fifo_ready_for_data = '1'

wait_request = '0'
Idle

data_phase

address_phase
349

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 21. Analog Sequence of LCM Signal Output to GPIO_0 of DE2 Expansion Port

SD Card Interface Design
One of the design’s functions is to store the monitoring data. We use the DE2 board’s SD card interface
for large-volume data storage. The highly integrated SD card flash memory has serial and random
access capabilities. It allows access through the specified serial interface with optimized speed and
reliable data transmission, and we can stack several externally connected cards together. The interface
completely complies with the SD card system standard defined by the SD card system specification,
which is the latest consumer standard. The SD card clock is generated by the internal clock generator,
and the interface driver unit synchronizes the external clock’s DAT and CMD signals with the internal
clock. The SD card has two communication protocols: SD and SPI. Comparing the two protocols, the
biggest advantage of SD is that it has fast reads/writes, up to a theoretical 25 Mbytes/second for a single
data line. The SD card interface in our system uses a single data line, DATA0. Three parallel I/O (PIO)
IP blocks are used in the SOPC design as SDATA, SCLK, and SCMD SD card single data lines.

We compiled the SD card protocol in software and migrated the file system to save FPGA resources
without any impact on the read/write speed. See “Software Platform Design” on page 356 for details.

HAL Network Driver-Based Design
The Nios II system takes HAL as a BSP to provide a unified peripheral interface in the embedded
system. The HAL device driver abstraction, the main service provided by the HAL system library, is
highly integrated into the SOPC design, allowing later software development to facilitate development
and updates without hardware impact. The DM9000A-based HAL device driver development has two
steps: designing the DM9000A read/write driver and migrating the DM9000A driver in HAL-based
driver mode.

DM9000A Read/Write Driver
The DM9000A device is an integrated 10/100 Mbyte adaptive Ethernet control chip on the DE2 board.
It has low cost and fast speeds, and features a common processor interface, 10/100 Mbyte adaptive, and
16 Kbit static access memory. Its simple design allows easy development of software drivers for
different systems.

The DM9000A device cannot directly access the in-chip registers, but it can read/write using the data
and index ports, which are controlled by the CMD pin. When CMD is high, it is a data port, and when CMD
is low, it is a control port. The process to read/write any register is as follows:

1. Enable the DM9000A device by setting AEN and SA7 low, and SA8 and SA9 high (this step is
generally done in hardware without setting it in software).

2. Set the CMD pin low using software.
350

Portable Telemedicine Monitoring Equipment
3. Input the register location to be read/written on the index port.

4. Set CMD pin high.

5. Input/output the register data to be read/written at the material port. See Figures 22 and 23.

Figure 22. DM9000 Read Process

Figure 23. DM9000 Write Process

Develop DM9000A HAL Network Device Driver
Because the DM9000A device provides a complete bus interface, we need the Avalon bus and
DM9000A interface logic in SOPC Builder. The DM9000A device communicate with the Nios II
processor as an Avalon slave. Creating a HAL device driver includes creating device instances and
registering the character device.

By referring to the HAL device driver development documentation and focusing on the lightweight IP
(LwIP) driver structure, we defined the following structure DM9000A alt_dev structure:

typedef struct
{

alt_lwip_dev_list lwip_dev_list;
int base_addr;
int irq;

[7:6]=01: PHY addtess
[7:6]=00: EEPROM address

Read EEPROM: Write in 04H
Read PHY: Write in 0CH

During Accessing EEPROM or
PHY Register, bit[0]=1, and
Turns to 0 Automatically upon
Completion

PHY Address [4:0]
EEPROM Address [5:0]

Read EEPROM > 40 μs
Read Phy < 5 μs

Clear Read:
EEPROM: Write in 00H
Phy: Write in 08H

Write Address in EPAR

Set Control Bits of EPCR

Wait for Addressing and Write
Read Data in EPDR_H & EPDR_L

Clear EPCR Control Bits

Read Data from EPDR_H & EPDR_L

[7:6]=01: PHY addtess
[7:6]=00: EEPROM address

Write EEPROM: Write in 124H
Write PHY: Write in 0AH

During Accessing EEPROM or
PHY Register, bit[0]=1, and
Turns to 0 Automatically upon
Completion

PHY Address [4:0]
EEPROM Address [5:0]

Read EEPROM > 5000 μs
Read Phy < 5 μs

Clear Read:
EEPROM: Write in 00H
Phy: Write in 08H

Write Address in EPAR

Set Control Bits of EPCR

Wait for Addressing and Write Data

Clear Control Bits of EPCR

Write Data from EPDR_H & EPDR_L
351

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
u_char hwaddr[6];
int index_offset;
int data_offset;
int dm9k_tx_space;
int dm9k_linked;
sys_sem_t arp_semaphore;
sys_sem_t tx_semaphore;

} alt_avalon_dm9k_if;

When the Nios II processor starts running, the device is initialized in alt_sys_init(), allowing the
program to identify the driver.

#define ALTERA_AVALON_DM9K_INSTANCE(name, dev) \ /*instantiate device*/
alt_avalon_dm9k_if dev = \
{\

{\
ALT_LLIST_ENTRY,\
{\

0,\
name##_NAME,\
alt_avalon_dm9k_init, \
alt_avalon_dm9k_rx,\

},\
},\
name##_BASE, \
name##_IRQ,\
{ 0x00, 0x90, 0x00, 0xAE, 0x00, 0x01}, \
0, 1, 2\

}

#define ALTERA_AVALON_DM9K_INIT(dev)alt_lwip_dev_reg(dev) //initialize
//devices, register in HAL.

SOPC Builder
The Quartus II software’s SOPC Builder integrates a hardware system in an FPGA, including writing
the CPU, memory, interface IP blocks, timer, and Avalon bus in a hardware description language, and
presenting it in the form of an IP block. Using the DE2 development board and considering the design
functionality, we created the SOPC system.See Figures 24 and 25.
352

Portable Telemedicine Monitoring Equipment
Figure 24. Nios II CPU Customization

Figure 25. 4-Mbyte Flash and 8-Mbyte SDRAM Controller Customization

The custom peripheral includes the A/D conversion control IP block, LCD control IP block, DM9000A
bridge IP block, PS2 protocol resolution IP block, etc. See Figure 26.

Flash Control IP Customized Interface SDRAM Control IP Customized Interface
353

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 26. Custom Peripheral Interface

Figure 27 shows the system in SOPC Builder. The system clock is 100 MHz and peripheral clock is
50 MHz. The clock is derived from an external phase-locked loop (PLL) that generates a double
frequency clock. Designing our embedded system with SOPC Builder minimized our development
time.

Figure 27. SOPC Builder Interface

Figure 28 shows the SOPC Builder-generated schematic diagrams in the Quartus II software.
354

Portable Telemedicine Monitoring Equipment
Figure 28. SOPC Builder-Generated Modules

355

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
We added a PLL in the Quartus II software to distribute pins, and we generated the hardware SRAM
Object File (.sof) after compilation. This step completed our project’s hardware platform, and we next
entered the software phase.

Software Platform Design
This section describes the software development for our design.

μc/OS-II Multi-Tasking Design
Because our system involves many tasks, such as collection, display, networking, storage, etc., we used
the real-time μC/OS-II operating system to manage the entire system, resulting in smooth operation of
the hardware modules and application program. μC/OS-II has already been migrated to the Nios II
Integrated Development Environment (IDE), so we only needed to select it in the IDE. We divided the
main tasks as:

■ Display

■ Collection

■ Data storage

■ Network tasks

■ Signal processing

■ Input device

Display is the highest priority task. All main tasks have other relative subtasks. Figure 29 shows the
relationship of the main tasks.
356

Portable Telemedicine Monitoring Equipment
Figure 29. System Task Relationships

The GUI display update task is the highest priority. An input device interrupt sends messages in the
interrupt program. Then, the boot input device task and input device task judge messages. The system
sends a semaphore to different operations, including the data storage, network, and A/D conversion
tasks. The storing task stores data in the SD card and then the file system’s internal task begins. The
Ethernet task performs web server functions; it receives and sends messages to a remote PC and
executes HTTP internal tasks to finish sending and reading web page data. The signal processing task
implements data acquisition detection and analysis as well as data compression.

μC/GUI Migration
μC/GUI, a graphic support software for embedded applications, provides an application that has one
graphic LCD with an effective graphical user interface (GUI) independent of processor and LCD
controller. It can operate in a single-task or multi-task environment and works with any size physical or
virtual display that uses an LCD controller or CPU. The modular design consists of layers of varied
modules. One layer, called the LCD driver, contains all accesses to the LCD. Additionally, μC/GUI
works for all CPUs because it is compiled purely in the ANSI C language.

In past projects, we wrote data into the LCD display memory (with starting address 0x00f00000) to
display graphics on the LCD. But this method had many problems—such as unstable graphics display,
monotone color, only simple images, and difficult design—because the algorithm between the display
memory data address and LCD display is complicated. In this project, we wanted to solve those issues
by migrating μC/GUI to the Nios II processor.

Successful migration means that the public GUI source code can operate on the hardware platform we
design, i.e., it acts according to our commands. Once we migrate μC/GUI, we can display images and
graphics directly on the LCD by invoking functions from within application programs, such as an API

System Boot

Display
Storage
Progress

Task

Storing
Data Task

GUI Display
Update Task

Input
Device
Task

Ethernet
Task

DSP
Task

Activating
AD Conversion

Task

Input Device
Interrupt

Remote Data
Arrival or

Transmission

Semaphore Mailbox Message Task Switching
357

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
drawing function. We can create fascinating, innovative images and graphics, implement a multi-
tasking LCD, e.g., multiple windows, controls, anti-aliasing, etc., and be free from basic tasks such as
the graphic data location in the LCD display memory. Undoubtedly, this method will greatly facilitate
our future LCD development.

Figure 30 shows the μC/GUI software system.

Figure 30. μC/GUI Software System

Modifying the GUIconf.h and LCDconf.h files is an important migration step (see Figure 31). Some
of the files we modify are described below.

■ GUICONF.h—In this file, we configure the GUI migration options for different operating
systems. In our design, we configure migration to μC/OS-II and allow multi-tasking to invoke μC/
GUI functions.

■ LCDconf.h—In this file, we define various attributes related to hardware, such as the LCD size,
color, and interface function. The LCD driver interprets μC/GUI functions into the LCD interface
function defined in the LCDConf.h file, which is not applicable to the hardware connection.
Using the driver, the μC/GUI and LCD hardware interface converts the hardware interface
function into an LCD read/write function as defined in the LCDConf.h file.

■ LCDDDummy.c (LCD drivers)—These two functions, LCD-L0-SetPixelIndex(int x, int
y, int PixelIndex) and LCD-L0-GetPixelIndex(int x, int y), constitute the basic
low-level LCD drive function and connect directly with the hardware. Some basic functions such
as LCD-L0-DrawHLine, LCD-L0-DrawVLine and LCD-L0-FillRect are also defined in
driver. They are invoked from LCD-L0-SetPixelIndex(int x, int y, int PixelIndex)
and LCD-L0-GetPixelIndex(int x, int y).

Font Style

User Program

Text
Numeric

Value 2-D Graphics
Input

Device
Window
Object

Memory
Device

LCDConf.h LCD

LCD Driver

μC/GUI Hardware
Interface Function

μC/GUI
Function Library GUIConf.h

Window
Manager
358

Portable Telemedicine Monitoring Equipment
Figure 31. LCD Configuration
#ifndef LCD-BUSWIDTH
#define LCD-BUSWIDTH (32)—LCD data line is 32 digits.
#endif
#define LCD-READ-MEM (off) IORD-32DIRECT (0X01F40000, (Off<<2))-for operating hardware
#define LCD-WRITE/MEM (Off, data) IOWR-32DIRECT (0X01F40000, Off*4, data)--- for operating hardware
#define LCD_WRITE_REG0(data)
IOWR_altera_AVALON_LG_LCD_CONTROLLER_CR(LG_TFT_LCD_CONTROLLER_0_BASE,data)
#define LCD_WRITE_REG2(data)
IOWR_altera_AVALON_LG_LCD_CONTROLLER_NBAR(LG_TFT_LCD_CONTROLLER_0_BASE,data)
#define LCD_READ_REG1
IORD_altera_AVALON_LG_LCD_CONTROLLER_SR(LG_TFT_LCD_CONTROLLER_0_BASE) #define LCD_READ_REG3
IORD_altera_AVALON_LG_LCD_CONTROLLER_ISR(LG_TFT_LCD_CONTROLLER_0_BASE)

----Four #defines above are operation over four registers of LCD.
Initialize LCD controller
#define LCD_INIT_CONTROLLER() LCD_WRITE_REG2(0X01F40000);\

LCD_WRITE_REG0(000001);
#endif

SD Card-Based File System Migration
Figure 32 shows the μC/FS structure, which, like μC/GUI, is public source code. Figure 33 shows the
card-based layers.

Figure 32. μC/FS Structure

API Layer

File System Layer

Logical Block Layer

Device Driver

<stdio.h> like functions, such as
FS_fopen, FS_fread, etc.

Translation of File Operations to
Sector Operations

Synchronization od Device Operations
for Different File Operations

Low Level Routines to Access Sectors
of a Device and to Check Status
359

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 33. SD Card-Based FS Layer

Some key points when migrating the file system (FS) are:

■ Because of μC/OS-II, we reduced unnecessary operating system (OS) source code in the FS to
conserve storage space.

■ We modified the fs-port.h file to implement a data type that the Nios II processor can recognize.
For the fs-conf.h file, we modified the relevant FS configuration, such as the number of opened
files, names of supported devices, etc.

■ We determined the lowest level FS device driving function and added the SD card device-driven
function.

In the SD card protocol, the host sends CMD first and then the card sends RES. If there is data to be
transferred, it is transferred on the DATA line. Except for copyright protection commands, the SD
protocol has 34 total commands. For users, configuring SD card means that the system reads/writes the
register. The main registers include CID, CSD, and OCR. We used the C language to compile an SD driver
in the Nios II IDE, i.e., one that performs initialization and data read/write functions.

In μC/FS, a low-level device driver invokes functions directly as shown in the following code and our
SD card driver is implemented in the four functions listed.

const FS__device_type FS__SDdevice_driver=
{
"SD",
_GENDEV_DevStatus,
_GENDEV_DevRead,
_GENDEV_DevWrite,
_GENDEV_DevIoCtl,
};

We defined the card initialization process as SD-card-init() in μC/FS; GENDEV-DevStatus()
invokes the process to perform the following functions:

1. Reset the card and its control module, and keep card frequency at no more than 25 MHz during
the reset process. The card can be reset using the CMD method (CMD0.CMD52).

2. Determine whether the input card is an SD card or MMC using CMD55.

Application

Embedded File System

SD Memory Card Driver

SD Memory Card

File System Layer

Device Driver Layer

Hardware
360

Portable Telemedicine Monitoring Equipment
3. Obtain the card ID (CID) by transmitting CMD2. The CID is integrated in the card and each card
has only one CID. Once CID is obtained, the card can enter certification status.

4. The relative card address (RCA) is the unique symbol that controller uses to access the card.
Dynamic distribution is available using CMD3.

5. Set the read/write block size. According to the FAT and FS settings, we can set a read/write block
as 512 bytes.

We enable the card reading/writing using the data block and every read/write is an integral multiple of
the block. CMD17/CMD18 and CMD24/CMD25 read/write one or many data blocks over the card,
respectively. In μC/FS, we implemented reading/writing in SD-read-Iba(Unit, Sector,
pBuffer) and SD-write-Iba(Unit, Sector, pBuffer).

Data always has an attached cyclical redundancy check (CRC) code. In μC/FS, CRC codes are
implemented with the GetCRC16() function.

Operating Interface Design
All main monitor operations are merged onto the LCD; therefore, a user-friendly operating interface is
key to the design. When we migrate the GUI, developing GUI-based operating interfaces will become
faster and more efficient. Figure 34 shows the operating interface process.
361

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 34. Operating Interface Process

Web Server Design
The network communications design is based on the TCP/IP protocol. The key to successful
communication is to embed the protocol into the system and migrate the network interface control chip
driver to implement communication at the physical layer. At the application layer, we can implement
communication by writing different applications according to the required services.

The LwIP protocol stack, is already integrated into the Nios II processor, accelerating the network
development. Therefore, we only needed to focus on designing the network interface driver and
developing the application.

Start
Interface

Main
Interface

Monitoring
Interface

Analysis
Interface

Storage
Interface

Transmission
Interface

Choose
Monitoring
Channel

Choose Abnormal
Data Segment for

Analysis

Input Name and Size
of Storage File and

Name of Device

Activate Connection
Network and Choose

Channel for Sending Data

Begin
to Store

Send Data
to Long

Distance and
Wait for Remote

Message

D
isplay of C

hannel 1 S
tartup

D
isplay of A

bnorm
ality 1 S

tartup

Analyze
Spectrum?

Spectrum
Display

Waveform
Zooming

Yes No

D
isplay of A

bnorm
ality 3 S

tartup

D
isplay of A

bnorm
ality 2 S

tartup

D
isplay of A

bnorm
ality 4 S

tartup

D
isplay of C

hannel 1 S
tartup

D
isplay of C

hannel 1 S
tartup

D
isplay of C

hannel 1 S
tartup
362

Portable Telemedicine Monitoring Equipment
LwIP Overview
LwIP was originally written for embedded system by Adam Dunkels of the Swedish Institute of
Computer Science. It can be migrated to an OS or operated independently. LwIP has the following
features:

■ Supports IP forwarding with multiple network interfaces.

■ Supports the Internet control message protocol (ICMP).

■ Includes an experimental user datagram protocol (UDP).

■ Includes congestion control, round-trip time (RTT) estimation, TCP of fast recovery, and fast
retransmission.

■ Provides a dedicated raw API for improving application performance.

■ Includes an optional Berkeley interface, an API (in case of multi-threading).

■ Supports the point-to-point protocol (PPP) in the latest version.

■ Has increased IP fragment support in the latest version.

■ Supports the DHCP protocol and dynamic IP address allocation.

To adapt to different operating systems, LwIP adds an OS-encapsulated layer between LwIP and the
OS instead of using system calls and data structures relating to a certain OS. The layer provides a
unified interface for OS service (timing, process synchronization, and messaging), uses semaphone for
process synchronization, and mbox for messaging. The following code shows the OS encapsulated
layer’s main functions:

void sys_init(void)//system initialization
sys_thread_t sys_thread_new(void (* function)(void *arg), void *arg,int prio

)//create a new process
sys_mbox_t sys_mbox_new(void)//create a new mailbox
void sys_mbox_free(sys_mbox_t mbox)//release and delete a mailbox
void sys_mbox_post(sys_mbox_t mbox, void *data) //send a message to the mailbox
void sys_mbox_fetch(sys_mbox_t mbox, void **msg)//wait for a message in the mailbox
sys_sem_t sys_sem_new(u8_t count)//create a new semaphore
void sys_sem_free(sys_sem_t sem)//release and delete a semaphore
void sys_sem_signal(sys_sem_t sem)//send a semaphore
void sys_sem_wait(sys_sem_t sem)//wait for a semaphore
void sys_timeout(u32_t msecs, sys_timeout_handler h, void *arg)//set a timeout event
void sys_untimeout(sys_timeout_handler h, void *arg)//delete a timeout event

The Nios II processor includes LwIP, including the source code and corresponding design environment
(EDS). Using LwIP with the Nios II processor is based on the μC/OS-II multi-threading environment;
therefore, we must implement μC/OS-II before using LwIP. The Nios II variant of LwIP is based on
HAL, which includes a socket API function.

Connection between DM9000A Driver and LwIP
LwIP functions are invoked using the netif structure (see Figure 35).
363

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 35. netif Structure

After the DM9000A device driver is encapsulated into the HAL library, the initialization function
registers functions related to the device driver in the netif structure. This process allows LwIP to
recognize the DM9000A driver while invoking the network interface layer after system start-up,
invoking the chip at the physical layer. See Figure 36.

Figure 36. Hierarchy Chart for Migration of Drivers to LwIP

HTTP Services Application Development
After successfully migrating LwIP, we can use the socket API to design applications. The socket is
made up of interfaces that forms the middleware abstraction layer for communication between the
application layer and TCP/IP protocol suite. In design mode, a socket is a facade that hides the complex
TCP/IP protocol suite: the user only deals with a simple set of interfaces while the socket organizes the
data to adapt to the specified protocol.

μC/OS II

LwIP
Source Code

Migrated LwIP

Network Interface Netif

HAL-Based Devices
Are Instantiated &
Registered before
System Start-Up

Development
Driver

Integrated as HAL
Device Driver

Nios II Processor

Network Chip

Bus Interface

Function Set
Provided by
Nios II LwIP

Software
Layer

Hardware
Layer

Filling
364

Portable Telemedicine Monitoring Equipment
For network communication with a socket, the system initializes the socket, binds it to a port, listens on
the port, invokes congestion acceptance, and waits for a client connection. If a socket is initiated and
the server successfully connects to at least one client, the client/server connection is established. The
client sends a data request while the server accepts and processes the request and sends response data
to the client. The client reads the data, closes the connection, and the interaction ends. See Figure 37.

Figure 37. Client/Server Socket Communication Process

To allow remote PCs to obtain the monitoring equipment data and communicate with the equipment via
a web page, we designed a simplified web server that provides services for web browser requests. We
wrote our web page in HTML; therefore, the request-response transfer is based on HTTP. The client
runs programs on the browser, connects to the server, and sends a request. The server responds with a
status line (including the message’s protocol version), a success or error code, and a message that
consists of server information, entity information, and other possible content. The web uses client/
server mode, so our design establishes socket connection. The monitoring equipment waits for a remote
connection, analyzes HTTP upon connection, and starts HTTP tasks, including analyzing the HTTP
request, executing requests, sending responses, closing the HTTP communication, etc. Figure 38 shows
the HTTP application software process.

TCP Client

Socket()

Connect()

Write()

Read()

Close()

Connect

Request Data

Response Data

Close Connection

TCP Server

Socket()

Bind()

Listen()

Accept()

Write()

Read()

Read()

Close()

Close Until a
Client is

Connected

Process
Request
365

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 38. HTTP Application Software Process

ECG Signal Detection and Compression Algorithm
During real-time acquisition and signal display, the monitoring equipment can automatically detect and
store abnormal signals, allowing the user to analyze the situation and make an initial diagnosis. The
following sections describe the detection, analysis, and compression of ECG signals.

Waveform Detection
ECG signal pre-processing is followed by detection of ECG characteristics, which is essential because
the characteristic waveform directly reflects the heart’s health status. A normal ECG waveform consists
of a group of characteristic waves and its transition period. Each cardiac cycle includes a P-wave, PR
interval, QRS combination waves, ST segment, T-wave, and QT interval as shown in Figure 39.

Web Server

Socket () Connect

Bind () Bind Port and Address

Listen () Listen on Waiting Request Queue
Then Accept () Wait for Accept

Select () Non-Congestion Waiting Request
Tell LwIP that Events We are

Interested in Occur

Events Interested: Data Readable,
Connect Accept();

HYYP Socket () Create
Data Read/Write Socket

Send Data
Program

Receive Data
Program

Send HTML
Program

Receive HTTP
Command

Code Analysis
Validate HTTP

Version

Error & Exit

Process HTTP
Header Command

Process Request

Post Get

Execute
Interactive

Information from
the Webpage

Search our
Webpage
According

to URL

Send HTTP
File Header

Other Tasks

Semaphone/
Message/Mailbox

JPEG
Data Update

TXT
Data Update

GIF
Data Update

Signal
Processing

Medical
Information
Update of
Monitoring
Equipment

Webpage Update Tasks

N

N

Y

Y

366

Portable Telemedicine Monitoring Equipment
Figure 39. ECG Waveform

Detection of ECG characteristic points is the basis and key to automatic ECG detection and diagnosis.
With this method the system must find various parameters, including the starting/ending points and
voltages of each waveform in the ECG, the vertex and voltage of each characteristic waveform, the ST
segment, etc. Then, the system analyzes each characteristic segment and performs a diagnosis of the
monitored patient’s heart status.

QRS waves are different from other ECG signals, accounting for a large proportion of energy. They are
distributed in medium-high frequency compared to the other ECG signals, with a peak value between
10 and 20 Hz and distinct amplitude characteristics. Therefore, QRS waves are always located first
when detecting ECG characteristic waveforms, and analysis of other waveforms are based on the R
peak value, i.e., QRS detection is the premise for detecting all waveforms. The primary methods for
waveform detection currently include:

■ Difference threshold—Determine the QRS wave’s negative edge by combining the first/second
difference of the filtered signal application with the threshold. The system then locates the QRS
wave vertex using a window and threshold.

■ Template matching—Separate the QRS wave into a series of templates (segment or peak); the
characteristic parameter of each template is indicated by a series of characteristic factors. The
QRS wave is confirmed if the detection signal symbol sequence characteristics comply with those
of the QRS template sequence. This method prevents recognition errors in the difference threshold
method for a QRS wave with a lot of waveform variation and few parameter changes; however,
the analysis is slow.

■ Wavelet analysis—Wavelet transformation, a time-frequency local analysis method that has
“micro” capability in areas with high signal frequencies, is particularly suitable for detecting the
characteristic points of ECG signals. Singular points of a transient signal always contain
important information. Detecting the location of the signal’s singular points and determining the
singularity is a concern and is a key part of a wavelet transformation application.

Our design uses a discrete dyadic wavelet transformation, which can be calculated using the following
formula:

(1)

(2)

s
2jf n() h0ks2j 1–

f n 2j 1– k–()
k n∈
∑=

sw
2jf n() h1ks2j 1–

f n 2j 1– k–()
k n∈
∑=
367

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
QRS wave detection is a primary concern in ECG waveform detection as well as an important reference
for arrhythmia diagnosis. The other ECG details are not analyzed until the QRS wave is confirmed.
Based on further analysis of the detection principle for the singularity of wavelet transformation,
comprehensive analysis, and comparison of the detection methods already discussed, we chose a
quadratic differential wavelet to detect the ECG waveform. We designed the wavelet filter by taking the
second derivative of a Gaussian function (i.e., Marr wavelet) as the generating function.

We created a Marr wavelet decomposition filter based on a scaling function and a wavelet function
according to a two-scale equation. Table 8 shows the filter coefficients.

The process for the whole R-wave detection algorithm is summarized as follows:

1. The discrete dyadic wavelet transformation is performed on ECG digital signal f(n) with a Marr
filter coefficient according to the Mallat algorithm presented in the discrete dyadic wavelet
transformation formula, and and (for j = 0, 1, 2, 3, and 4) are acquired.

2. Based on a signal segment with a clear waveform, the system determines the initial threshold
of the modulus maxima at different scales.

3. In the wavelet transformation with scale a = 24, find all modulus maxima with a higher

threshold, and obtain a set of locations (for k = 0, 1, 2, 3, ... N).

4. In the wavelet transformation with scale a = 23, find the modulus maximum in the neighborhood

of (for k = 1, 2, ... N) with a threshold greater than and with the same symbol as the wavelet

transformation at , and define its position as . If there is more than one modulus maxima near

 at the scale a = 23, choose the one with the largest amplitude value; however, if the largest
modulus maximum is smaller than 1.2 times other modulus maxima, choose the maximum point

nearest to . If no modulus maximum is found in the neighborhood, define , , and

as zero. Then acquire a set of locations (where k = 0, 1, 2, 3, ... N). According to our
experience, we take 10 ms as the neighborhood scope, i.e., if the signal sampling frequency is

360 Hz, a neighborhood of 10 ms around will be .

5. Similar to the process in step 4 above, find the modulus maxima locations at scale a = 22 and

a = 21, respectively and obtain two sets (for k = 0, 1, 2, 3, ... N) and (for k = 0,1, 2, 3, ... N).

6. According to the modulus maxima location set for a characteristic scale, the set of modulus

maximum series { , , , (for k = 0, 1, 2, 3, ... N)} is acquired; excluding the modulus

maximum series with value = 0, the rest series set is { , , , (for k = 0, 1, 2, 3, ... N) }.

Table 8. Filter Coefficients

k -5 -4 -3 -2 -1 0 1 2 3 4 5
h0 k 0.0032 -0.0132 0.0393 0.0450 0.2864 0.4317 0.2864 0.0450 0.0393 -0.0132 0.0032

h1 k 0.0039 0.0062 -0.0226 -0.1120 -0.2309 0.7118 -0.2309 -0.1120 -0.0226 0.0062 0.0039

s2j
n() w2j

n()

Rth
j

w
24 n()

nk
4

nk
4 ε th

3

nk
4 nk

3

nk
4

nk
4 nk

4 nk
3 nk

2 nk
1

nk
3

nk
4 0.01 f1× 0.01 360× 3.6 4≈= =

nk
2 nk

1

nk
1 nk

2 nk
3 nk

4

nk
1 nk

2 nk
3 nk

4

368

Portable Telemedicine Monitoring Equipment
7. Determine whether the time interval of two adjacent modulus maxima at scale a = 21 is larger than
1.7 times the average RR interval. If yes, halve the threshold in this time period and search for the
R peak again.

8. Amend the modulus maxima according to refractory period and L.E. index to remove some

pseudo R peaks. After steps 7 and 8, the set of rest modulus maximum series is { , , ,
(for k = 0, 1, 2, 3, ... N) }.

9. Determine the location of the R wave in the original signal according to the set (for k = 0, 1,
2, 3, ... N).

Compression Processing
The ECG data compression methods include a direct method, transformation, and parameter extraction.
The first two methods apply in the case of waveform restructuring. Compared to the direct method, the
discrete cosine transformation (DCT) we used in this design features high quality, noise reduction,
simple restructuring, and a smooth waveform. The main reason DCTs are used widely in ECG data
compression today is the low compression ratio (typically 3 times) during application. Signals can be
processed by segments according to the ECG characteristics to improve the compression effect.

To implement ECG data compression, we first adopted DCT compression data sequences and divided
them into shorter sequences by frames. Considering the waveform completeness and data processing
timeliness, the system takes the sampling data sequence of each cardiac cycle waveform as a data
sequence frame. In actual data processing, the central point of two adjacent R peaks is the preferred
frames break point. Because there are many proven QRS wave detection methods available, it makes
sense to choose the QRS waveform as high frequency. After extracting the high frequency, the system
uses linear difference (usually inserting 2 to 4 points) to connect the low-frequency waveforms at both
ends into one segment through a smooth migration.

As the distribution of signal energy in the DCT domain features low frequency, high amplitude and high
frequency, low amplitude while maintaining a certain fidelity of the restructured waveform, only M
times the DCT components with low frequency need to be kept: C(0), C(1), ... C(M-1). We can then set
a threshold Eth and require that the total energy of the M times components accounts for >= Eth of the
total energy, i.e., Ef(M-1) x 100 >= Eth. The threshold Eth is determined according to the required fidelity
of the restructured waveform. C(0), representing the direct current video component in the time domain
waveform, only decides the horizontal baseline value of the restructured waveform, and can be rejected.
Each DCT component that is kept should be converted to 8-bit integer data (7-bit integer data plus1-bit
symbol data). Then we set the transformation scale factor of low frequency as 1 (which can be rejected)
while keeping the ratio (two bytes) between the high frequency and low frequency scale factors.

Compared to other data compression methods, segmented DCT compression provides a high data
compression ratio, high-fidelity waveform restructuring, and significant noise reduction.

System Integration and Effect
Because the system involves many software and hardware modules, we used software/hardware
codesign. The following points are worth noting:

■ We used IP design for hardware, all drivers are based on the HAL layer, the system clock is unified
as 100 MHz, and the peripheral clock is 50 MHz.

■ The OS tasks are prioritized according to different module weights.

■ For the file system and GUI in the IDE, we defined the header file path using compiler options.

■ We simulated the software algorithm in the MATLAB software before completing the
implementation.

nk
1 nk

2 nk
3 nk

4

nk
1

369

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figures 40 through 42 illustrate the system operation after software/hardware integration.

Figure 40. Demo

Figure 41. Remote Web Page Logon

Figure 42. Human-Machine Interface Operation

370

Portable Telemedicine Monitoring Equipment
Design Features
Our design has the following features:

■ Conception—While HHCE is becoming part of our lives, real home medical monitoring
equipment is not available. HHCE is not effectively implemented because the existing portable
monitoring equipment provides functions that are too simple or too expensive. Seeing this
opportunity and feasibility, we chose to do the design. The Nios II processor gives our product
superiority over its competitors in terms of size and price.

■ Function—The product is modern with competitive features, such as the simultaneous
measurement of multiple parameters, high-capacity data storage, network communication, more
signal processing algorithms to support more functions, etc. Meanwhile, its diversified functions
prove the flexibility and high performance of the Nios II system.

■ Hardware design—SOPC techniques make our design simple and clear. We can complete each
module independently and integrate them easily to form a system. We can embed several main
devices (including the A/D converter and LCD IP blocks) for data transfer to reduce the CPU load
while updating hardware modules rapidly. We can easily connect an IP block to the bus at the
touch of a button, which was impossible for previous chip-based SOC systems. All IP blocks use
the Avalon bus architecture and a unified synchronous clock.

■ Software algorithm—Our design is complex, including many modules and complicated
algorithms. These difficulties are also features of our design. Algorithms such as waveform
detection, data compression, and spectrum conversion are not fully applied in existing monitoring
equipment. With these algorithms, our product will be more specialized, providing users more
medical diagnosis methods and allowing them to enjoy medical treatment at home.

■ Upgrades—According to the requirements of different hospitals, communities, and homes, the
multi-function, portable, medical monitoring system can be configured or upgraded quickly by
selecting different front-end data acquisition modules and corresponding data processing CF
cards without replacing the whole system platform.

■ Remote monitoring—The networking function enables more comprehensive monitoring. With the
Internet, users can communicate remotely at any time. Doctors can monitor patients remotely
through the network to determine the monitored patient’s health status while updating software or
managing a database in real time. The Nios II protocol stack eased network development.

Conclusion
With this project, we gained a broader understanding of SOPC concepts and learned how to perform
embedded development with the Nios II CPU. Altera’s SOPC solution provides a powerful design
platform that allows us to develop hardware, drivers, and applications to develop systems rapidly and
efficiently.

The two-month effort we put into the contest brought us the final design as well as more experience.
We found the “real sense” of the design process, including IP cores, pre-simulation, post-simulation,
and application optimization. Embedded development requires developers to have a systematic view
and patience; program debugging is time-consuming but beneficial.

We found that design tools such as the embedded logic analyzer, SOPC Builder, C-to-Hardware
Acceleration (C2H) Compiler, IDE, and DSP Builder accelerated our development. Although tasks
differ, we learned how things relate and felt the power of teamwork.

After participating in the Nios II design contest several times, we are impressed with the Nios II
processor’s flexibility and transparency, which distinguishes it from other embedded systems. We can
371

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
see the full transparency from the bottom layer implementation to the application layer design,
supporting better system design than any other embedded system.

Until now, we have had many problems to solve, for example, how to accelerate an interface switch,
how to truly connect databases, how to improve the system’s DSP performance, and how to implement
a more accurate biomedical signal waveform detection algorithm. These areas need our continuous
efforts.

Finally, we would like to express our appreciation to all our teachers and classmates who helped us with
the design, as well as our sincere gratitude to the host and judges of this contest. We will move ahead
on our road of SOPC development.
372

	Portable Telemedicine Monitoring Equipment
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

