
Nios II Processor-Based Fingerprint Identification System
Third Prize

Nios II Processor-Based Fingerprint
Identification System

Institution: College of Communication Engineering, Chongqing University

Participants: Ji Wang, Liang Wu, Yong Liu

Instructor: He Wei

Design Introduction
With the boom of information technology represented by computers since the 1960s, computer
technology has begun to be used in the fingerprint identification field, bringing new thoughts,
implementation methods, and processing approaches for automated fingerprint identification.
Authorities, institutions, and universities have begun implementing fingerprint analysis and processing
using computers. A computerized system that performs automated fingerprint identification is called an
Automated Fingerprint Identification System (AFIS).

People often need to be identified in society. The common ID authentication methods such as keys,
password, certificates, and IC cards provide identification using objects, which indirectly identify the
object holder. These objects are not very accurate and have significant security risks, including
counterfeited certificates and tokens, and decrypted or stolen passwords. With the development of
image processing and pattern identification technologies, emerging identification technology based on
biometric characteristics has become the focus of research and applications due to its unique reliability,
stability, and convenience. As the earliest and most mature biometric identification technology in the
pattern identification field, fingerprint identification technology integrates sensors, biometric
technology, electronic technology, digital image processing, and pattern identification. Many automatic
fingerprint identification systems are used worldwide, but fingerprint identification technology is not
yet mature. China is behind in fingerprint collection and algorithm study, so the research of fingerprint
identification algorithms and systems will play a significant role in theory and practice.

Systems with fingerprint minutia identification have wide applications in the fields of security,
jurisdiction, military, finance and economy, information service, etc. Identification is needed in access
control systems and other similar applications. Embedded fingerprint minutia identification systems
247

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
fully utilize biometric minutiae and are applicable for determining attendance in schools and
enterprises, identifying residents in residential quarters, and so on.

The study and practice of police AFIS for two or three decades has laid a good foundation for civil
AFIS. Specifically, the existing civil AFIS is easy to use, accurate, reliable, and affordable, allowing
fingerprint identification products to enter our daily life. By replacing a personal identification code and
password, fingerprint identification technology can guard against unauthorized access and illegal use
of ATMs, cell phones, intelligent cards, desktop PCs, work stations, and computer networks. It can
facilitate identification in telephone- or Internet-based financial deals and replace keys, certificates,
stamps, and IC card readers in buildings or worksites.

As microelectronics technology advances, programmable logical controllers are becoming more
diversified, faster, and more powerful. Today, many FPGAs support embedded soft-core processors to
facilitate FPGA-based hardware development. For example, the Altera® Nios® II RISC CPU soft-core
processor features pipelining and single instruction flow, can be embedded in an FPGA, and can
leverage custom logic to build a FPGA-based on-chip system. Compared to an embedded hard core, a
soft core is more flexible. Additionally, the faster FPGA exactly meets the fingerprint identification
system’s speed requirements.

We chose to use the Nios II soft-core processor in our design for the following reasons:

■ The Nios II soft-core processor can cut costs through large-scale system integration and FPGA/
CPU optimization.

■ The Nios II processor is more flexible, provides shorter design cycles, and can prolong the product
lifecycle with upgrades.

■ Custom instructions and logic can accelerate complex arithmetic operations and logic.

■ The Nios II C-to-Hardware Acceleration (C2H) Compiler allows designs to operate more than 40
times faster than software that is not accelerated.

Function Description
We designed the fingerprint identification system based on Altera’s Nios II processor and FPGAs. This
system can collect real-time fingerprint image signals, extract finger minutiae, and match minutiae in a
database to perform fingerprint identification. The whole system design includes fingerprint image
collection, fingerprint image preprocessing, minutia extraction, minutia matching, and a database.

Fingerprint Image Signal Collection
The fingerprint collector serves as the fingerprint collection module. The module’s fingerprint sensor is
Veridicom’s third-generation product, the FPS200 sensor (with 256 x 300 array numbers and 500-DPI
resolution). The sensor uses Veridicom’s ImageSeek function and high-speed image transmission
technology to obtain quality images of all fingerprint types. The fingerprint collector design performs
the following functions:

■ Capture stage—Each column of the capacitor array is connected to two sampling/hold circuits to
capture one row of fingerprint images. The capture procedure has two stages: capacitors in the
chosen row are charged to UDD and store the charging voltage in the first sampling/hold circuit;
next, the capacitors discharge to the current source at a speed proportional to the discharged
current. After a discharge period, the second sampling/hold circuit stores the capacitors’ final
discharge voltage. By measuring the difference (ΔU) between the charging and discharging
voltages, we obtain the capacity (C) of each capacitor unit.
248

Nios II Processor-Based Fingerprint Identification System
■ Analog-to-digital (A/D) conversion—The analog signals representing the unit capacities of the
row go through A/D conversion to generate the digital fingerprint image information for the row.
The system puts the information in a register and captures the fingerprint images of the next row.

■ Fingerprint signal transmission—FPS200 contains three bus interface circuits: USB, serial
peripheral interface (SPI), and microcontroller (MCU) interfaces. This design uses the SPI
interface to transmit the digital information in the registers to the Development and Education
(DE2) board’s SDRAM.

Fingerprint Image Preprocessing
During fingerprint image preprocessing, the fingerprint image is enhanced. Accurate fingerprint
identification relies on the identification of the fingerprint ridge texture and minutiae. However, due to
skin condition, collection conditions, devices, the working and living environment of the fingerprinted
person, etc., the raw fingerprint images collected by the fingerprint sensor usually contain noise and
degrade dramatically. Therefore, the raw fingerprint images must be preprocessed after being collected.
Fingerprint image preprocessing procedures include image normalization, orientation and frequency
extraction, filtration, binarization, ridge thinning, etc.

Normalization
Image normalization reduces the diversification degree of the grayscale along the ridges and valleys
without changing the raw image’s structure or texture information. This process gives the image preset
means and variances, and facilitates pattern capture and fingerprint frequency. Nevertheless,
normalization can also enhance some hash in the image background. Equation 2.1 is for normalization
and equation 2.2 is an improved version based on equation 2.1 for the convenience of hardware
implementation.

(2.1)

(2.2)

Fingerprint Orientation Extraction
The basic concept for pattern extraction is to:

■ Calculate certain statistics (like grayscale difference and gradients) of each point (or block) in all
orientations of the raw fingerprint grayscale image.

■ Decide the orientation of the point (block) according to the difference of these statistics in all
orientations to obtain the fingerprint pattern.

The algorithm process is as follows:

1. Suppose f(i,j) is the grayscale value of fingerprint pixel point (i,j).

2. Divide the image into W x W-sized sub-blocks without overlapping. It is better for W to contain
the size of a ridge and a valley. Here we use 10 for W.

3. Use the Sobel operator to compute the gradients of image’s pixel points (i,j) in X and Y
orientations, GX(u,v) and GY(u,v). Figure 1 shows the Sobel operator template coefficient.

G i j(,)
M0

VAR0 I i j(,) M–()2

VAR
--+ I i j(,) M>

M0
VAR0 I i j(,) M–()2

VAR
--– Others⎩

⎪
⎪
⎨
⎪
⎪
⎧

=

G i j(,)
M0 λ VAR× I i j(,) M–×+ I i j(,) M>

M0 λ VAR× I i j(,) M–×– Others⎩
⎨
⎧

=

249

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 1. Sobel Operator Template Coefficient

4. Calculate the partial orientation Θ(I,j) of the W x W sub-block focus on (I,j).

5. Smooth the resulting fingerprint pattern.

Fingerprint Frequency Extraction
In partial non-singular areas of the fingerprint image, the changing pixel point values of the ridges and
valleys constitute an approximate two-dimensional (2-D) sine wave along the orientation vertical to the
ridges (i.e., the gradient orientation of the ridges). The fingerprint frequency algorithm procedures are
as follows:

1. Divide the normalized fingerprint image into W x W-sized sub-blocks without overlapping. Here
we use 16 for W.

2. For each image sub-block focusing on (i,j), use the fingerprint orientation Θ(i,j) of (i,j) for the
minor axis and draw a rectangular orientation window of L x W (32 x 16).

3. For each rectangular orientation window, calculate the grayscale discrete signals X[0], X[0],…X
[L - 1] vertical to Θ(i,j) (i.e., the gradient orientation of the fingerprint) according to the following
method: because X[k] constitutes an approximate 2-D sine wave, calculate the mean distance of
the sine crest L0 to obtain sine wave frequency f = 1/L0.

Generally the frequency scope of 500-DPI fingerprint images is [1/25, 1/3].

Valid Mask Extraction
Valid masks are an important part of fingerprint image preprocessing. Valid mask extraction
distinguishes the foreground of the finger image from its background. If we do not extract the valid
image masks, we will waste time processing background areas and obtain many false minutiae.
Therefore, it is necessary to extract valid masks of the fingerprint to eliminate the background and
reduce false minutiae points. A valid mask in the fingerprint image sub-block must satisfy the following
conditions:

1. The difference between the maximum crest (GMAX) and minimum trough (GMIN) in the 2-D sine
wave along the fingerprint gradient orientation of the sub-block’s central point should be more
than the threshold (T).

2. The frequency of the sub-block’s 2-D sine wave should be within a certain scope. Here we use
[1/25, 1/3].

3. The amplitude variance of the sub-block’s 2-D sine wave should be more than the threshold (D).

4. In the sub-blocks, the fingerprint grayscale along the fingerprint orientation and along the
orientation vertical to the fingerprint orientation should have distinct differences.

1

0

2 1

-1

0

-2

0

-1

1

2

0 -1

-1

0

0

-2

1

X-Axis Orientation Y-Axis Orientation
250

Nios II Processor-Based Fingerprint Identification System
Gabor Directional Filtration
To greatly improve the fingerprint image quality, our design uses an orientation filter enhancement
method. The Gabor filter formula is:

Removing the odd component simplifies the formula. Turn to the fingerprint orientation. The design
takes each pixel point in the fingerprint image as the central point and W x W as the window to obtain
the Gabor enhancement coefficient of each pixel point in the block along the fingerprint’s texture.

Binarization and Noise Reduction
The binarization process generates a monochrome fingerprint image from a grayscale image. To
implement binarization, we use an adaptive, local threshold scheme, i.e., we adjust the threshold by the
global grayscale of a block in the image. The procedures is:

1. Divide the fingerprint image in the valid mask into W x W blocks (we use 8 for W in this design).

2. Calculate the grayscale mean of each sub-block.

3. Take the grayscale mean as the threshold to implement binarization in the sub-block.

4. The binarization process may introduce noise; therefore, after binarization the fingerprint image
should be filtered and have noise removed to delete the holes, notches, and other salient features
caused by binarization.

Thinning
Ridge thinning transforms distinct but diversely sized binary fingerprint images into a single-pixel
central point and thread image. Our design uses the Hilditch algorithm for this operaton. With this
method, the whole image must be scanned several times. During each scan, pixel points satisfying given
conditions are marked. After scanning, the marked pixel points are deleted and the next scan begins.
When no pixel points are marked during scanning, the ridge thinning process finishes.

This functional algorithm has been emulated successfully using the C language. We used different
schemes to implement modules according to their operation time. If we directly implemented the
normalization, frequency and orientation extraction, and orientation filtration of the fingerprint image
in the Nios II processor, the operation time would be unacceptable. Therefore, our system accelerates
the hardware logic and instructions with the C2H Compiler. Because binarization and image thinning
consume less time, we can implement them directly in the Nios II processor. Additionally, the whole
algorithm involves many multiplication, evolution, rotation, and floating-point operations, which
greatly slow the processing speed. Therefore, our design uses custom instructions in the Nios II
processor to add the custom functions directly into the arithmetic logic units of the Nios II CPU,
implementing these complex, time-consuming operations in hardware.

Fingerprint Minutia Extraction
Minutiae extraction involves preprocessing the image to obtain a quality image, and then finding and
specifying the minutiae. After a raw fingerprint image goes through orientation filtration, binarization,
and thinning, it becomes a thinned image. We then determine the endpoint and bifurcation according to
the crossing of each point on the thinned image and extract the useful information of the two minutia
points, such as coordinate position, type, and orientation. Fingerprint minutiae fall into many types.
From the perspective of probability, 2-bifurcation and ending are the most common.

G x y(,) 1
2πσxσx
----------------- 1

2
--- x2

σx
2

----- y2

σx
2

-----+
⎝ ⎠
⎜ ⎟
⎛ ⎞

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

2πifx–()expexp=
251

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Minutia Point Extraction
For thinned images, the pixel point grayscale value can only be 0 or 1. We set 0 as the background point
grayscale and 1 as the foreground point grayscale of the ridge. The crossing number CN of eight fields
of any point P on the thinned image (see Figure 2) is defined as:

, here P9 = P1.

If CN(P) = 1, point P is an endpoint. If CN(P) = 3, point P is bifurcation. Otherwise, point P is a
consecutive point or an isolated point and cannot be calculated into the minutia set.

Figure 2. Minutiae Point Block Diagram

False Minutiae Removal
The thinned fingerprint images that are not refined include the false minutiae shown in Figure 3.

Figure 3. Basic False Minutia Structure Types

We remove these different false minutia points using different algorithms:

1. Remove the edge effect of the image.

2. Delete the false minutia point caused by the obscure part of the image.

3. Delete the false minutia point caused by broken ridges.

4. Delete the false minutiae point caused by holes.

5. Delete the false minutiae point caused by burrs.

6. Delete the false minutiae point caused by bridges.

CN
1
2
--- Pk 1+ Pk–

k 1=

8

∑=

(a) (b) (c) (d) (e)

Short Line Hole Burr Bridge Broken Line
252

Nios II Processor-Based Fingerprint Identification System
These algorithms have been emulated successfully using the C language. Because the algorithms are
comparatively easy, do not have time-consuming operations, and the processing speed meets real-time
requirements, we implemented them directly in the Nios II processor.

Minutia Matching
Fingerprint minutia matching is the core of the fingerprint identification algorithm and is an important
research subject. The accuracy and speed of minutia matching have a huge influence on the whole
algorithm. Minutia matching matches the extracted minutia information set of two given fingerprint
images to determine whether they are identical. In our design, we:

■ Use a typical point pattern matching algorithm based on a minutia point coordinate mode.

■ Utilize the triangle structure composed of three neighboring minutia points to locate a datum mark
and to find conversion parameters.

■ Conduct matching in the polar coordinate system after coordinate translation.

■ Introduce multiple judgement conditions and a variable limit-box matching algorithm to improve
the identification rate.

We implemented the algorithm as follows:

1. For any minutia point Qi in input point set Q and any minutia point Pj in template point set P,
search the two minutia points (Qi1,Qi2) and (Pj1,Pj2) that are nearest to Qi and Pj, respectively, in Q
and P. Thus, points (Pj,Pj1,Pj2) and (Qi,Qi1,Qi2) form two triangles ΔPj,Pj1,Pj2 and ΔQi,Qi1,Qi2.

2. Determine whether the two triangles are identical and have the same rotation orientation. If they
do, take the point as a polar point to create polar coordinates, and then match the minutia points
using a variable, limit-box method.

3. We believe there is a match only if the two conditions are met:

where Nm is the number of matching point pairs of the two minutia sets, Tm and Ts and are the
thresholds under the two conditions, and N and M are the minutia numbers of the two minutia
point sets.

These algorithms have also been verified successfully in the C language. For our simple fingerprint
authentication service system, we implemented these functions in the Nios II processor.

Database
Due to the limitations of time and conditions, our system implements a simple fingerprint
authentication service system. For this system, we loaded the fingerprint database into the flash memory
on the DE2 development board. The system stores and accesses data using a linked list.

Liquid Crystal Display (LCD)
The system’s LCD module is a complete hardware-control module designed with a hardware
description language (HDL). When the CPU is not accessing the SRAM, the image information in the
SRAM is displayed on the LCD. Fingerprints are displayed on the left side of the LCD and the names
of the participating team and team members, as well as the operation button prompts, are displayed on
the right.

Nm Tm≥() η
2 Nm×
N M+
------------------ 100 s≥×=⎝ ⎠

⎛ ⎞,
253

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
The CPU does not need to control the LCD module. Using 1% of the FPGA logic resources, the
function can satisfy the real-time system requirements and demonstrate the advantages of combining
hardware and software using system-on-a-programmable-chip (SOPC) technology.

Performance Parameters
This section describes the design’s performance parameters.

Actual System Performance Parameters
The actual system has the following parameters:

■ Power supply: DC, 9 V

■ Operating environment

● Operating temperature: -5° to 45°

● Relative humidity: 8% to 95%

■ Input signal

● Method: Input by our fingerprint collector with the FPS200 fingerprint sensor

● Sensor array number: 256 x 300

● Sensor resolution: 500 DPI

● Signal transmission mode: SPI

■ Display

● LCD: 16 x 2

● Display: 320 x 240

■ Fingerprint recognition rate

● Number of tested users: 5

● Test times: 20 times/person

● Recognition rate: 99%

● False rejection rate: 1%

■ Consumed time

● Fingerprint collection time: 2.3207 seconds

● Fingerprint image preprocessing time: 24.1294 seconds

● Normalization time: 0.8326 seconds

● Orientation extraction time: 1.3586 seconds
254

Nios II Processor-Based Fingerprint Identification System
● Frequency extraction time: 2.8262 seconds

● Gabor filtration time: 12.5535 seconds

● Binarization time: 0.4280 seconds

● Thinning time: 6.1305 seconds

● Minutia extraction time: 1.4634 seconds

● Minutia matching time: subject to the number of fingerprints in the database

■ Fingerprint database storage size—The flash storage device on the DE2 board is only 4 Mbytes.
Of the 4, we use 1 Mbyte to store other information, so the fingerprint database is only 3 Mbytes
and can store a maximum of 48 fingerprints. If we expand the non-volatile memory, e.g., with
another flash device, we can theoretically expand the fingerprint database to any size.

Nios II Processor Functions in the Design
As the core of this system, the Nios II soft-core processor has the following functions:

■ The Nios II processor contains two types of peripherals: standard and custom. It is easy to add
standard peripherals. Additionally, Altera and some third-party corporations are providing more
and more intellectual property (IP) cores for standard peripherals. Custom peripherals greatly
accelerate system operation and save CPU resources. The design’s fingerprint image
preprocessing normalization module improves the processing speed over 20 times.

■ Custom instructions are a unique feature of the Nios II processor. They can dramatically improve
the system performance. The system’s Gabor filter takes full advantage of the custom instruction
feature and improves the processing speed over 30 times.

■ The C2H hardware acceleration is efficient and easy for designers to use to accelerate system
development. Additionally, it highly improves system performance. In this design, we only apply
C2H hardware acceleration to some orientation extraction algorithms, which improves the
processing speed more than 6 times.

Hardware Resource Usage and Performance Improvement
Table 1 shows the hardware resource usage and Table 2 shows the performance improvement.

Table 1. Resources Used

Resource Logic Elements (LEs) Memory Bits
Gate % Bits %

Normalization (custom module) 1,394 5 24 <1

Gabor filter (custom instruction) 1,832 6 4,096 1

LCD 470 1 0 0

Orientation extraction (C2H) 5,314 16 512 <1

Cos, exp, and fpoint (custom instruction) 6,937 21 16,386 4

Total 15,947 49 21,018 5
255

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Design Architecture
This design considers two schemes. The first scheme is a simple fingerprint authentication service
system (see Figure 4) that integrates a database server and web server into the embedded fingerprint
identification system to provide a simple web-based network service. The second scheme is a complex
fingerprint authentication service system (see Figure 5) that targets mass users who have strict system
requirements. We began with the simple fingerprint authentication service system, and if we had
enough time in the final stage, we would have expanded the system into a complex fingerprint
authentication service system. However, due to time limitations and other constraints, we only
implemented the simple fingerprint authentication service system.

Figure 4. Simple Fingerprint Authentication Service System

Table 2. Performance Improvement

Operation Software
Operation Time (s)

Hardware Improvement Operation Time after
Improvement (s)

Normalization 16.9491 Hardware module 0.8326

Gabor filter 458.0213 Custom instruction 12.5535

Orientation extraction 9.490 C2H 1.3586

Frequency extraction 31.7303 Floating point, multiplication shift,
and cos table look-up

2.8262

Terminal

Terminal

Embedded
fingerprint

identification
system

Terminal

Network
256

Nios II Processor-Based Fingerprint Identification System
Figure 5. Complex Fingerprint Authentication Service System

Figures 6 through 8 show various block diagrams of the system.

Figure 6. Hardware System Block Diagram

Figure 7. High-Level Block Diagram

Database server

Administration server

WEB server

Embedded
fingerprint

identification
system

Terminal

Network

Embedded
fingerprint

identification
system

Terminal
Terminal

Fingerprint
Collector

LCD

SDRAM

Flash

Keyboard

SPI
Interface

LCD PIO

SDRAM
Interface

Flash
Interface

Keyboard
PIO

Nios II

C
ache

Hardware
Acceleration

SRAM Interface

Normalization
User-defined Module

On-Chip
ROM

Timer

Altera FPGA

System
Clock

Off-Chip
SRAM

LCD

Avalon
Bus

Embedded
Fingerprint

Minutia
Acquisition

System

Middleware

Minutia
Linked List

Minutia
Matching

Database
Processing

Flash
Fingerprint

Minutia
Database
257

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 8. Structural Block Diagram

Figures 9 and 10 show the system flow charts.

Figure 9. Fingerprint Identification System Flow Chart

Fingerprint Register Module

Biometric
Sensor

Preprocessing Minutia
Extraction

Identification
Output

Biometric
Sensor

Preprocessing Minutia
Extraction

Minutia
Matching

Fingerprint Identification Module

Waiting State

SW170

Fingerprint
Collection

Fingerprint Image
Preprocessing

System
States and

Storage
Matching

Result
Information

Minutia
Extraction

Minutia
Storage

Minutia
Matching

Initialize
LCD

Display
Information

LCD Module

SRAM

LCD Display

LCD Display

N

Y

SW16 SW15

Master Module of Fingerprint
Identification System
258

Nios II Processor-Based Fingerprint Identification System
Figure 10. Fingerprint Minutia Preprocessing Algorithm Flow Chart

Figures 11 and 12 show the system in SOPC Builder.

Figure 11. SOPC Builder

Raw FIngerprint
Grayscale Graph

Normalization

Orientation
Extraction

Frequency
Extraction

Valid Mask
Extraction

Gabor Directional
Filter

Binarization

Thinning

Output Result
259

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 12. Custom Instructions

Figure 13 shows the hardware resource usage.

Figure 13. Hardware Resource Usage

Design Methodology
The system’s hardware is based on the DE2 development board. The hardware design fully utilizes the
board’s existing interfaces, e.g., we used the LCD to facilitate the user interface. By combining the LCD
and fingerprint collector, the system displays information promptly. The system software development
is based on the Nios II embedded soft-core processor and leverages custom instructions, modules, and
the C2H Compiler, which accelerates some software in hardware.
260

Nios II Processor-Based Fingerprint Identification System
System Hardware Design
The following sections describe the hardware design.

Fingerprint Image Collection
Each column of the capacitor array is connected with two sampling/hold circuits to capture only one
row of fingerprint images one time. The capture procedures include two stages:

■ Capacitors in the chosen row are charged to UDD and store the charge voltage in the first sampling/
hold circuit.

■ The capacitors discharge to the current source at a speed proportional to the discharged current.

After a discharge period, the second sampling/hold circuit stores the final capacitor discharge voltage.
By measuring the difference (ΔU) between the charging and discharging voltages, we can obtain the
capacity (C) of each capacitor. The analog signals representing the unit capacities of the row go through
A/D conversion to generate the digital fingerprint image information for the row. The system places the
information in a register and captures the next row’s fingerprint images.

We added an SPI bus module and button interrupt module with SOPC Builder. The SPI module has a
12-MHz clock. A fingerprint image is 256 x 300, therefore, a fingerprint image can be transmitted
within 0.1 second. The button interrupt has a double-edge trigger and the button is a slide switch. On
power-up, the initialized fingerprint collects the module register values. When the button is interrupted,
the fingerprint collection chip transforms the collected signals into digital information and stores them
in the register. The CPU sends the digital image data in the fingerprint collector register to the specified
memory space in the DE2 board’s SDRAM via the SPI bus. After all fingerprint image data is collected,
it is normalized and assigned in SRAM. The initial SRAM address is 0 and the data occupies the
0x12c00 address space. In the final stage, only the normalized fingerprint images are processed.

Custom Instructions
In this design, custom instructions target complex mathematical operations and some time-consuming
algorithms during fingerprint image preprocessing. Because the embedded Nios II system consumes a
lot of time performing complex mathematical operations, the system instead uses hardware to
implement the operations and uses custom instructions in the CPU. Figure 12 on page 260 shows three
custom instructions we added during CPU customization that accelerate the math_cos, floating
operation fPoint, and exponential function math_exp trigonometric functions.

The Gabor directional filter consumes the most time in this design. Because it is very complex, there
would not be enough FPGA logic resources if we only used custom modules. Our design implements
some of the time-consuming algorithms through custom instructions. The main formula of Gabor
directional filtration is:

N(x - u, y - v) is the grayscale value of the normalized fingerprint image. We use custom instructions
to implement g’(x, y) x N(x - u, y - v), and implemented the accumulation summarization in software.
After the CPU is generated, these functions generate the corresponding function interfaces. We invoke
the programs in the same way as common function sub-programs.

/ 2 / 2

/ 2 / 2

(,) '(,) (,)
W W

u W v W

G x y g u v N x u y v
= − = −

= − −∑ ∑

2 2

2 2

1 ' ''(,) exp() cos(2 ')
2 2

x yg x y fxπ
πσ σ

+= −
261

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Custom Modules
Our design contains many image processing algorithms, which require a lot of processing time. To
shorten the processing time as much as possible, we convert normalization (the first part of image
preprocessing) into hardware, which does not affect software processing. Figure 14 shows the
normalization preprocessing hardware schematic.

Figure 14. Hardware Normalization Schematic

Because normalization compares the images and then normalizes them, we read the image using
different methods, that is, we obtain the information using three main control modules and the Avalon®
bus interface, and then generate the normalized image. Figure 15 shows the image processing result.

Figure 15. Image Preprocessing Before and After Normalization

Before After
262

Nios II Processor-Based Fingerprint Identification System
C2H Compiler
In this design, we used the C2H Compiler for integer algorithms with many loops and single operations.
Because most of the algorithms use floating-point numbers, we translate them into integers before using
the C2H Compiler to convert them into hardware. We used the C2H Compiler to optimize the Sobel
operator for orientation extraction, which has 4 loops and integer accumulation algorithms. Figure 16
shows the Sobel operator C2H function.

Figure 16. Sobel Operator C2H Function

Figure 17 shows the C2H Compiler settings in SOPC Builder.
263

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 17. C2H Compiler Settings

After using C2H hardware acceleration, although the algorithm uses 5,314 logic resources, 512
memory bits, one M4K block, 22 DSP elements. and 11 18 x 18 DSP blocks (including 3 masters and
5 multipliers), the Sobel operator’s operation speed increases 35 times and the speed of the whole
orientation extraction process increases 6 times.

C2H hardware acceleration satisfies the system’s speed requirements and saves the time in hardware
module design by occupying some hardware resources. A system can use up to five C2H hardware
accelerations, therefore if there are enough hardware resources, multiple C2H accelerations can be
used.

LCD
The LCD module is a separate hardware module and is only connected to the SRAM. When the CPU
is not accessing the SRAM, the LCD module displays fingerprint image data in the SRAM. During the
fingerprint collection stage, the image is dumped to the SRAM by memory; then, the CPU releases
SRAM control and the LCD module accesses SRAM and displays the image. When fingerprint
preprocessing and minutia point extraction are complete, the CPU controls SRAM again, covering the
original fingerprint image with the processed fingerprint minutia image and releasing the SRAM
control to display the fingerprint minutia image.

In our system, when the CPU writes the fingerprint information data, it conflicts with the LCD reading
the SRAM. To resolve this problem, we added an enabled programmable I/O (PIO) in SOPC Builder
that allows the LCD to read the SRAM when the CPU is not accessing it. This design ensures that the
CPU can access the SRAM at any time and the LCD can provide a stable display. Having the LCD read
the SRAM relieves the CPU through the designed hardware module without CPU interference. When
users implement mass and single-domain peripheral interaction functions during SOPC system design,
they should use custom master peripherals because they can operate the storage area directly while
interacting with off-chip devices; the CPU does not need to use a special process for storage area. These
modules can be added as necessary if there are enough logic resources. This flexibility is one advantage
of SOPC system design over system-on-chip (SOC) design.
264

Nios II Processor-Based Fingerprint Identification System
System Software Design
The most important part of the software design is the control function, image preprocessing, minutia
point extraction, and minutia matching.

Control Function
The control function mainly controls interrupts. It informs the system of specific operating instructions,
including collecting the fingerprint, matching it, and storing it using button interrupts.

■ Collect fingerprint—SPI communicates with the CPU to notify it when fingerprint collection
ends, at which point, service function fps_Irq_In() is interrupted. When the collection
finishes, the CPU automatically processes the fingerprints, extracts the minutia points using
FingerImgEnhance(pImgSrc,pImgSrc), and stores collected fingerprint information into the
current finger information linked list CurrentMinutia (custom linked list structure) in the
SDRAM.

■ Match fingerprint—If the system determines that there is a match, it performs
matchFigMinutia(&CurrentMinutia).

■ Store fingerprint—To store the information, the system uses the wOneFigMinutiaToFlash()
function. The current fingerprint information is stored in the flash device’s fingerprint linked list.

Image Preprocessing
Image preprocessing enhances the fingerprint image, and includes the functions shown in Figure 18.

Figure 18. Image Preprocessing Functions
265

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
The functions are described as follows:

■ Normalization—The system performs normalization in hardware. After the image is collected,
the hardware normalizes the image. The resulting image is put into the 0 address of the SRAM.
The software can read the image directly without interface problems.

■ Orientation extraction—The GetBlockOrientation function calculates the fingerprint image
block orientation and invokes Soborcore. C2H hardware acceleration implements hardware
instructions to calculate the gradients of each pixel point in the x and y orientations. Then
GetGradIndex() is invoked, and orientation extraction is performed. Figure 19 shows the
pattern.

Figure 19. Orientation Extraction Pattern

■ Frequency extraction—The GetBlockFrequency function calculates the fingerprint image
block frequency. The changes of fingerprint ridges and valleys constitute a 2-D sine wave. To
obtain the frequency, the system invokes GetImgInfo(ImgSrc) as described previously. It gets
the fingerprint information and frequency interpolating function
InsertFrequency(pOut,pOut,iWindow,ImgSrc.size), and invokes the orientation filter,
OrientationLowPass(pOut,pOut,iWindow), to smooth the image.

■ Valid mask extraction—A full mask fingerprint image cannot usually be generated during
collection. This function, GetValidMask, generates the foreground mask (the fingerprint image,
which is the part of the finger touching the sensor) and background mask (hash). Valid mask
extraction distinguishes the foreground from the background. It invokes
GetGradIndex(*(pOrient + iOffSetAddr)) to get the orientation. The if(abs(xDelta
- yDelta) > QNios) function sets the threshold to compare image contrast. A valid mask
dramatically changes the image as shown in Figure 20.
266

Nios II Processor-Based Fingerprint Identification System
Figure 20. Valid Mask

■ Gabor filter—To improve the fingerprint image quality, we use an orientation filter enhancement
method. In noise removal and maintaining the fingerprint ridge structure, like a bandpass filter
feature, we optimized an important operation with custom instructions and implement the formula

with software. Figure 21 shows the effect.

Figure 21. Gabor Filter Effect

■ Binarization and noise removal—The GetBinarizeImg() function performs binarization and
removes noise. During binarization, the Gabor-filtered grayscale image of a specific fingerprint
generates another monochrome fingerprint image. The adopted adaptive local threshold scheme
adjusts the threshold by the global grayscale of a block in the image. Implementing binarization
in software is comparatively easy, but the loops consume a lot of processing time. Figure 22 shows
the result.

G x y(,) 1
2πσxσx
----------------- 1

2
--- x2

σx
2

----- y2

σx
2

-----+
⎝ ⎠
⎜ ⎟
⎛ ⎞

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

2πifx–()expexp=
267

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 22. Binarization and Noise Removal Result

■ Thinning—The ThingDib(Img ImgDst, Img ImgSrc) function extracts minutia points by
thinning the binarization image to a single-pixel fringe central point and thread image. See
Figure 23.

Figure 23. Thinning Result

Minutia Point Extraction
After a raw fingerprint image goes through orientation filtering, binarization, and thinning, it becomes
a thinned image. We then determine the endpoints and bifurcation according to the crossing of each
point on the thinned image, and extract the useful information of the two minutia points such as
coordinate position, type, and orientation. Figure 24 shows the minutia point extraction functions.
268

Nios II Processor-Based Fingerprint Identification System
Figure 24. Minutia Point Extraction Functions

The main function, GetMunutia(UINT8 *pDst,float *pOrient,UINT8 *pSrc), extracts
minutia points by:

■ Getting all possible minutia points:
GetMinutiaInfo(&CurrentMinutia,pOrient,ImgSrc)

■ Deleting false minutia points: DeleteInvalidCharacter(&CurrentMinutia,
&pBreakMunutia,&pBurrMunutia,&pCrossMunutia), which includes:

● Deleting the false minutiae caused by image obscurity:
DeleteFaitnessCharacter(&CurrentMinutia,2,3,3,10,size)

● Deleting the false minutia points caused by broken lines:
DeleteBreakCharacter(&pBreakMunutia,5,20)

● Deleting burrs: DeleteBurrCharacter(&pBurrMunutia,6,12)

● Deleting holes and bridges: DeleteCrossCharacter(&pCrossMunutia,6,15)

● Deleting margin minutia points:
DeleteMarginCharacther(&CurrentMinutia,ImgSrc)

■ Output the image: GetMunutiaImg(ImgDst,&CurrentMinutia)
269

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Operations related to the linked list:

● Add minutiae to the information linked list: void AddMunutiaPoint(Minutia
*pMinutia, CPoint point, float fOrient, enum MinutiaPointType
pointType)

● Delete the designated minutia points: void DeleteMunutiaPoint(Minutia
pMinutia,MinutiaInfo pPoint)

● Delete the minutia points of the designated index: void
DeleteMunutiaPointIndex(Minutia *pMinutia,int index)

● Take statistics of Ne and Nb: void StaticMunutiaInfo(Minutia *pMinutia,CSize
size, int iWindow)

● Calculate the distance of two minutia points: int GetDistance(CPoint
cpPoint1,CPoint cpPoint2)

● Copy the template: void CopyMunutia(Minutia *pFromMunutia, Minutia
*pToMunutia)

● Get minutia points: int GetMinutiaInfo(Minutia* pMunutia, float* pOrient,
Img ImgSrc //thinned image)

● Draw the rectangle: void DrawRect(Img ImgSrc, CPoint cpPoint, int iWindow),
etc.

Figure 25 shows the effect after processing.

Figure 25. Before and After Minutia Point Extraction

The fingerprint minutia data structure includes the minutia point structure and fingerprint minutia set.

After ProcessingBefore Processing
270

Nios II Processor-Based Fingerprint Identification System
Minutia Point Structure
A complete description of minutia points includes the coordinate point, orientation, and type of minutia
on the image. We designed the following data structure to describe the minutia point.

Minutia point information in the rectangular coordinate system:

typedef strut MunutiaPointInfo_st{
int x; //horizontal coordinate value
int y; //Vertical coordinate value
float index; //orientation
enum MunutiaPointType{END,CROSS} type; //minutia point type

}MunutiaPointInfo, *pMunutiaPoint;

Minutia point information in the polar coordinate system:

typedef strut MunutiaPolarInfo_st{
int iRadius; //polar radius
float fTheta; //polar angle
float index; //orientation
enum MunutiaPointType{END,CROSS} type; //minutia point type

}MunutiaPolarInfo,*pMunutiaPolar;

Fingerprint Minutia Set
The minutia set is the set of all minutia points of a fingerprint. Because the design uses a deletion
operation to remove false minutia points, we use a two-way linked list design with the following data
structure:

typedef struct Munutia_st{
MunutiaPointInfo Info; //information of current minutia point under rectangular coordinate system
MunutiaPloarInfo polarInfo;//information of current minutia point under polar coordinate system
struct Munutia_st *pPrev; //direct to previous minutia point information
struct Munutia_st *pNext; //direct to next minutia point information

}Munutia,*pMunutia;

Minutia Matching
In this design, we:

■ Use typical point mode matching algorithm based on a minutia point coordinate mode.

■ Use a triangle structure composed of three neighboring minutia points to locate a datum point and
evaluate the conversion parameter.

■ Conduct matching in the polar coordinate system after coordinate translation.

■ Introduce multiple judgement conditions and a variable limit box matching algorithm to improve
the recognition rate.

The main content is the matching function matchFigMinutia(Minutia *CurrMa). If the current
fingerprint matches, the fingerprint minutia set and the matching nodes are returned. Minutia matching
functions include:

■ Determine whether the triangles are similar: float TriangleLikness(MinutiaPointInfo*
PPointInfo, MinutiaPointInfo* QPointInfo, int iDelta /*= 5*/)

■ Get two coordinate points near to a datum: mark bool GetTriAnglePoint(char* pSrc,
MinutiaPointInfo* pointInfo,CSize size)

■ Rotate polar coordinate: void CircurotatePolarCoor(float rotateAngle)

■ Get limit box size: AmBitInfo GetAmBitInfo(int iRadius)
271

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Match two minutia points: int Match2Minutia(MinutiaPointPoolInfo PInfo,
MinutiaPointPoolInfo QInfo)

■ Match current minutia set with template minutia set pQMunutia and roll back matching node
number: int MatchMinutia(Minutia *pQMunutia)

■ Display minutia point on graph psr and the displayed grayscale value is the position of the
minutia point in the linked list: void GetMunutiaGraphy(char* pSrc, CSize size)

Design Features
Our design has the following main features:

■ Highly integrated SOPC technology and embedded custom modules—If we implemented the
image preprocessing, including image normalization, frequency extraction, orientation extraction,
and filtering, directly in the embedded Nios II processor, it would take too much processing time.
Therefore, the system uses an FPGA hardware algorithm to implement preprocessing.
Binarization and thinning of the image consume less time and are directly implemented in the
Nios II processor.

■ Custom instructions—The fingerprint identification system involves many floating-point,
multiplication, evolution, and rotation operations. If we implemented them in the embedded
Nios II system, it would consume too many resources. Therefore, this design uses custom
instructions to add the custom functions directly into the arithmetic logic units of the Nios II CPU,
allowing these complex, time-consuming operations to operate in hardware. As a result, the data
processing time increases dramatically and the design’s real-time requirements are met. Our
system uses five custom logic instructions.

■ C2H Compiler—This system uses hardware acceleration with the C2H Compiler to accelerate
software sub-programs that need high performance for image preprocessing. This acceleration
dramatically improves the system’s general performance. This system uses one C2H module.

■ Two fingerprint identification system architecture schemes—According to practical production
and actual requirements, we developed two feasible fingerprint identification system architecture
schemes: complex and simple. Based on database technology, FPGA technology, and embedded
technology, we propose a valid implementation. This system implements the simple fingerprint
authentication service system.

■ Improved minutia matching algorithm—In this design, we used a triangle structure composed of
three neighboring minutia points to locate the datum point and evaluate conversion parameters,
conducted polar coordinate system matching after coordinate translation, and introduced multiple
judgement conditions and a variable limit box matching algorithm to improve the recognition rate.

■ Floating-point shift—Because many multiplication algorithms in floating-point operations
consume a lot of processing time, we shift floating-point numbers to integers, thereby improving
the system’s algorithm speed three to four times.

■ Convenient product design and development—The FPGA-based Nios II soft-core processor and
its SOPC solution have tailor-made, reconfigurable advantages over hard-core processors. It is
easy to develop the software and hardware products with the Nios II processor. Additionally, the
Nios II processor facilitates collaborative system design and permits system maintenance and
upgrades. By using an FPGA with abundant resources, we can implement a multi-CPU system
and simplify the hardware circuit using a design control module, satisfying the system’s
functional requirements and cutting the design cost. Moreover, we can upgrade the system
hardware by loading an updated soft-core system without affecting the peripheral circuit.
272

Nios II Processor-Based Fingerprint Identification System
Conclusion
With this design contest, we learned about the power and convenience of the Nios II processor, while
improving our engineering ability. The advantages of the Nios II processor are as follows:

■ Few resources are used. One Nios II CPU only occupies thousands of LEs.

■ Constructing an SOPC system is flexible and convenient. We can create the desired system
quickly and customize the peripheral modules required by the system, significantly reducing the
difficulty of the hardware design and development period.

■ FPGAs are flexibly designed for DSP. Users can design completely arithmetic circuits according
to their needs. An FPGA can perform operation functions more efficiently at lower frequencies
than CPU co-processors. For example, because this design uses a 100-MHz system clock, some
algorithm operations are much faster than a 2-GHz Pentium 4 processor.

■ The Nios II C2H Compiler and custom instructions help users implement algorithms and logic
controls. With the C2H Compiler, users can input pointer parameters. However, floating-point
numbers cannot be processed internally and users cannot modify the acceleration logic circuits
generated by the compiler. Therefore, users have to first quantify the floating-point numbers and
then transform them into floats after output during digital signal processing. This method is not
as efficient as using the CPU’s internal floating-point operation acceleration instructions. Custom
instructions allow users to design hardware logic, but their input and output parameters are not as
flexible as those of the C2H Compiler because common users seldom add single or double
operand instructions but often process a lot of data. When we experienced this kind of problem,
we had to replace the C2H Compiler and custom instruction implementation with a custom
module and interrupt (or query), which destroys the system software flow to some extent. If the
C2H Compiler and custom instruction advantages could be combined to create a universal
function interface and allow an internal hardware implementation of a flexible design, the Nios II
development platform would benefit users more.

■ The FPGA-based flexible embedded design supports interfaces per the user’s specific
requirements. It can represent users’ design ideas better than a hard-core processor design.
However, FPGAs require users to plan and design the SOPC system comprehensively; in
particular, the final adaptation of the hardware netlist in the Quartus® II software consumes too
much time.

The following areas of the design could be improved:

■ Due to the limitations of the hardware system and the small-sized volatile and non-volatile
memory, the fingerprint database is small. If we had enough time to design a hardware system
according to the practical requirements, abandon unnecessary hardware such as the Ethernet chip
and video collection chip, and expand the memory, we could have improved the real-time
performance and addressing properties of the design while lowering the development cost.
Additionally, if required, we could add a network to the system so that users identify a fingerprint
using a remote log-in, making the system more convenient for use in a civil access control system.

■ As the scheme became clear with the progress of the design, we improved the real-time processing
operations, hardware acceleration, and algorithms for the most time-consuming area of the
design: fingerprint image preprocessing. As a result, fingerprint image preprocessing consumes
30 seconds instead of the original 10 minutes. Additionally, because the algorithms are too
complex, we could only convert some time-consuming modules into hardware and instructions
for image normalization, orientation and frequency extraction, valid mask extraction, Gabor
filtering, thinning, binarization, image expansion and corrosion, etc. If we had more time for
optimization, we could design the system to complete minutia extraction in 1 second.
273

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ We evaluated the design effect for processing time and fingerprint matching accuracy. To save
time, we appropriately adjusted the accuracy requirements for some areas, and then chose the
proper parameters after weighing.

■ We used the Cyclone® II EP2C35 FPGA in this design, which has sufficient logic units but was
deficient in supporting the required hardware arithmetic logic units. If the FPGA has fewer
hardware arithmetic logic units than required by the algorithms, a system signal processing
bottleneck will occur. Similarly, the CPU clock is hard to improve because of the FPGA features.
In the future, we plan to leverage the abundant hardware arithmetic units in the Stratix FPGAs to
accelerate operations and improve operation accuracy and speed.

During this contest, we deeply studied SOPC technology, mastered its elementary design concepts, and
achieved our target. We thank our instructor, colleagues in the lab, and all the other participants. The
joint effort paved the way for the success of our system.

Appendix: C2H Compiler Usage
Our system is a Nios II fingerprint identification system that performs image processing. We used the
C2H Compiler for integer algorithms with many loops and simple operations. Because most algorithms
in the system use floating-point numbers, we translated them into integers before using the C2H
Compiler to optimize them into hardware.

The part of the design we optimized with the C2H Compiler is the Sobel operator, which we used for
orientation extraction. This part included 4 loops and an integer accumulation algorithm. Addresses are
stored as pointers. With the optimization, the algorithm speed of the Sobel operator increased 35 times.

Algorithm Description
We used the Sobel operator to obtain the fingerprint orientation. The Sobel operator calculates the
gradients Gx(U,v) and Gy(U,v) and of each pixel point (i,j) in the X and Y directions. Figure 26 shows
the Sobel operator’s template coefficient.

Figure 26. Sobel Operator Template Coefficient

Figure 27 shows the Sobel operator C2H function.

1

0

2 1

-1

0

-2

0

-1

1

2

0 -1

-1

0

0

-2

1

X Axis Direction Y Axis Direction
274

Nios II Processor-Based Fingerprint Identification System
Figure 27. Sobel Operator C2H Compiler Function

Performance Comparison
The Sobel operator’s algorithm speed increased 35 times, which is only one step in orientation
processing. The whole orientation extraction speed increased 6 times, and the effect was remarkable.
Figure 28 shows the speed with a software-only implementation.

Figure 28. Consumed Time with Software-Only Implementation

Time Consumed
275

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
After C2H optimization, the consumed time is only 1 second (see Figure 29).

Figure 29. Consumed Time After Optimization

The processor’s clock frequency is 100 MHz.

Figure 30 shows other logic that we accelerated and optimized.

Figure 30. Other Accelerated and Optimized Logic

Master Port
As with the algorithm, the SDRAM information is read in software through pointers. Because the C2H
Compiler uses the master port to read and write SRAM and SDRAM and there are three different
software pointer operations, we used three master ports for optimization. The optimization had

Time Consumed
276

Nios II Processor-Based Fingerprint Identification System
remarkable advantages and was very convenient to compile. The C2H Compiler freed us from
developing complicated custom instructions or modules, compiling the master port operation, creating
the hard-to-control working sequence of three master ports, and combining the operation with the
algorithm. It also eliminated the need to implement a difficult algorithm sequence control for loading
three master ports in a hardware description language. Figures 31 and 32 show the master port
hardware and software, respectively.

Figure 31. Master Port Hardware
277

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 32. Master Port Software

Hardware Multiplier
There are five multiplication operations in software that are automatically transformed into five
hardware multipliers during C2H optimization. This implementation greatly shortens the processing
time.

Loop
The effect of the loop optimization was remarkable. After being transformed into hardware, for, loop,
while, etc. are just conditions. The loop algorithms are all transformed into hardware, increasing their
speed. Therefore, using C2H optimization for image processing provides significant advantages.

Figure 33 shows the hardware in SOPC Builder.
278

Nios II Processor-Based Fingerprint Identification System
Figure 33. Hardware In SOPC Builder

Accelerated with the C2H Compiler, the algorithm occupies 5,314 gates of logic resources, 512
memory bits, one M4K block, 22 DSP elements, and 11 18 x 18 DSP blocks (including three master
ports and five multipliers). The operation speed of the Sobel operator increased 35 times and the speed
of the orientation extraction process increased 6 times.

Conclusion
C2H hardware acceleration satisfied the system’s time requirements and saved development time in the
hardware module in exchange for using some hardware resources. A system can employ C2H hardware
acceleration five times or more provided there are enough hardware resources.

During the design process, we tried to optimize the Gabor operator algorithm with the C2H Compiler
because the algorithm contains so many pointer operations and complicated loop operations. Upon
optimization, however, it required five master ports and 13 multipliers without giving a significant
speed increase. Therefore, we gave up using the C2H Compiler for optimization and instead we
optimized one operation in the loop using hardware. To optimize another area (and improve our skills),
we used custom instructions instead of the Sobel operator.

To conclude, the C2H Compiler offers a sound optimization effect for algorithms that have many
complicated loops, pointer operations, and master ports provided that the C2H conditions are met, that
is, the operation does not have floating-point operations and the designer transfers arrays into pointers.
The C2H Compiler is an excellent optimization tool. We believe it will become better and more flexible
in the future.
279

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
280

	Nios II Processor-Based Fingerprint Identification System
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion
	Appendix: C2H Compiler Usage

