
Nios II-Based Intellectual Property Camera Design
Third Prize

Nios II-Based Intellectual Property 
Camera Design

Institution: Xidian University

Participants: Jinbao Yuan, Mingsong Chen, Yingzhao Shao 

Instructor: Ren Aifeng

Design Introduction
With the development of network technology, people have higher requirements for monitoring 
functions. By revolutionizing the traditional monitoring methodology, an intellectual property (IP) 
camera provides a good solution for remote real-time monitoring. With this technology, the user can 
check the safety, in real time, of the locations such as the home, office, etc. via a web site or video 
browser.

At present, most IP cameras on the market are implemented with hard-core microprocessors (MCUs) 
such as a special media processor. Our design proposes a network video transmission solution based on 
the Altera® Nios® II embedded soft-core CPU, implementing video data transmission via Ethernet. To 
reduce the data traffic and improve the video image’s network transmission speed, the design uses an 
extraction algorithm and implements the video data transmission over the local area network (LAN) 
with the user datagram protocol (UDP). On the receiving side, it successfully displays data on the video 
terminal with the National Instruments LabWindows/CVI software. Altera’s FPGAs are well known by 
engineers for their superb performance and configurability. The Nios II processor-embedded system 
features excellent flexibility, scalability, and upgrade options. Additionally, the Nios II soft-core 
processor embedded in a Cyclone® II FPGA is low cost and has performance up to 100 DMIPs, making 
it very competitive in the marketplace.

Hardware Platform
Using the Terasic Technologies, Inc Development and Education (DE2) board as the core hardware 
platform, our design implements video data collection, transmission, and remote display with an 
87



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
National Television System Committee (NTSC) camera, liquid crystal display (LCD), etc. Figure 1 
shows a block diagram of the system.

Figure 1. System Block Diagram

Software Platform
The following sections describe the software platform.

Embedded Development Software
We used Altera’s Quartus® II version 7.0, SOPC Builder, the Nios II Integrated Development 
Environment (IDE), etc. to develop the FPGA design in hardware logic and embedded system software.

As Altera’s fourth-generation programmable logic development tool, the Quartus II software provides 
the complete multi-platform development environment designers need. It integrates such development 
environments as system and programmable logic components design, combination, layout and 
threading, as well as verification and simulation. The overall development environment specially 
designed for a system-on-a-programmable-chip (SOPC) is the basis for SOPC design.

SOPC Builder is an SOPC development tool integrated into the Quartus II software that helps users 
create a complete system. Designers can use a variety of free components that are integrated in SOPC 
Builder or define their own peripherals or commands. As long as designers make configuration choices 
as required during the design process, they can build a system with reasonable resource usage. 
Furthermore, SOPC Builder automatically generates an in-chip bus structure, arbitration, and interrupt 
logic for each hardware component, and generates headers compliant with subscribed system features 
for successive software design (these headers define memory mapping, interrupt priority, and the data 
structure of each peripheral register space). When the hardware system changes, SOPC Builder 
automatically updates these headers and provides software designers with an automatic configuration 
interface, showing flexibility that ordinary hard-core processors cannot achieve.

The Nios II IDE is the basic development tool for the Nios II embedded processor: the user can 
complete all software development tasks, including editions, compilation, debugging, and program 
downloading, with the Nios II IDE. The Nios II IDE provides a uniform development platform for all 
Nios II processor systems. With only a PC, an Altera FPGA, and a JTAG-capable download cable, 
software developers can write data into the Nios II processor system and communicate with it.

Video In

VGA
Interface

Ethernet
Interface
88



Nios II-Based Intellectual Property Camera Design
Camera Display Development Software
The display is an integral part of an IP camera. Although various PC applications are available on the 
market, due to time limitations we chose a development platform that was easy to learn, easy to develop, 
and had the functions we needed.

In our project, we created an Ethernet terminal application using the LabWindows/CVI software, which 
is an interactive C language development platform. By combining the powerful, flexible C language 
platform with a professional measuring and control tool for data collection, analysis, and display, 
LabWindows/CVI utilizes its IDE, interactive programming method, function board, and rich function 
library to strengthen available C language functions. It provides an ideal software development 
environment for C language developers and designers to compile a detection system, automatic testing 
environment, data collection system, process monitoring system, etc.

The functionality of LabWindows/CVI lies in its rich function library, which not only has regular 
program design but also supports complex data collection and device control systems development. 
Additionally, the LabWindows/CVI user interface editor enables graphical user interface (GUI) 
creation and editing. The user interface library functions allow the design to create and control the GUI 
in the program. LabWindows/CVI offers a variety of professional controllers for designing GUI panels 
that help the designer build excellent user interfaces.

Function Description 
This section describes the design functionality.

Video Collection
The NTSC camera and video decoder chip collect video images and convert them into digital video data 
that is compliant with the ITU-R656 standard. The data is sent to the FPGA for additional processing.

Video Compression
The resolution output from the video processing control module is 640 x 480; therefore, each data frame 
is 9,216,000 bit (640 x 480 x 30 bits), which is too much bandwidth. To solve this problem, we 
converted the resolution to 320 x 240 for lower data traffic, and take the five higher bits in the 10-bit 
RGB component signals output by the video decoding module as the lower 15 bits of the 16-bit data 
transmitted (add a 0 onto the highest bit).

Local Video VGA Display
Besides remote monitoring, this design is also applicable to short-distance monitoring using a long 
video cable. Without processing the data, the transmitted video is smoother and more clear when 
displayed at a shorter distance. Figure 2 shows an example of the local video display.
89



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 2. Local VGA Display Example

Ethernet Video Transmission
We implemented the remote monitoring function (which was the original purpose of our design) by 
adding an Ethernet control chip to the system with the help of a light-weight TCP/IP (LwIP) protocol 
stack. To ensure real-time operation and avoid frame loss, we chose the UDP communication protocol. 
Compared to the TCP protocol, the UDP protocol is more appropriate for multi-media data 
transmissions. However, to achieve this error-free control protocol, the design includes automatic 
packaging and automatic header additions in the transmitter’s UDP error control module. The receiver 
performs the reverse function to provide a normal display.

Remote Display using the Ethernet Terminal
In this project, the computer’s Ethernet terminal connects to the server (which is the DE2 board), 
receives and displays video data via Ethernet, and saves and plays back video fragments in real time. In 
the display’s real-time window, the user can see the remote video transmitted via the network. The Save 
function allows the user to save the video data of interest (e.g., when an abnormality occurs during 
monitoring). When the user clicks Playback, the saved video plays. The Exit button logs out of the 
application. Figure 3 shows an example of the remote video display.
90



Nios II-Based Intellectual Property Camera Design
Figure 3. Real-Time Remote Video Display Example

IP Address Display
An LCD panel automatically displays the IP address allocated by the video collection server (the DE2 
board) and the name of the system. Figure 4 shows the LCD panel display.

Figure 4. LCD Display 

Performance Parameters
This section describes the design’s performance parameters.

Video Parameters
The video parameters are:

■ Input video standard: NTSC

■ Input video resolution: 768 x 494

■ Output video standard: RGB
91



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Output video resolution: 320 x 240

■ Data traffic: 320 x 240 x 15 bits/frame

FPGA Resource Utilization
Figure 5 shows the FPGA resources used in this design.

Figure 5. FPGA Resource Utilization

DE2 Development Board Resource Utilization
The design uses the following DE2 board resources:

■ FPGA: Altera Cyclone II EP2C35 FPGA

■ Dynamic memory: 8-Mbyte SDRAM

■ Static memory: 512-Kbyte SRAM

■ Flash memory: 4-Mbyte flash device

■ 50-MHz, 27-MHz crystals, oscillators

■ Switch, key, LED, LCD

■ Video decoder chip: ADV7181B device

■ 10-bit video digital-to-analog (D/A) converter: ADV7183 device

■ XSGA video port
92



Nios II-Based Intellectual Property Camera Design
Design Architecture 
The system design makes full use of the DE2 board’s hardware resources. The whole system includes 
a camera, the DE2 board, a PC, and a monitor. The system provides video collection, video processing, 
and video transmission and display. Figure 6 shows the overall system structure.

Figure 6. Overall System Structure

The camera generates the video source for the system, and inputs analog video signals to the DE2 board 
via the video-in port. The DE2 board’s ADV7181B video decoder chip decodes the analog video signal, 
converting it to a digital video signal that is compliant with the ITU-R656 standard. The system sends 
the signal to the FPGA’s internal video decoding module to convert the YCbCr color-difference signal 
to an RGB tri-chromatic signal. The signal is then sent to the video compression module, which saves 
the compressed RGB three-way data into SRAM. Every time a frame is saved, the data transmission 
control module sends RGB data in the SRAM to the client for display via the DM9000A device. 
Controlled by a toggle switch, the user can display compressed or uncompressed RGB data on the VGA 
display.

Design Methodology
This section describes our design methodology.

System Function Design
The system design includes a video decoding module, a video compression module, an SRAM bus 
switch module, and a video transmission module. Figure 7 shows the system diagram.

Camera

Analog Video
Signal

DE2 Board SDRAM
(8 Mbytes)

Flash
(4 Mbytes)

SRAM
(512 Kbytes)

TV Decoder

YCbCr

BS

VS

FPGA (Cyclone EP2C35F672C6

SDRAM
Control

Interface

Flash
Control

Interface

I C
Master

Nios II
Core

Avalon Bus

LCD 
Control

Interface

LED
Control

Interface

VGA
Control

Interface

LCD LED Switch

DM9000A

XSGA
10-Bit
DAC

RGB
Video Data

PC

VGA
Monitor

2

93



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 7. System Diagram

Embedded System Design
The embedded system design consists of hardware and software.

System Hardware Design
The following sections describe the modules in the hardware design.

Video Decoding Module
The video decoding module has two functions:

■ Configuring the video decoder chip ADV7181B.

■ Converting video data from the video decoder chip to RGB format.

Figure 8 shows the video decoding process.

Figure 8. Video Decoding Schematic Diagram

This system has an external NTSC (768 H x 494 V) camera connected to the DE2 board’s video-in RCA 
interface. The design uses the I2C bus to configure video decoder chip properly. Figure 9 shows the 
hardware implementation.

VIdeo
Decoding
Module

RGB Data Video 
Compression

RGB 555
320 x 240

RGB 555 Video
Buffeting
SRAM

Nios II
Processor

Ethernet
Controller

RGB 555

InternetVGA_MUX

VGA Display

I C

Camera Video Decoder VEDIO_to_VGA

RGB Data

HS VS Blank

Configuration

2

94



Nios II-Based Intellectual Property Camera Design
Figure 9. ADV7181B I2C Configuration Schematic

After configuration, the video decoder chip outputs YCBCR video data and control signals according 
to the ITU-R656 standard. Because the output data is for interlaced scanning, we designed the 
VEDIO_to_VGA module to process the data source interlacing and provide color space conversion. 
The module generates RGB video data, horizontal/vertical synchronization in line with the VGA 
sequence and blanking signal, etc. Figure 10 shows the hardware implementation.

Figure 10. Video Decoding Schematic

Video Compression Module
Because too much video data can slow the network transmission, we compressed the original video. We 
used a simple extraction algorithm to compress the video data: the design extracts every other line and 
one of every two points from the original video. Using the algorithm, the video data decreases to one 
fourth of the original. Because human eyes are insensitive to color signals, the design takes the five 
higher bits of the RGB components to compress the video data to an RGB555 video stream with 
320 x 240 resolution. At the same time, the address adds 1 for each pixel point generated. Figures 11 
and 12 show the video compression block diagram and hardware schematic.

Figure 11. Video Compression Module Block Diagram

Input Video Data

Input Control Signal

Nios II Write Start Signal

Video
Compression

Module

Compressed Video Data

Compressed Video Data Portfolio

Read SRAM Start Signal
95



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 12. Video Compression Module Schematic Diagram

When the remote Ethernet terminal receives a video request, the Nios II processor sends the 
NIOS_OUTCMD0 control signal to the hardware. When the module receives the command, it compresses 
the current image frame to generate the pixel to be extracted and the pixel’s address in SRAM. When a 
frame is full, the read RAM start signal is sent to the Nios II processor.

SRAM Bus Switching Module
The image is obtained and stored using a hardware description language (HDL), and the Nios II 
processor controls the video’s network transmission. The SRAM bus switching module sends the video 
data obtained by the hardware to the Nios II processor, and then the Nios II Ethernet controller sends it 
to the remote terminal. Figures 13 and 14 show the video compression block diagram and hardware 
schematic.

Figure 13. SRAM Bus Switching Module Block Diagram

Figure 14. SRAM Bus Switching Module Schematic Diagram

When the Nios II processor’s NIOS_OUTCMD0 control signal is high, the SRAM bus switching module 
writes the output video data from the video compression module into RAM. The hardware notifies the 

Nios II Control Signal

Read SRAM Signal

Write SRAM Signal

SRAM Bus
Switch Module

SRAM Pin
96



Nios II-Based Intellectual Property Camera Design
Nios II processor to read using an interrupt. When it receives the read signal, the Nios II processor sends 
the NIOS_OUTCMD0 control signal as 0 and the SRAM bus switching module controls the SRAM bus 
to connect externally with the Avalon® bus.

Data Transmission Control Module
The data transmission control module generates the read/write control signals. When the client has a 
video request, the Nios II processor writes a video frame to the video buffer module’s SRAM and waits 
for an external interrupt before it reads data in the buffer module and transfers it to the client. Figure 15 
shows the hardware schematic diagram.

Figure 15. Data Transmission Control Module Schematic Diagram

We implemented the data transmission control module in the Nios II soft-core processor. The processor 
conducts network initialization to acquire the MAC and IP addresses, receive the remote client’s video 
request, control video compression and read/write video buffering, and transfer video data.
97



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Local VGA Display Selection Module
The VGA display selection module controls whether the video displayed on the VGA monitor, i.e., it 
chooses whether the video is displayed compressed or uncompressed using a toggle switch. Figure 16 
shows the hardware schematic diagram.

Figure 16. VGA Display Selection Module Schematic Diagram

System Software Design
The following sections describe the system’s software design.

µC/OS-II OS
Due to the embedded system’s limited resources and real-time video transmission requirements, we 
chose to use the µC/OS-II real-time operating system (RTOS). µC/OS-II is a portable, scalable, 
preemptive real-time, multi-tasking OS kernel. It distributes a separate stack for each task and provides 
multiple system services for interrupt management. It is easy to load µC/OS-II in the Nios II IDE 
provided the µC/OS-II option is selected when constructing the project. More important, the OS is 
loaded dynamically according to the hardware platform chosen by the designer in SOPC Builder. To 
develop a system, the designer modifies and adjusts the hardware platform to implement the best 
configuration. The Nios II IDE loads µC/OS-II automatically according to the modified hardware 
platform; therefore, designers do not need to worry about mismatches when changing the hardware 
platform.

LwIP Protocol Stack
Our system requires network transmission, so it loads a network protocol. The LwIP protocol stack is 
integrated in the Nios II IDE, so we chose that protocol. Altera provides a Nios II port of LwIP, which 
enables a fast, open-source access to an Ethernet connection stack. Altera’s LwIP port includes socket 
API encapsulation to provide a standard socket API with complete document description. After loading 
µC/OS-II, users can add the protocol stack by selecting the corresponding LwIP option.
98



Nios II-Based Intellectual Property Camera Design
System Software Process
The system software consists of three parts (see Figure 17):

■ Initialize the LCD and acquire the MAC and IP addresses.

■ Send control signals to the hardware and control the video data access.

■ Wait for remote client requests and output video data to the video buffer.

Figure 17. System Software Process Flow Chart

Client Application Software Design
We developed the client video display application using the LabWindows/CVI software. The client 
communicates with the server using socket programming.

The client’s key function is to receive and display a complete image frame. The client negotiates with 
the Nios II processor to regulate the frame’s transmission time. The Nios II processor transfers RGB 
data in 5:5:5, but the client displays it in 24-bit bitmap format to enhance the effect. Therefore, the 
application uses an algorithm to convert the data from 16-bit RGB to 24-bit RGB image data. 

Start

Wait for Remote
Request

No

Yes

Send Write
Instruction

Send Data

Initialization

Wait for
Interruption

No

Yes

Finish
Reading?

Yes

Stop?
NoYes

No
99



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
A display function provides these operations by:

■ Stipulating the number of UDP packages that a frame is divided into when programming the client 
application, so that we can easily know the image size and provide a timely display.

■ Using an algorithm to convert from 16-bit RGB to 24-bit RGB image data. The code is as follows:

for(k = 0; k < 153600; k++)
{
rgb555 = (int)buff[k];
rgb555 = rgb555<<8;
rgb555 = rgb555|(int)buff[k + 1];
k = k + 1;
r = ((rgb555 >> 7) & 0xF8);
g = ((rgb555 >> 2) & 0xF8);
b = ((rgb555 << 3) & 0xF8);
buff24[n++] = (unsigned char)r;
buff24[n++] = (unsigned char)g;
buff24[n++] = (unsigned char)b;

}

The received unsigned char data (buff, and two as a unit), is put into the unsigned int data 
(rgb555). Then it shifts rgb555 and conducts an 0xFF AND operation to extract three component data 
(r, g, and b), puts them into the buff24 memory, and uses them for display.

For the save and playback functions, the problem lies in correctly selecting the data storage time in the 
program. Considering the image integrity, we set a mark in software to identify when the client 
application starts receiving a complete frame, and then save the data to ensure the integrity of the video 
data.

Figure 18 shows the client application flow chart.
100



Nios II-Based Intellectual Property Camera Design
Figure 18. Client Application Flow Chart

Design Features 
Our design has the following features:

■ SOPC technology—Making full use of SOPC features, the system uses an FPGA and embedded 
soft-core processor and uses the FPGA hardware to collect and analyze data for parallel 
processing. With SOPC Builder’s custom peripheral feature, we added the DM9000A device to 
the system according to our requirements, enabling the Nios II processor to transmit data quickly. 
This method enhances system reliability and reduces power consumption.

Start

Press Start Key?
N

Y

Create Connection
with Nios II

Receive IP
Package

A Complete Frame
of Data

Save?

Convert 16-bit to
24-bit RGB

Display a Frame
of Image

Y

Y

N

N

Playback?

Read a Frame of Data
from Memory

Convert 16-bit to
24-bit RGB

Y

N

Save Data to
Memory

Display a Frame
of Image

Stop Save
101



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Real-time data transmission by compressing video data with an extraction algorithm—Before 
transmission, the system compresses the video data using an HDL module. With a simple 
compression algorithm, the overall performance of system is greatly enhanced, the visual effect 
is ensured, and the transmission efficiency is doubled. Thus, the system will better meet market 
demands.

■ SRAM bus switching technology—In this system, we used SDRAM as the program buffer. 
Considering the capacity of the single-chip SRAM and SRAM on the development board, we used 
SRAM as the image buffer. Because SRAM cannot conduct dual-port operation, we used bus 
switching technology. When image data needs to be updated, the SRAM is connected to the data 
compression module. After a frame of video data is written into SRAM, the SRAM is connected 
to the Avalon bus and the Nios II processor reads the SRAM data for transmission.

■ Custom peripherals—With custom peripherals, any hardware can be connected to the Avalon bus, 
and peripherals defined in SOPC Builder can be added into the system. For example, by adding 
custom peripherals (such as the DM9000A, I2C bus interface, or SRAM interface) to the system 
to expand system performance, the Nios II processor strengthens its peripheral support.

■ Embedded µC/OS-II and LwIP protocol stack—It is difficult for hard-core processors such as 
ARM processors to use µC/OS-II. In contrast, the Nios II IDE makes µC/OS-II and the LwIP 
protocol stack very easy to use. By integrating µC/OS-II and the LwIP protocol stack into the 
Nios II IDE, the system makes OS configuration and other operations part of a friendly GUI, 
which speeds software development. Considering the real-time requirements of video 
transmission as well as the convenience of adopting standard socket programming, we chose 
µC/OS-II OS. Because the LwIP protocol stack supports standard socket programming, software 
development times are further reduced.

■ Nios II technology—Compared with inquiry methods, Nios II interrupt technology greatly 
improves the CPU’s efficiency. In the Nios II processor, interrupt processing is easy to use. When 
an abnormality occurs, all functions except the interrupt service request (ISR) are performed by 
the hardware abstraction layer (HAL) system library code without operations required by the 
designer. Designers only need to compile the interrupt processing program in a specified format 
and register the interruption to the HAL during system initialization. In our system, the Nios 
processor can only execute operations when it receives the read RAM enable signal from the 
video processing control module. Because inquiry mode lowers CPU efficiency, we used 
interrupts to solve this problem.

■ Enhanced display of upper computer images—Outputting video data through Ethernet 
transmission technology, the client application software can view, save, and play video. To 
enhance the display, we used an algorithm in the client application to convert 16-bit RGB data to 
24-bit data.

Conclusion 
This design gave us a better understanding of SOPC technology and the design process allowed us to 
learn, attempt, and innovate. During the short period of time that Altera hosted the SOPC embedded 
processor contest, we received an overview of SOPC solutions and the Nios II soft-core processor, and 
changed our viewpoint on FPGAs. SOPC design makes an FPGA single function, because all external 
control devices (e.g., single-chip) operations are integrated into the FPGA. The designer can add or 
remove Nios II peripherals and interfaces as required, facilitating the design process. Because the 
hardware does not have to be changed when the design changes, SOPC design provides a seamless 
interface between the processor and hardware logic, free from the problems of hardware threading and 
ensuring system stability. In SOPC design, the software and hardware are developed collaboratively, 
enabling synchronized FPGA logic development and Nios II soft-core program development in the 
same FPGA, which greatly increases the design efficiency.

We had a variety of problems to solve during our development process with the DE2 board. For 
example, we started using an inquiry method but found it to be inefficient. We then tried using 
102



Nios II-Based Intellectual Property Camera Design
interrupts. As long as the status of programmable I/O (PIO) interfaces changes, the embedded system 
interrupts, improving the efficiency of the video data collection and the transmission speed.

Some design upgrades we would like to implement in the future are:

■ Using a standard compression algorithm (e.g., H.263) to reduce the data bandwidth and 
implement access to the Internet. In this design, we planned to use a simple extraction method as 
our algorithm to compress video data. Due to time constraints and the complex HDL or C 
language required for the video data compression algorithm, we eventually abandoned the idea. 
The current design is based on a LAN, but a data compression algorithm is necessary when the 
system accesses a wide area network (WAN). By improving our HDL design, we could implement 
compression in the FPGA. Alternatively, we could design the algorithm using C and convert it into 
HDL using the C2H Compiler.

■ Using the real-time transmission protocol (RTP) to improve the transmission speed.

During this contest, we learned the importance of collaboration. Together, we shared the experience of 
studying a technical problem overnight. In the final stages, although facing a lot of pressure, we were 
able to finish the project sucessfully. We thank our tutor Mr. Ren Aifeng who supported us during the 
project. Without his help, we would not have completed it. Although our design is imperfect, we gained 
valuable knowledge and friendship by participating in the contest. If possible, we plan to improve our 
design in the future.

Finally, we thank Altera for hosting the contest.
103



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
104


	Nios II-Based Intellectual Property Camera Design
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion


