
An Internet-Based Smart Terminal
Third Prize

An Internet-Based Smart Terminal

Institution: Shanghai Jiao Tong University

Participants: Shanwen Zhang, Jie Zhang, Faheng Zang

Instructor: Zhigang Zhang

Design Introduction
Households, schools, and administrative organizations are using more and more electrical equipment.
With the increase in additional equipment, management becomes an issue. Because the equipment is
usually maintained and managed in wired mode, extra investment will be needed specifically for
equipment management. Our project considers using wireless mode to organize and manage equipment
and centrally control it using the Internet. Internet access has become a standard interface for families
and offices. Therefore, with a wireless control terminal and a cost-efficient receiver for each device, one
monitor can connect to and display information about electrical appliances (such as electric lights, air
conditioners, etc.), saving enterprise administration costs. Our product is applicable to large office
buildings, high-end residential buildings, administrative enterprises, smart villas, schools, hospitals,
etc. that have a lot of electrical equipment to be managed.

The system is very scalable. Users can continuously add new equipment and functions, as long as the
terminal firmware and control software is updated. For example, this system can deliver video and
broadcast to each unit using a high-bandwidth LAN, making it a powerful method for ad broadcasting
in office buildings. Additionally, a touch screen can provide users with more public information.

If electronic equipment vendors accept this scheme as the standard for equipment intercommunication,
preset communication interface, information technology will increase user satisfaction.

This system uses the Altera® Development and Education (DE2) development board as the terminal
control core. Embedded system-on-a-programmable-chip (SOPC) technology conveniently integrates
Ethernet, SDRAM, a programmable I/O (PIO) interface, digital-to-analog (D/A) switch interface, and
a universal serial bus (USB) controller into the system, which greatly contributes to the system
implementation. With the µClinux cross-compilation development environment, we can immediately
begin work, which greatly enhances efficiency. By migrating a clipped µClinux system, managing the
21

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
development board resources is very easy and convenient, which reduces development problems and
shortens the development cycle.

Function Description
Our project is an experiment to provide proof of concept for smart network equipment. To this end, we
completed two functions in this design:

■ Network .wav music playback

■ Remote mouse

Network .wav Music Playback
This functional module sends files from a PC to the DE2 board. The DE2 board stores the files into a
mobile hard disk. The PC can obtain music files from the music folder and select any file to play on the
DE2 board. See Figure 1.

Figure 1. Network .wav Music Player

Remote Mouse
We can connect a USB mouse to the DE2 board’s USB controller. The mouse pointer then appears on
the PC and is controlled through the DE2 board. See Figure 2.

Update List

Transfer Stop Play Next Previous Pause List Port

Control
Port
22

An Internet-Based Smart Terminal
Figure 2. Remote Mouse

Performance Parameters
This section describes the performance parameters of our design.

Music Playing Performance
We broadcast a .wav file in our design. To play the music, the design writes 16-digit pulse-code
modulation (PCM) codes into an audio FIFO buffer. This method is simple and direct, but has the
following weaknesses:

■ Large .wav files are inconvenient for network transmission.

■ The files use excessive memory resources, causing low memory utilization.

Because of these limitations, we plan to use MP3 files in future designs. However, our current project
is an experiment to demonstrate and materialize the concept of smart network equipment. Therefore,
.wav files are fine for this project.

During our experiments, we found inferior sound quality and a noisy background. Through analysis,
we determined that these issues are caused by the .wav file playback algorithm, i.e., cyclic query. Due
to assimilated processing capability of nios2kernel, if we used the CPU query algorithm the design
would overutilize the CPU and affect system processing. We will need to optimize this function in the
future.

When we use an FTP server to upload files, the DE2 board’s fastest receiving speed is 300 k/second,
which is also the DE2 board’s limit for processing data. The .wav file speed is 1,411 bps (or 176 k/
second) and the design consumes some system processes and network services, making playback
difficult to complete in software query mode. Therefore, this mode occupies too many processor
resources, which is a problem we should address first in our future design work.

Stop/Activate Service

Network
Player

Network
Configuration

Remote
Mouse

Microwave
Distance

Measurement

Step
Motor

Water
Temperature

Control

Network
Service

Network Service

Cart

Mouse
Port
23

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Remote Mouse Performance
The system can successfully collect real-time mouse movements and clearly the simulate mouse
movement on a PC.

Design Architecture
The goal of our project is to convert equipment without information processing capability into an
Internet node using a small communication module. Using powerful Internet interactivity, we can use
and control the equipment in centralized management mode, simplifying office communication lines.
Figures 3 and 4 show the block diagrams for our design.

Figure 3. Smart Terminal Block Diagram

Figure 4. Functional System Block Diagram

The remote module uses special communication software to communicate with the DE2 board via the
Internet and sends control instructions. The DE2 board obtains remote messages via Ethernet, interprets
the message packet into specific instructions, and sends them out using a wireless transmission device.
Equipment within the system’s coverage analyzes the instruction upon receiving it and confirms

.wav Play

Remote Mouse

Wireless Smart
Terminal Ethernet

Internet

User

Remote

User

User

FIFO DACUSB Interface

USB
Mouse

Remote User
PC

Communication
Client

Internet

DE2 Platform Smart Terminal

μClinux OS

Data
Collection

Instruction
Analysis

Instruction
Implementation

USB Mobile
Hard Disk

Earphone
24

An Internet-Based Smart Terminal
whether it is the destination device for the instruction. If yes, it carries out the instruction, implementing
remote control and achieving our goal. The entire system has two core modules:

■ An intelligent, integrated, personalized remote control (i.e., the remote equipment management
software)

■ Networking capability, functional expandability, reliability, and low power consumption from the
DE2 board at the smart terminal

The DE2 board has abundant resources to meet the design demands, and we expect them to be
expanded.

Design Methodology
The following sections describe our design methodology.

Migrating µClinux to the DE2 Board
The µClinux system is a reduced Linux kernel without a memory management unit (MMU); we used a
version 2.6 kernel. First we downloaded and installed the kernel:

1. We downloaded the µClinux kernel source code from the Internet at http://www.uclinux.org/
dls.uclinux.org/uClinux-dist-20070130.tar.bz2.

2. We downloaded a µClinux kernel modification file from the Internet at http://nioswiki.jot.com/
WikiHomeOperatingSystems/µclinux/UClinuxDist/uClinux-dist-20070130-nios2-
02.diff.gz?cacheTime=1170915312300.

3. We downloaded a cross-compilation environment file from the Internet at http://
nioswiki.jot.com/WikiHome/OperatingSystem/µClinux/BinaryToolchain/nios2gcc.tar.bz2.

4. We installed the cross-compilation environment, after which we could compile the kernel.

We used the following steps to compile the kernel:

1. At a command prompt, we typed /make menuconfig in the UClinuxDist directory, which
opened the compilation interface shown in Figure 5.
25

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 5. Compilation Interface

2. We selected the Vendor/Product Selection option.

3. For the Select the Vendor you wish to target option, we chose (Altera) Vendor.

4. For the Select the Product you wish to target option, we chose (nios2nommu) Altera Products.

5. Then we went back to the Main Menu and choose the Kernel/Library/Defaults Selection, and
made the following selections:

● (Linux-2.6x) Kernel Version

● (None) Libc Version

● [] Default all settings (lose changes)

● [*] Customize Kernel Settings

● [*] Customize Vendor/User Settings

● [] Update default Vendor Settings

6. We chose Select to exit. The kernel driver and service configuration program displayed next (see
Figure 6).

We needed to configure options so that we could use the USB equipment and the network
modules.
26

An Internet-Based Smart Terminal
Figure 6. Linux Kernel Configuration

7. We made the selections shown in Figure 7 in the File systems > DOS/FAT/NT Filesystems
screen to configure the USB file system.
27

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 7. DOS/FAT/NT Filesystems Screen

8. In the Native Language Support screen, we made the following selections:

● (iso8859-1) Default NLS Option

● [*]Codepage 437 (United States, Canada)

● [*] NLS ISO 8859-1 (Latin 1; Western European Languages)

9. To configure the USB equipment driver, we made the following selections in the Device Drivers
> USB support screen (see Figure 8).

● [*] Support for Host-side USB

● [*] USB device filesystem

● [*] ISP1362 HCD support

● [*] USB Mass Storage support

● [*] USB Human Interface Device (full HID) support

● [*] HID input layer support
28

An Internet-Based Smart Terminal
Figure 8. USB Support Screen

10. We made the following selections to configure support for the DM9000A device.

● In the Enter Network device support screen, we selected:

[*] Network device support

● In the Ethernet (10 or 100Mbit) screen (see Figure 9), we selected:

[*] DM9000A with checksum offloading
29

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 9. Ethernet (10 or 100 Mbit) Screen

After we finished the configuration we exited the kernel compilation program. We could compile the
kernel using the following commands at the command line:

1. : /make romfs r

2. : /make r

3. : /make linux image r

The system compiles the kernel and creates a zImage file in the image contents directory. The next step
was to download the kernel to DE2 board using the Nios® II Integrated Development Environment
(IDE) terminal and activate the µClinux operating system (OS).

Operating µClinux on the DE2 Board
To run µClinux on the DE2 board, we entered the following commands in the Nios II 6.1 Command
Shell:

: /nios2-configure-sof de2-net.sof r (this command configures the hardware circuit)

: /nios2-download-g zImage r (this command downloads the system)

: /nios2-terminal r (this command activates the µClinux system)

Figure 10 shows the interface after activation.
30

An Internet-Based Smart Terminal
Figure 10. Activating µClinux

.wav File Network Uploading and Playing
Figure 11 shows the block diagram for uploading and playing .wav files on the network.
31

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 11. .wav File Uploading and Playing Block Diagram

The system functions are:

■ User interface—The PC’s user interface (UI) sends control information to the DE2 board, such
as obtaining the music file list, playing specified music, suspending music, and stopping
playback. The UI invokes network socket ports on the DE2 board for control:

● 19851—Playing port

● 19852—File list port

● 19853—Remote mouse port

■ Music server process—By transmitting control information, the music server process on the DE2
board automatically recognizes and controls the data. The music server process receives the
control information from the PC via the network. It transmits the information to different energy-
changing processes, and instructs them to finish various functions. When sending files, the music
server process transfers the file name and file data to the music local process, which saves the files
according to the designated file name. To control playback, the music server process sends control
information to the music play server process along with the name of the file to play and when to
pause or stop.

■ Music process—When the music process finishes a task, it keeps reading data from the pipe and
writes it into the audio FIFO buffer. If there is no data, it stops, which is equivalent to the function
of a stop or pause.

■ Music play server process—The music play server process obtains information required for
playback, such as the file to play and control information. When a file must be played, the music
play server process reads it and write its content into the playback pipe. After receiving the
content, the music process begins playing immediately. Meanwhile, if the music play server
process receives a pause or stop command, it stops writing audio information into the playback
pipe and finishes the pause function.

■ List server process—When a list request occurs, the list server process sends all file names in the
music folder to the PC. The PC displays the received file names on the interface for the user to
choose.

■ Music local process—The music local process receives and saves files to the mobile hard disk.
Files sent can be seen with the PC’s list function.

Remote Mouse
Figure 12 shows the remote mouse modules, including:

PC IU

FIFO Pipe

Socket

Music Server

FIFO Pipe

Socket

FIFO
Pipe

File List Server

Local Music
(Save File)

Music Play Server

Music
32

An Internet-Based Smart Terminal
■ PC interface—Because of performance considerations, the PC interface inquires about mouse
movements every 10 ms, obtains 32-byte movement information, and shows it on the interface.

■ Mouse server process—The process continuously reads the piped data, saves it in 32-byte buffers,
and waits for the PC acquisition commands. When there is a PC inquiry, null information is sent
out to ensure that the program performs even if there is no data in the buffer.

Figure 12. Remote Mouse Modules

Implementing On-Line Debugging
The obvious difference between embedded design and ordinary PC program debugging is the
debugging difficulty because every debugging change requires the user to download the entire system
file. With µClinux, however, the network interface simplifies the debugging process. To perform
debugging using telnet, we entered µClinux, configured the network, activated the inetd server, logged
onto the DE2 board using telnet, uploaded the program to debug using ftp, and debugged the program
online. See Figure 13.

PC Interface

Socket

Mouse Server

Mouse

FIFO Pipe
33

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 13. Telnet Debugging Interface

User Interface Compilation
We chose the GTK+ version 2.0 library to compile the UI for the following reasons:

■ GTK+, a cross-platform library, can be run on the Windows, Linux, and Mac OS X operating
systems. With this program, we can release software on current mainstream platforms without
transforming it.

■ It possesses a Glade item and can configure the UI quickly, saving a lot of mechanical work.

Our system has two program UIs:

■ Network player—As shown in Figure 1 on page 22, the network player interface integrates two
functions: a file list that displays the music files on the mobile hard disk and a network player that
selects, plays, pauses, and stops the file listed previously.

■ Remote mouse—When the user plugs a mouse into the DE2 board’s USB port and activates the
network service, the mouse pointer on the monitor moves when the user moves the mouse (see
Figure 2 on page 23). The user can pause or activate this function.
34

An Internet-Based Smart Terminal
Development Environment
Our system has the following development environment:

■ Development board—Altera DE2 board

■ FPGA synthesis tools—Quartus®II version 6.1 development kit

■ Cross-compiling development environment—Suse Linux 10.2 x86

■ Kernel compilation environment—Suse Linux 10.2 x86

■ User interface—GTK+ version 2.0

Design Features
Our design uses the network as information media. With highly integrated technology, the design saves
system costs and shortens the system configuration cycle.

The design positions the PC as a network terminal, integrating the network into every day life. Just
imagine, you can select goods you need at home using a touch-screen LCD on your refrigerator.
Suppliers can sell their goods online, shortening shopping time and minimizing retailers’ costs for real
stores.

In schools, enterprises that manage the electronic equipment has become an important aspect of daily
maintenance. With a smart network platform, administrators can sit in their offices and click a mouse
to control buildings, electric lights, and air conditioners throughout the campus. Costing only a little,
the platform can save huge costs in long-term maintenance.

Technologically, the DE2-based system integrates:

■ Embedded µClinux OS

■ SOPC hardware/software integration

■ Wave music file playback on the DE2 board

■ Loading and using USB equipment on the DE2 board

■ USB mouse

■ Mobile hard disk

■ On-line µClinux debugging

■ Embedded Ethernet

■ Audio D/A converter

We developed a smart control design concept and have essentially finished it. The system integrates
network technology and an SOPC embedded system, and implements a comprehensive technology
application. With the development of additional technologies, integration will provide better
applications.
35

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Conclusion
We spent over three months in the Zhang Zhigang Innovation Lab where we learned advanced SOPC
technology, learned how to use Altera’s FPGAs and software, and gained a lot of experience. Theory is
abstract. Undergraduates who get used to accepting theories lack training, hands-on experience, and
innovation. This contest gave us the opportunity to put what we have learned into practice. From
program design to implementation, it showed us the project stages and the gap between theory and
practice.

Usually we are very confident about what we have learned in school, but we may be unable to deal with
a real project. Because it is systematic engineering, this project covers almost all of our undergraduate
curriculum. With this benefit, we gained a lot from participating in the contest. We had to solve many
hard problems in the contest, and using three different Altera software design programs was the first
one. During the project, a trivial problem could cost us several hours work, so accumulating knowledge
we could use in daily life was very important. A solid foundation will help us solve problems smoothly
and efficiently.

We transplanted µClinux to the DE2 board, which made it convenient and efficient to use the DE2 board
resources. The process plays a particularly important role in multi-tasking development. Modular
concepts are critical for the design of complex tasks. An embedded OS offers an ideal operating
environment for modular programs. In our design, we can perform debugging on each module, which
increases debugging flexibility.

By exposure to Altera’s FPGA hardware/software system, we learned about embedded equipment
trends. Altera’s Nios II IDE supports the developers in hardware and software, saving a lot of time.
Additionally, the products have considerable flexibility: the Nios II CPU can be clipped according to
users’ demands, the system bus interface supports Verilog HDL and VHDL for hardware interfaces, and
users only need to load configured equipment onto the SOPC Builder bus.

By participating in the contest, we learned that system engineering requires comprehensive knowledge,
and its performance is determined by the weakest segment. A faulty segment aborts the entire system.

Finally, we extend our gratitude to Instructor Zhang and the assistant instructors in the innovation lab
for their support in equipment and technology. Without them, we would not have completed the
program.

References
[1] Zhigang, Zhang, DE2 Platform Application and DSP Builder Technology, Training Material for
2007 Altera Cup Shanghai Jiao Tong University Electronic Design Contest, 2007.

[2] Zhigang, Zhang, SOPC Technology, Reference for 2007 Altera Cup Shanghai Jiao Tong University
Electronic Design Contest, 2007.

[3] Thomas, Nathan, Developing on Linux An Introduction to Development on Linux, Red Hat, Inc.,
nthomas@redhat.com.

[4] Corbet, Jonathan, Rubini, Alessandro, and Kroah-Hartman, Greg, Linux Device Drivers, Third
Edition, O’Reilly, Beijing: February 2005.

[5] Strahnen, Dr. Ing. M., HOWTO: NIOS-CPU with additional hardware driven with µClinux.

[6] Linux Application Program Development Guide: to Use Gtk+Gnome Library

[7] GTK+ Reference Manual, GNOME Documentation Library.

[8] http://nioswiki.jot.com
36

	An Internet-Based Smart Terminal
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion
	References

