
Fingerprint Identification System Based on the Nios II Processor
Third Prize

Fingerprint Identification System
Based on the Nios II Processor

Institution: Huazhong University of Science and Technology

Participants: Linchuan Li, Yao Zhang, Chengdong Ge

Instructor: Xiao Kan

Design Introduction
With the advent of fast-growing digital, information, and network technologies and the desire for a
more convenient lifestyle in recent years, users have higher security expectations for electronic systems.
Additionally, e-Business, ATM, access control, and intelligent cards all require a safe and easy-to-use
identification technology. The traditional identification method, user ID plus password, cannot satisfy
users’ needs due to various defects such as forgotten passwords, hacker attacks, and theft. Fortunately,
identification technology based on biometric characteristics of the human body offers an efficient
solution.

This technology uses human physiological features and behaviors to identify a user’s ID, and it is more
secure, reliable, and human-oriented. Common biometric characteristics used for identification include
fingerprint, palm print, iris, face image, voice, handwriting, DNA, etc. Considering the accuracy,
durability, convenience, and cost, fingerprint identification technology features a high benefit/cost ratio,
security, maturity, and widespread applications. Statistically, fingerprint identification products account
for over 90% of the total biometric identification systems in China.

As microelectronics technology advances, programmable logical controllers are becoming more
diversified, faster, and more powerful. Today, many FPGA devices support embedded soft-core
processors to facilitate the development of FPGA-based hardware. For example, Altera’s Nios® II
processor, a RISC CPU soft core, features pipelining and a single instruction flow. Designers can embed
it in an FPGA and leverage custom logic to build a FPGA-based system. Compared to an embedded
hard core, a soft core is more flexible. Additionally, the fast FPGA meets the speed requirements of a
fingerprint identification system.
281

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Based on a separated identification system in verification mode, this design authenticates or registers
users after they state their ID (i.e., by inputting an ID) and input their fingerprint at a terminal. It also
allows a host to manage multiple terminals via the network, and allows an administrator to administrate
the system.

Target Users
By integrating other functional service modules, the system can serve as a public service system where
the fingerprint becomes the key ID authentication tool. Additionally, the system can be used as an HR
management tool or security protection product. The design could be used in the following applications:

■ e-Business—Credit card consumption, e-buying network

■ Banking—ATM

■ Enterprises and institutions—HR management

■ Security administration—Access control system

■ Qualification—Examinations

The system’s host/slave network mode efficiently implements separated authentication and centralized
management, making it suitable for partial authentication. If we improved the communication
efficiency and security, it could be extended into a larger system.

Nios II Advantages
Most traditional fingerprint identification technologies depend on a PC or digital signal processor.
However, image processing on PCs is expensive, has low speed, and requires a large storage space.
Digital signal processors are not flexible enough due to the function and parameter limitations. FPGAs
are advantageous for use in fingerprint identification because they feature high processing speed,
flexibility, low cost, and embedded system portability. As a high-performance and configurable soft
core, the Nios II processor has unique features. Designers can use the C language with short
development cycles and portable code. Combined with custom hardware logic, they can conduct
complex parallel image processing without losing the advantages of using an FPGA. For our system, it
is easy to integrate the relevant components and we can easily adjust the relevant image processing
parameters. As a result, the system satisfies various performance indicators and users in different
conditions.

Function Description
This section describes the functionality of our design.

Scalable Authentication Network
With a host plus terminals mode and a bus-type local area network (LAN), the system can be centrally
managed and extended. By adding terminals into the Terminal Management tab, the host administrator
can conveniently add new terminals.

Excellent User Interface
We use an LCD and keyboard to facilitate operation.

Fingerprint Collection
The fingerprint collector collects the user’s fingerprint and a driver accesses the serial peripheral
interface (SPI) to get data. The program has an automatic finger detection function. Three sets of
parameters are allocated to account for the skin moisture level when fingerprints are collected. The
282

Fingerprint Identification System Based on the Nios II Processor
system picks best image of the three. Additionally, the fingerprint collector stays in sleep mode and is
only activated during fingerprint collection, minimizing power consumption.

ID Verification
The terminal collector collects fingerprint signals, processes images, and extracts fingerprint minutiae
information. After registration, the host acquires the fingerprint and corresponding ID information from
the terminal and stores them in a fingerprint database. Upon login, the host returns the corresponding
fingerprint information based on the ID, and the slave compares and displays the corresponding login
information.

Information Management
The host is a powerful PC that operates a set of management programs, including:

■ User account management—View or modify registered users.

■ Terminal management—Add new terminals or modify the terminal priority.

■ Log review—Review the system access log.

■ Password change—Change the administrator’s login password.

Performance Parameters
Performance parameters include the fingerprint image processing speed and accuracy.

Fingerprint Image Processing Speed
Table 1 shows the time used by the main processes and the total time required for fingerprint image
processing before and after hardware acceleration (for the configuration and hardware acceleration
principles, see “Design Methodology” on page 288). We use a 256 x 300 8-bit grayscale image as the
object that is processed. Using hardware acceleration for image processing greatly improves the
processing speed.

Fingerprint Identification Accuracy
Because the system’s fingerprint image processing and comparison algorithm are designed for a special
fingerprint collector, we do not use a universal fingerprint database in the test. Instead, we chose about
40 fingerprints of 10 people at random to test the system’s fingerprint identification accuracy.

The statistics show that the system’s false accept rate (FAR), i.e., the probability of mistaking non-
identical fingerprints as identical fingerprints, is less than 5%. The false reject rate (FRR), i.e., the
probability of mistaking identical fingerprints as non-identical fingerprints, is less than 20%.

Identification accuracy is greatly influenced by the skin’s cleanliness and moisture, these results are the
system’s comprehensive fingerprint identification performance and are not from a separate algorithm
performance test.

Table 1. Image Processing Speed

Operation Time Required before Hardware
Acceleration (Seconds)

Time Required after Hardware
Acceleration (Seconds)

Image filtering 36.40 4.77

Ridge thinning 13.54 2.67

Total 54.93 11.57
283

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Design Architecture
This section describes the design architecture, including the network topology, modules, hardware, and
software design.

Network Topology
Figure 1 shows the network topology. In the system, a switch is the central node that connects the
terminals and the host.

Figure 1. Network Topology

Module Division
Figure 2 shows the modules in the design.

Figure 2. Modules

Hardware Design
Figure 3 shows the hardware design.

Host

Switch

Terminal TerminalTerminal

User Service Module

Fingerprint Collection &
Processing

Communication
Module

Slave

Administrative
Module

Communication
Module

Host
284

Fingerprint Identification System Based on the Nios II Processor
Figure 3. Hardware Design

Software Design
Figures 4 through 7 show the flow charts for the system.

Nios II CPU

JTAG
Interface

Custom
Instruction

On-Chip RAM

User Logic

TImer

SPI
Controller

PIO

10/100 Mbyte
Ethernet

Tri-State
Bridge

Fingerprint
Collector

User Interface

Host-Slave
Communication

SRAM

Flash

Av
al

on
 B

us
285

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 4. Slave Software Flow Chart

Start

Is the Host
Available

No

Yes

Wait for the User to
Login/Register

Input ID and Fingerprint

Login/Register

Acquire User Information

Compare ID/Fingerprint
Features

Register

Login

Extract Fingerprint
Features

Return Processing Result

Return

Equipment
Initialization

Apply to the Host

Deliver User Information

Prompt the System
Login Stops
286

Fingerprint Identification System Based on the Nios II Processor
Figure 5. PC Host Flow Chart

Figure 6. Operation Module Flow Chart

Start

Password Authentication
and Login

Administration
Module

Operation
Module

Forbid Administration
Module Function

Broadcast Starting
Terminal

Wait for Slave
Information

Register

Is Registration Correct?

Verify ID Validity

Acqure Data on Feature,
Update Database

Login

Verify Whether the ID is
Registered

Return Relative Data of
ID Features

Update Operation Log

Slave Connection
Request

Answer the Slave

Choose Operation
Function

Operation Module
287

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 7. Administration Module Flow Chart

Design Methodology
This section describes our design methodology.

System Development Flow
Most of design’s functions are implemented using the Development and Education (DE2) board and a
peripheral fingerprint collection circuit. We implemented the system’s functional modules, assembled
the modules, and debugged the system as described below:

■ Referring to examples and test documents provided with the DE2 development board, we
implemented the Nios II processor, performed C language programming in the Nios II Integrated
Development Environment (IDE), performed on-line program debugging, and loaded the program
onto the board.

■ Using SOPC Builder, we created access to the peripheral memory, RS-232 serial port, DM9000A
network interface, and programmable I/O (PIO) interface on the DE2 board.

■ We implemented access to the 4 x 4 keyboard using the expanded PIO interface on the DE2 board.

■ We used SPI on the DE2 board to read the fingerprint collection data.

■ We used custom peripherals and instruction hardware acceleration on the DE2 board to complete
the fingerprint processing algorithm.

■ We purchased a fingerprint collection chip, which we used to design and implement the
fingerprint collection circuit, automating the finger detection function.

■ We developed the administrator program for the PC, and debugged the system.

Hardware
The following sections describe the method we used to create the hardware system.

Choose Administration
Option

Terminal
Administration

Choose Administration
Function

Administration Module

View the Log Change the Login
Password

Register Person
Administration

System Option

Stop Terminal Work

Update the Log
288

Fingerprint Identification System Based on the Nios II Processor
Nios II Soft Core Configuration
We configured the Nios II processor as described below:

■ The Cyclone® II EP2C35 FPGA on the DE2 board is the control chip, and we designed all
functions based on it. The hardware represents highly-integrated system-on-a-programmable-
chip (SOPC) design ideas and principles.

■ We used the 50-MHz Nios II/f fast CPU to support JTAG level 3.

■ We used a 12.5-MHz SPI core to transfer fingerprint data.

■ We added the DM9000A Ethernet control chip and implemented an Ethernet physical layer.

■ We added the JTAG debug module to facilitate on-line system debugging.

■ We used a 38,400 bps serial port communication module. With a UART, we can transfer data
between the Nios II system and the PC before fully implementing network communication and
monitor the fingerprint image processing procedures on the PC.

■ SRAM, SDRAM, and flash memory are used to implement the program operation memory, data
distribution space, and program writing space, respectively.

■ The design has a tri-state bridge connection between memories.

■ Two timers implement the system’s delay requirements and test the time that the Nios II system
requires to process the fingerprint data.

■ Keys, nixie tubes, an LED, and a 16 x 2-character LCD interface facilitate the user interface.

Using SOPC Builder, we conveniently built a tailor-made, configurable system that met our
requirements.

Making the Fingerprint Collector
We designed the fingerprint collector as described below:

■ Functional design—We used the fps200 fingerprint collection chip to collect the original
fingerprint image data. The circuit has an automatic finger detection function and only instructs
the CPU to accept data when a finger is detected. The image data is transferred to the Nios II
processor via the SPI.

■ Schematic diagrams—After studying the fingerprint collection chip data sheet, we designed the
schematic diagram to implement the SPI and preserve the microcontroller (MCU) and USB
interfaces.

■ PCB schematics—We used a two-side PCB for the final circuit board.

■ Circuit board welding and debugging—Our experiments verified the functions of the fingerprint
collector, data collection, and data transfer. We adjusted the parameters related to fingerprint
collection as needed.

Fingerprint Image Processing Hardware Acceleration
When the Nios II CPU is configured as fast and the fpoint operation instruction is added, the image
processing algorithm using C requires 50 seconds (see “Performance Parameters” on page 283 for more
details). This speed is acceptable for a real-time processing system.
289

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Two methods can improve the image processing efficiency: implement a digital signal processing
(DSP) module on the FPGA or use hardware acceleration. DSP can process images more efficiently
without depending on the CPU operation speed, but it is difficult to implement. In contrast, it is easy to
use hardware acceleration for image processing. Therefore, we decided to use hardware acceleration,
which greatly improved the algorithm performance efficiency.

The fingerprint image processing algorithm has unique features: it requires a large number of repeat
operations and identical pixel processing procedures. Therefore, if we improved the performance
efficiency of the most fundamental operations, we could improve the performance efficiency as a
whole. We divided the fingerprint processing procedures into pattern finding, image filtering,
binarization, ridge thinning, minutiae location, etc. (see “Software” on page 290 for more details), and
calculated the time required for each procedure. We determined that two procedures should be
accelerated: image filtering (36.4 seconds) and ridge thinning (13.5 seconds).

To perform image filtering, we take the data of 52 pixels around the target pixel, multiply the data with
corresponding filtering coefficients, and accumulate the results to use as the new value of the target
point. In the procedure, the filtering coefficient is taken from a coefficient array with relevant directions.
The complete software procedure requires 52 multiplication accumulations. We designed a custom
instruction CI_multi_accumilate, to complete one multiplication accumulation in three clock
cycles. After the acceleration, the image filtering procedure uses only 4.77 seconds.

To perform ridge thinning, we take the data of the target pixel and 15 pixels around the target pixel and
compare them with 16 templates to decide whether the target pixel should be removed. After scanning
the whole image many times, the fingerprint ridge is thinned into a single pixel width. The complete
software procedure requires 16 comparisons. We designed two custom peripherals, prematch and
user_delete, to complete the 16 comparisons in six clock cycles. After acceleration, the ridge
thinning procedure uses only 2.67 seconds.

Ethernet Implementation
In the system, a switch is the central node that connects the terminals and the host. Because there is not
a large volume of data and no complex routing in the communication between the terminals and the
host, the system does not have a physical connection with the public network. However, an embedded
real-time operating system (RTOS) must implement a good IP protocol. It is unnecessary for our slave
system to use an operating system for dispatching; therefore, we did not use the TCP/IP protocol to
build the network. Instead, we used a MAC-to-MAC method for physical addressing, that is, the system
directly sends an original data packet that adds source and target MAC addresses as headers.

Software
The software design includes the Nios II program and PC program. The PC program is the fingerprint
authentication administrator program that fulfills functions such as responding to login/register requests
and system administration.

The Nios II program includes the initialization, fingerprint collection, image processing, host-slave
communication, user interface, etc. modules. By organically combining the modules, we created a
simple, client fingerprint authentication program as described below:

■ System initialization—After the system is powered-on, all modules must be initialized. In
particular, the network adapter must be initialized to connect the Nios II processor to the PC.
Initialization makes the fingerprint collector go into a low-power mode and it does not wake up
until a fingerprint needs to be collected.

■ Fingerprint collection—Based on a driver, the fingerprint collector obtains images through the
SPI. The procedure must perform automatic finger detection and skin moisture adaptation.

■ Fingerprint processing—This module provides fingerprint data processing and comparison. It
includes two sub-modules: fingerprint image processing and fingerprint comparison.
290

Fingerprint Identification System Based on the Nios II Processor
■ Host-slave communication—This module implements communication between the Nios II slave
and the PC. Its primary transmitting function is to request commands such as register and log-in
requests, fingerprint minutiae information, ID information, etc. Its primary receiving function is
to obtain the PC’s reply, the Nios II control information sent by the PC, the fingerprint template
information that the PC returns to the Nios II processor, etc.

■ User interface module—This module consists of a 4 x 4 keyboard, 16 x 2 LCD, LED, and nixie
tube. The LED indicates the current working status of the Nios II system as well as information
such as success, failure, and timeout. The nixie tube displays the input ID information, and the
LCD displays real-time system information such as the system status and operation prompt.

The LAN transfers original data packets that use source and target MAC addresses as headers;
therefore, we use the winpcap (windows packet capture) protocol on the LAN. winpcap is a free public
network access system for Windows platforms, and it gives win32 applications the ability to access the
network infrastructure. It provides the following functions:

■ Captures the original datagram, including the datagram that hosts send/receive and exchanges
them on a shared network.

■ Filters special datagrams according to user-defined rules before they are sent to the application.

■ Sends the original datagram over the network.

■ Collects the statistical information in network communication. Our tests and final design
demonstrate that winpcap conveniently receives/sends data packets between the PC and Nios II
processor and also satisfies our functional requirements.

Fingerprint Image Processing Module
Figure 8 graphically shows the fingerprint processing procedure (see references [1] and [2] for more
details).
291

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 8. Fingerprint Processing Procedure

The procedure includes the following elements:

■ Pattern finding—This process includes two steps: first, it calculates the direction of single points
based on the grayscale value of the points around the target point. For simplification, we divide
180° into 8 directions. Next, it obtains a 5 x 5 block pattern using a statistical method and marks
the blocks without clear direction about the background. Pattern finding lays a foundation for the
direction-based image filtering.

■ Image filtering—We designed filtering coefficient templates for 8 directions in advance, took 52
pixels of data around the target pixel, multiplied the data with the corresponding filtering
coefficient, and accumulated the result, which is used as the new value of the target point. Filtering
enhances the image continuity along ridges and improves the image contrast perpendicular to the
ridges to segment neighboring ridges.

■ Binarization—After filtering, the image ridges are distinct. Therefore, we only need to use fixed
threshold binarization, i.e., to segment the image into black and white images by taking a fixed
gray value as the standard. After binarization, the image can be completely thinned.

Original Image Pattern Finding Image Filtering

Binarization Ridge Thinning Locating Minutiae
292

Fingerprint Identification System Based on the Nios II Processor
■ Ridge thinning—We use an OPTA (or parallel thinning) method to corrode the ridges gradually
until the ridges are thinned into a single pixel width. Ridge thinning facilitates minutiae location.

■ Locating minutiae—First, we scanned the pattern to locate the central point of the fingerprint.
Then, we located the tip points and the split points in the thinned ridge image. To find the points,
we assumed that the tip points are black and surrounded by only one black point and spit points
are surrounded by three black points.

Fingerprint Comparison
Through many tests, we improved the central point-based fingerprint comparison method into three
steps: coarse matching, coordinate transformation, and precise matching.

■ Coarse matching—The system makes a coarse match for two fingerprint images by taking their
central point as the original point and ±30° as the range for the angle of rotation. Then, we
ascertain the most matched angle of rotation and some minutiae pairs.

■ Coordinate transformation—Based on obtained minutiae pairs, we calculate the precise
coordinate translation and rotation parameters of the two images.

■ Precise matching—Based on the obtained coordinate translation and rotation parameters, we
precisely match the minutiae a second time and evaluate the degree of matching. The system gives
three points to point pairs matched in type (tip or splitting) and location, and gives two points to
those matched in location only. If the total score is more than the threshold value, there is a match.
If any step fails, it is not a match.

The central point-based fingerprint comparison method efficiently resists the interference caused by
image translation. That is, the combination of the final precise matching with the point-to-point
comparison method partially resists interference caused by central point location errors. Considering
that the minutiae type (tip or splitting) is usually incorrect, we regard cases where the fingerprints have
unmatching types but matched location as matching, improving the comparison accuracy.

Design Features
Our design has the following features:

■ Bus topology between hosts and slaves—Because organizations or institutions may identify
fingerprints in different locations and it is impossible to configure a system at each location, we
use hosts and slaves to fulfill the task. Slaves collect and process fingerprints and transfer the
processed results to the hosts over the network. The hosts provide management and storage. In
this way, hosts and slaves have clear duties to leverage their own advantages.

■ Custom instructions to acceleration of key algorithms in hardware—Extracting fingerprint
minutiae is a complex DSP function, and it greatly slows the system speed if software is used for
extraction. Fortunately, Altera’s SOPC Builder software allows users to create and deploy their
own Nios II system as well as add custom instructions. Therefore, the system uses a hardware
description language to implement the minutiae extraction algorithm. We used custom
instructions to define the IP algorithm as a special instruction that directly invokes processing,
implements hardware acceleration, and greatly improves system speed.

■ Ethernet transmission—We used Ethernet to transmit requests from the slave to the host for
processing. Additionally, we used a competitive terminal access mechanism that provides high
efficiency when the system load is light. Ethernet ensures the application of the system and allows
terminals to be added conveniently in the future.

■ Easy hardware and software upgrades—It is impossible for an application to fully meet the
requirements of each user in a huge user base. However, Altera’s SOPC system design solution
293

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
can solve the problem, allowing different users to modify the hardware and software easily based
on the original system. They can develop new products and improve competitiveness by utilizing
FPGA programmability. In the system, we can put the fingerprint minutiae extraction module at
terminals or hosts based on the number of user terminals, balancing the communication traffic and
host load. In this way, we dramatically improved the adaptability of the system.

■ Benefits in cost, power consumption, portability, and integration—The FPGA-based system
design integrates processor, peripherals, memory, and I/O interface into a single FPGA, reducing
the system’s costs, complexity, and power consumption. Additionally, because the Nios II
processor is superior to hard cores in terms of cost, the system has higher integration and is more
cost-effective.

Conclusion
The two-month contest was a process of SOPC development, learning, and application, as well as
learning about Nios II embedded processor design. By using the development and design technology,
we now understand the technology more. We learned the following things during the contest:

■ Easy-to-use design environment—It was a challenge for us to gain basic knowledge about
software and hardware development and conduct systematic design, implementation, and
verification within two months. However, SOPC Builder and the Quartus® II software provided a
visual, fast methodology and the Nios II IDE, which helped us achieve our goal in a short time
with a fast learning curve.

■ Software/hardware co-design and verification—Parallel hardware/software design is a crucial
task for embedded system design. During the design, the major challenge is synchronizing and
integrating software and hardware design. During the contest, we used SOPC Builder to conduct
comparatively independent software and hardware implementation with comprehensive system
design and the reasonable division of software and hardware. Independent functional verification
shortens the development cycle.

■ Innovative Nios II system hardware acceleration—Compared with traditional DSP solutions,
custom instructions or peripherals can be better integrated into the Nios II system, ensuring a fast
processing speed and flexible controls. Compared with an ASIC solution, the Nios II processor is
more cost-effective because it can provide the same function using internal FPGA resources
without adding other devices.

■ Improving Nios II stability—The issue may not be apparent for small system designs but can
occur during complex system designs. For example, random software operation errors occurred
during same hardware deployment. The system handled the fault after we recompiled the wiring.
The error was often due to an infrastructure I/O driver. In our opinion, the Avalon® bus is not a
fixed connection wire but is a set of connection wires generated in the FPGA after Quartus II
compilation, so the random wiring leads to bus instability. We did not verify our guesswork, but
the problem was a big challenge.

■ Problem solving—Although many problems are simple now, they seemed insurmountable
barriers when we first met them and did not have enough information. We had to consider and
collect various data, dare to practice, be persistent, and consequently find a way out of
desperation. We made arduous efforts to discover solutions and tackle problems, but we gained
knowledge and the methodologies to solve problems in the process, which will aid us in our future
study and life.
294

Fingerprint Identification System Based on the Nios II Processor
References
Lingli, Liu, Preprocessing and Minutiae Extraction of Fingerprint Image, Master degree thesis of
Hunan University, December 2005.

Chunlei, Li, Research on Fingerprint Identification Algorithm and FPGA-based Hardware Realization,
Master degree thesis of Shandong University, April 2005.
295

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
296

	Fingerprint Identification System Based on the Nios II Processor
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion
	References

