
FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
Third Prize

FPGA-Based Clinical Diagnostic
System using Pipelined Architectures
in the Nios II Soft-Core Processor

Institution: Jadavpur University, Calcutta

Participants: Shubhajit Roy Chowdhury

Instructor: Professor Hiranmay Saha

Design Introduction
Clinical decision making is a complicated process. It is based on medical knowledge derived from
medical books and literature and on data obtained from various clinical trials and diagnostic tests;
however, it is also dependent on experience, judgment, and reasoning, which are functions of the human
brain. In many situations, human decision making is not available, and in these situations, instruments
play a major role in helping reduce human suffering.

In third-world countries, very few doctors are available in rural areas. For example, in India, 75% of
qualified consulting doctors are in urban areas and 23% are in semi-urban areas, which leaves only 2%
in rural areas where, unfortunately, nearly 78% of Indians reside. This imbalance has created a patient-
doctor ratio of more than 10,000 patients for each doctor in rural India. Therefore, equipment that can
predict imminent health hazards and can red-alert patients to contact a doctor for necessary care is
urgently needed. Each doctor must handle a large number of patients; therefore, it would be useful for
a doctor to be able to track patient data, especially because data and document preservation, such as
investigation reports, is poor in rural areas. It would be useful to have a system that can be used
effectively for a variety of chronic disease conditions such as renal dystrophy and diabetes mellitus.
These types of diagnostic decision making can be performed with fuzzy logic. Initiated by Zadeh in
1965, fuzzy logic and fuzzy set theory are being used more and more in medical expert system
applications.

The current research focuses on an FPGA-based smart processing system that can predict the patient’s
physiological state given the patient’s past physiological data. The scheme can provide an alarm to the
373

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
relevant personnel, who would contact a physician at a remote site before the patient reaches a critical
state. The physician would take the necessary actions to provide medical support to the patient. The
smart processing system consists of blocks for fuzzification, inferencing, and defuzzification of patient
data. It can handle patients’ peripheral health screening, and help caregivers focus on the few critical
patients who really need a physician’s clinical assistance.

To reduce the combinational logic blocks required to implement the system, we implemented the
division process required for normalizing membership functions using intelligent multiplication
techniques. To make the computing system fast, we used pipelined data processing architectures. An
FPGA implementation is useful in developing countries because of the low investment required
compared to ASIC prototyping costs. Additionally, FPGAs are reprogrammable, which allows design
improvements. This feature is important because it supports new structures, e.g., upgrading the current
smart diagnostic system, supporting other diseases, mapping to other fields of human expertise, etc.

With the Nios® II soft-core processor, we can overcome design issues such as limited peripheral
resources, difficult I/O configuration, complex hardware design, and software programming. This
design also meets time sequence and function requirements, optimally uses the processor’s resources,
and greatly improves the overall system efficiency. Because the system has external memory and I/O,
memory access is frequent. With the Nios II processor’s user-defined peripherals, user-defined logic,
and direct memory access (DMA), the design can easily access memory and move data when using
SDRAM, SRAM, and flash memory. In our design, the patient profile is stored in flash memory. By
combining the requirements of both software and hardware in a coordinated development process,
Altera’s SOPC solution is the best choice: it can fully showcase the advantages of an FPGA’s logic
control and data processing capabilities. This design approach allows for flexible system configuration,
provides simple, convenient development, supports various processing modes, and offers powerful data
processing capacity at low cost.

Function Description
The designed system has a pipelined smart processing unit that can predict the patient’s future
pathophysiological state based on past pathophysiological data. Figure 1 shows the functional
architecture of a diagnostic system that includes a smart agent that we plan to implement.

Figure 1. Smart Agent Based Diagnostic System Functional Architecture

Data Provided
by Patients

Inference
Engine

Patient Assisted
by Health Care
Professionals

Doctor at
Remote Location

Interaction

Interaction

Algorithm for
Diagnosis

Patient's
Profile

Knowledge Base
for Diagnosis

Reference Base
for Diagnosis

Smart Instrument
374

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
In Figure 1, the smart agent is represented by a fuzzy system. At least three entities are required in this
concept of diagnostics:

■ The healthcare personnel provide data by measuring the patients’ health parameters.

■ The physician interacts with the smart instrument and confirms or denies the diagnosis made by
the smart instrument.

■ The smart instrument performs the diagnosis at regular times and predicts future states of the
patient using fuzzy logic.

Based on previously fed data, the smart instrument can give an early signal of deterioration in the
patient’s health status and indicate an imminent emergency situation. Initially the data provided by the
patients under the assistance of health care professionals is stored in a patients’ profile. The data from
the patients’ profile is subjected to a diagnostic process using a knowledge base for diagnosis. The
diagnosis process is based on fuzzification of patient data. The inference engine makes a prediction
about the future physiological state of the patient based on the fuzzified data. Based on the prediction,
the smart system gives an indication about the possible next physiological state of the patient.

The smart processor we developed can fuzzify and defuzzify patient data. The patient data cannot
always be trusted because it relies on the quality and accuracy of measuring units and the technician’s
skill. Moreover, based on a single bit of data, it would be highly difficult to make an accurate decision
about the future pathophysiological state of the patient, particularly in a chronic case. Therefore, we
fuzzified the patient data to transform periodic measures into likelihoods that the pathophysiological
parameter of the patient is high, low, or moderate compared to a reference value set.

As an example study, this project analyzes patient renal data and predicts the patient’s future
physiological state. The system calculates the patient’s body mass index (BMI) using the patient’s
height (in feet) and weight (in kilograms). Because doctors are more interested in knowing whether the
pathophysiological risk parameters of a patient is high, moderate, or low as well as the patient’s
physiological parameter trends, it is more useful to represent the patient’s pathophysiological risk
parameters as linguistic variables instead of ordinary variables. Then, we can use fuzzy logic to build a
model that predicts the fuzzy set (low, moderate, or high) in which the patient’s particular risk parameter
(e.g., B.M.I, glucose, urea, creatinine, and blood pressure) lies to be referenced at the next reading of
that patient data. For this purpose, we used triangular and trapezoidal fuzzy operators. A typical
triangular function takes the form:

A(x; a, m, b) = max{min[(x - a)/(m - a), (b - x)/(b - m)], 0}

Similarly, a typical trapezoidal function takes the form:

A(x; a, m, n, b) = max{min[(x - a)/(m - a), 1, (b - x)/(b - n)], 0}

We determined the membership function in accordance with the ranges and tolerance limits set up by
the World Health Organization. Figure 2 shows the plot of the membership functions defined above.
375

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 2. Plots of the Membership Functions

Figure 2 depicts the cognitive frames used for fuzzy modeling patients’ BMI, blood glucose, blood
urea, blood creatinine, systolic, and diastolic blood pressure data. It is obvious that all low, moderate,
and high risk parameter ranges (modeled here as fuzzy sets) of the patients fall in the same universe of
risk parameter values.

Inferencing involves deciding whether the patient is in a normal condition, is heading towards a
moderately critical condition, or is in a severely critical condition. Inferencing is done by taking the
diagnostic algorithm’s next possible state output at different points in time. Typical rules for inferencing
take the following forms:

■ R1—If (BMI is high) and (glucose is high) and (urea is high) and (creatinine is high) and (systolic
blood pressure is high) and (diastolic blood pressure is high) then the (patient’s renal condition is
severe).

■ R2—If (BMI is high) or (glucose is high) or (urea is high) or (creatinine is high) or (systolic blood
pressure is high) or (diastolic blood pressure is high) then the (patient’s renal condition is
moderately critical).

■ R3—If (glucose is high at time Ti) and (glucose is low at time Tj) and (Ti ≠ Tj) then the (patient
should go for glycosylated hemoglobin).

1.0

0 10 20 30 40 B.M.I.

M
em

be
rs

hi
p

Fu
nc

tio
n

1.0

0 70 80 120 130 140
Blood Glucose

M
em

be
rs

hi
p

Fu
nc

tio
n

1.0

0

M
em

be
rs

hi
p

Fu
nc

tio
n

0.6 0.9 1.2 1.5
Creatinine

1.0

0 6 8 19 21
Urea

M
em

be
rs

hi
p

Fu
nc

tio
n

1.0

0 100 110 130 140
Systolic Blood Pressure

M
em

be
rs

hi
p

Fu
nc

tio
n

1.0

0 70 80 90 100

Diastolic Blood Pressure

M
em

be
rs

hi
p

Fu
nc

tio
n

B.M.I Blood Glucose

Creatinine Urea

Systolic Blood Pressure Diastolic Blood Pressure
376

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
■ R4—If (BMI is moderate) or (glucose is moderate) or (urea is moderate) or (creatinine is
moderate) or (systolic blood pressure is moderate) or (diastolic blood pressure is moderate) then
the (patient’s renal condition is normal).

and so on.

Defuzzification involves taking a crisp action based on the inference drawn, and can be implemented
by illuminating an LED or by outputting data. In our scheme, LEDs indicate that the patient’s state is
approaching criticality.

The system has two rule bases. The knowledge base contains rules for inferencing based on the patient
data set currently received and the already stored patient data. The reference base contains the reference
values for fuzzifying the patient data. Based on these values, the system computes the membership
function values of low, moderate, and high for the patients’pathophysiological parameters at different
points in time. The diagnostic algorithm uses these values to compute the possibility that the next
pathophysiological data will be low, moderate, or high.

The diagnosis algorithm computes the time-weighted mean of the membership functions of the
patient’s pathophysiological data. The possibility that the next pathophysiological data will be low,
moderate, or high is computed as:

where the summation is done from i = 1 to n, and the value of n is the sequence number of the time
instant at which the current pathological data of the patient is taken and R ∈{low, moderate, high}. μ(x)
is μl(x) μm(x), or μh(x) acordingly as the membership function refers to a low, moderate, or high fuzzy
set, respectively. To predict the fuzzy set in which the next state input of a certain pathophysiological
parameter will lie, the value of P(x) is considered for which P(x) ≥ PR(x).

We implemented the smart data processing system on an Altera® Cyclone® EP1C6Q240C8 FPGA. We
could also have implemented the system using software; however, this solution would require a
powerful computer to run the software at reasonable speed and accuracy. A powerful computer is too
costly and would require a steady supply of electricity in rural sectors. The cost would be an
impediment to adoption of the smart diagnostic system in the rural health care centers in third-world
countries. Additionally, a software-only solution could take longer to process if we constructed more
complex systems covering many different infected parts of the human body, However, a few
milliseconds delay cannot be considered important for medical diagnosis. The main reason for a
hardware-based implementation is the need for an inexpensive, portable diagnostic system. The main
disadvantages of an ASIC-based solution is the high development cost and the low reconfigurability.
An FPGA solution ensures that new changes in the proposed diagnostic algorithm can be mapped onto
the hardware without having to make costly changes.

Figure 3 shows the UP3 board on which the FPGA is mounted.

PR x()

iμ x()

i 1=

n

∑

i

i 1=

n

∑
-----------------------=
377

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 3. UP3 Board

We generated an SRAM Object File (.sof), which is a bitstream pattern, using the system’s VHDL
model and downloaded it to the FPGA via the JTAG interface and ByteBlaster II cable. The
configuration data is stored in the FPGA’s SRAM.

The input is sent to the FPGA using push-button switches. We need 12 push-button switches but the
UP3 board does not have that many. Therefore, we developed our own printed circuit board (PCB)
containing the required push-button switches and connected it to the UP3 board. The FPGA receives a
0 input when the user presses a switch. The binary data entered using the switches are converted into
real numbers for computation using conversion weights stored in a look-up table (LUT) implemented
on the SDRAM.

Using these parameter values, the system computes the corresponding membership function values μl,
μm, and μh. These values refer to whether the pathological parameter value is in the low, moderate, or
high fuzzy set, respectively. The values are stored in the CMOS flash memory using the Nios II soft-
core processor. Based on these values, the system computes the possibility that the values of the
different physiological parameters are low, moderate, or high. The maximum of these three possibilities
at any instant suggests the patient’s next possible physiological state.

The output therapeutic decision is displayed on UP3 board’s 7-segment display. The 7-segment display
indicates whether the pathological parameters will be low, moderate, or high values. Because, there are
four 7-segment displays in the final system and the board only has port available, we used a 4-bit output
called SCAN (0 to 3). The SCAN’s bit lines are connected to the cathodes ofthe LED 7 segment display,
which selects the 7-segment LED in time-shared mode. The display codes are stored in a LUT.

The user can reset the system at any time using a push-button switch. Two LEDs connected in common
anode mode indicate whether the patient’s condition is moderately critical (MC) or severely critical
(SC). The system has a battery back-up that provides a continuous power supply to overcome the FPGA
volatility.

The FPGA system implementation is very attractive because FPGAs are reconfigurable and becoming
more economical and faster as time goes on. We tested the FPGA implementation with a patient to
compare the decision result of the physician vs the smart agent.
378

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
To test the system, we analyzed data from a 5-foot tall, 42-year-old patient. Tables 1 through 6 show the
results. In the tables, AS refers to the actual physiological state of the patient. In the actual experiment,
the patient’s weight (Wt), glucose, urea, creatinine, systolic, and diastolic blood pressure data taken at
10-day intervals are input to the system at time Ti (where i = 0,1,…, 9). Initially, the height of the patient
is also given. Based on the height and weight data, the system computes the patient’s BMI at different
times. Using these parameters, the system, computes the corresponding membership function values μl,
μm, and μh.

In the AS clumn, M indicates a moderate risk, H* indicates high risk that still falls within the tolerance
limits of moderate value, and H indicates strictly high risk.

Table 1. BMI Data Results

Time Weight BMI μl μm μh Pl Pm Ph AS PNS
T1 64.1 27.97 0.00 0.29 0.14 0.00 0.29 0.14 M M

T2 66.2 28.31 0.00 0.24 0.16 0.00 0.26 0.15 H* M

T3 66.8 28.57 0.00 0.20 0.18 0.00 0.23 0.17 H* M

T4 67.5 28.87 0.00 0.16 0.21 0.00 0.20 0.18 H* M

T5 66.9 28.61 0.00 0.19 0.19 0.00 0.18 0.17 H* M

T6 67.8 29.00 0.00 0.14 0.21 0.00 0.14 0.18 H* H

T7 68.2 29.17 0.00 0.12 0.23 0.00 0.11 0.20 H* H

T8 69.5 29.73 0.00 0.04 0.27 0.00 0.09 0.22 H* H

T9 70.5 30.15 0.00 0.00 0.29 0.00 0.07 0.24 H H

T10 70.6 30.62 0.00 0.00 0.33 0.00 0.06 0.25 H H

Table 2. Glucose Data Results

Time Glucose μl μm μh Pl Pm Ph AS PNS
T1 120 0.00 1.00 0.00 0.00 1.00 0.00 M M

T2 125 0.00 0.50 0.50 0.00 0.67 0.33 H* M

T3 128 0.00 0.20 0.80 0.00 0.70 0.30 H* M

T4 127 0.00 0.30 0.70 0.00 0.54 0.46 H* M

T5 128 0.00 0.20 0.80 0.00 0.33 0.57 H* H

T6 128 0.00 0.20 0.80 0.00 0.29 0.71 H* H

T7 128 0.00 0.20 0.80 0.00 0.26 0.74 H* H

T8 129 0.00 0.10 0.90 0.00 0.23 0.77 H* H

T9 129 0.00 0.10 0.90 0.00 0.20 0.80 H* H

T10 131 0.00 0.00 1.00 0.00 0.16 0.84 H H
379

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Table 3. Urea Data Results

Time Urea μl μm μh Pl Pm Ph AS PNS

T1 17.0 0.00 1.00 0.00 0.00 1.00 0.00 M M

T2 17.5 0.00 1.00 0.00 0.00 1.00 0.00 M M

T3 18.7 0.00 1.00 0.00 0.00 1.00 0.00 M M

T4 19.1 0.00 0.95 0.05 0.00 0.98 0.02 H* M

T5 20.7 0.00 0.15 0.85 0.00 0.70 0.30 H* M

T6 20.6 0.00 0.20 0.80 0.00 0.56 0.44 H* M

T7 20.8 0.00 0.10 0.90 0.00 0.44 0.56 H* H

T8 20.9 0.00 0.05 0.95 0.00 0.36 0.64 H* H

T9 20.9 0.00 0.05 0.95 0.00 0.29 0.71 H* H

T10 21.0 0.00 0.00 1.00 0.00 0.24 0.76 H H

Table 4. Creatinine Data Results

Time Creatinine μl μm μh Pl Pm Ph AS PNS
T1 1.0 0.00 1.00 0.00 0.00 1.00 0.00 M M

T2 1.1 0.00 1.00 0.00 0.00 1.00 0.00 M M

T3 1.2 0.00 1.00 0.00 0.00 1.00 0.00 M M

T4 1.3 0.00 0.67 0.33 0.00 0.87 0.13 H* M

T5 1.4 0.00 0.33 0.67 0.00 0.69 0.31 H* M

T6 1.4 0.00 0.33 0.67 0.00 0.59 0.41 H* M

T7 1.4 0.00 0.33 0.67 0.00 0.52 0.41 H* M

T8 1.4 0.00 0.33 0.67 0.00 0.48 0.52 H* H

T9 1.8 0.00 0.00 1.00 0.00 0.38 0.62 H H

T10 2.4 0.00 0.00 1.00 0.00 0.31 0.69 H H
380

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
Table 5. Systolic Blood Pressure (SBP) Data Results

Time SBP μl μm μh Pl Pm Ph AS PNS
T1 128 0.00 1.00 0.00 0.00 1.00 0.00 M M

T2 131 0.00 0.90 0.10 0.00 0.93 0.07 H* M

T3 132 0.00 0.80 0.10 0.00 0.87 0.13 H* M

T4 136 0.00 0.40 0.20 0.00 0.68 0.13 H* M

T5 137 0.00 0.30 0.70 0.00 0.55 0.45 H* M

T6 138 0.00 0.20 0.80 0.00 0.45 0.55 H* H

T7 139 0.00 0.10 0.90 0.00 0.36 0.64 H* H

T8 140 0.00 0.00 1.00 0.00 0.28 0.72 H H

T9 140 0.00 0.00 1.00 0.00 0.23 0.77 H H

T10 143 0.00 0.00 1.00 0.00 0.18 0.82 H H

Table 6. Diastolic Blood Pressure (DBP) Data Results

Time DBP μl μm μh Pl Pm Ph AS PNS
T1 87 0.00 1.00 0.00 0.00 1.00 0.00 M M

T2 88 0.00 1.00 0.00 0.00 1.00 0.00 M M

T3 90 0.00 1.00 0.00 0.00 1.00 0.00 M M

T4 94 0.00 0.60 0.40 0.00 0.84 0.16 H* M

T5 96 0.00 0.40 0.60 0.00 0.69 0.31 H* M

T6 98 0.00 0.20 0.80 0.00 0.55 0.45 H* M

T7 98 0.00 0.20 0.80 0.00 0.46 0.54 H* H

T8 97 0.00 0.30 0.70 0.00 0.42 0.58 H* H

T9 100 0.00 0.00 1.00 0.00 0.34 0.66 H H

T10 101 0.00 0.00 1.00 0.00 0.28 0.72 H H
381

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Based on these membership function values, the possibilities the values of the different
pathophysiological risk parameters will be low, moderate or high has been computed by the system (see
Table 7). The AS and PNS subscripts are the first letter of the corresponding risk parameter. For
example, ASB refers to the patient’s state based on BMI data.

Although the system gives a crisp decision regarding the patient’s future pathophysiological state, the
point is that the system predicts a critical state at time T7, which is well before a clinically overt
criticality occurs at time T9. The system can thus be deployed in a variety of telediagnostic
environments, in which health care professionals provide support services without a doctor present.

Performance Parameters
Our system has the following performance parameters:

■ Power supply—DC voltage 5 V and the operating current is 175 mA.

■ Operating temperature—5o to 45o C and relative humidity or 8% to 95%.

■ Data input—Data is input via push-button switches. The input data is converted into real numbers
for the ease of computation.

■ Data output—The output data is displayed on the 7-segment display. A patient’s critical state is
signaled by a glowing LED.

■ Storage—The patient data is stored in a TC58FVB160AFT CMOS flash memory device.

We used the Nios II processor to manage the FPGA’s internal resources, define the time sequence
requirements for data processing, and handle display and control of the system. Additionally, we needed
to access multiple peripherals frequently from the main system, and the Nios II processor helped us to
improve the system’s overall operational efficiency. The Nios II functions are descibed below:

■ It is the main processor, and controls the whole system logic.

■ It handles the transfer of patient data between FPGA and CMOS flash memory.

■ It handles all instructions to the FPGA’s internal logic through user-defined programmable I/O
(PIO) peripherals.

Table 7. Smart Agent Decision Results

Time ASB PNSB ASG PNSG ASU PNSU ASC PNSC ASD PNSD ASS PNSS SC
T1 M M M M M M M M M M M M 0

T2 H* M M M M M M M M M H* M 0

T3 H* M H* M M M M M H* M H* M 0

T4 H* M H* H H* M H* M H* M H* M 0

T5 H* H H* H H* M H* M H* M H* M 0

T6 H* H H* H H* M H* M H* M H* H 0

T7 H* H H* H H* H H* H H* H H* H 1

T8 H* H H* H H* H H* H H* H H H 1

T9 H H H* H H* H H H H H H H 1

T10 H H H H H H H H H H H H 1
382

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
Design Architecture
For fast computation, we implemented a finite state machine with pipelined data processing on the
FPGA. Figure 4 shows the pipelined architecture.

Figure 4. Pipelined Architecture Implemented in FPGA

The system has four arithmetic logic units (ALUs):

■ ALU1 computes the BMI using height and weight data.

■ ALU2 computes the membership function values using the instantaneous values of the
pathophysiological parameters.
383

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ ALU3 computes the probability that low, moderate, or high pathophysiological parameters will
occur.

■ ALU4 decides whether the next pathophysiological parameter reading is low, moderate, or high.

With a pipelined architecture, the system can compute the decision for all pathophysiological
parameters in 14 clock cycles vs. the 44 clock cycles required in an unpipelined architecture. This
difference increases performance about 3.14 times.

Figure 5 shows the system architecture including the Nios II processor.

Figure 5. Medical Diagnostic System Architecture Co-Design

The design’s main modules are:

■ U1—2-Mbyte flash memory containing the patient data.

■ U2—Tri-state bridge.

■ U3—Nios II processor.

■ U4—DMA controller configured to feed the smart processing unit (U5) with patient data.

■ U5—Smart processing unit based on the pipelined architecture discussed previously.

■ U6—Four 7-segment displays and two LEDs for displaying the output results.

■ U7—11 push-button switches for entering data.

■ U8—SDRAM LUT that stores the display codes and conversion weights.

U6 U7 U8

LED Pushbutton
Switch

SDRAM

Tri-State Bridge

DMA Smart Processing
Unit (SPU)

FPGA

U4 U5

U3 Nios II Processor

U2

Tri-State Bridge

U1

Flash Memory
16 Mbytes
384

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
The hardware/software co-design involves the following steps:

1. Develop the system algorithm.

2. Implement the hardware peripherals using hardware description languages.

3. Verify the hardware peripherals’ functionality using the ModelSim software.

4. Synthesize the peripherals using the Leonardo Spectrum synthesis tool.

5. Perform layout and timing analysis of the hardware peripherals using the Quartus II software.

6. Implement the algorithm in the Nios II processor.

7. Use the Nios II Integrated Development Environment (IDE) to connect the Nios II processor with
the hardware peripherals.

8. Build and load the Quartus® II project onto the FPGA.

Figure 6 shows the data processing software flow chart.
385

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 6. Software Algorithm Flow Chart

Figure 7 shows the smart agent’s schematic.

Start

Enter Input
Data

Compute Membership
Function Values

Patient Profile
Calculate the

Possibilities Using
Present and Past Data

Is the
Patient

Moderately
Critical?

N

Y

Display the Indication in
LED

Is the
Patient

Severely
Critical?

N

Y

Display the Indication in
LED

Display Output Data
386

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
Figure 7. FPGA-Based Smart Agent Schematic

Design Description
Using Altera’s UP3 development board, we were able to design most of the system functions, and test
and simulate all functions. Additionally, we designed a few circuit boards for design and test. We
performed our system design and testing using the following steps:

1. Used SOPC Builder to access peripheral storage on the UP3 development board.

2. Referred to UP3 board examples and testing documents, and learned about the Nios II
architecture, C language software programming in the IDE, and online programming and
debugging for the device.

3. Implemented user-defined peripherals and logic on UP3 development board.

4. Implemented debouncing of data entered via the push-button switches.

Hardware Implementation
Our hardware design task was to combine the UP3 board testing methods and our circuits, and then
design the necessary hardware modules to develop a medical diagnostic system that implemented the
required functions on the Nios II processor. Using the PROTEL 99SE tool, we partitioned the design
using the UP3 development board and our own circuit modules. We designed all functional system
modules based on the FPGA, which represents a system-on-a-programmable-chip (SOPC) design
concepts in hardware. Because the Nios II processor is already available, we simply needed to configure
peripherals such as flash devices. Other system peripherals include a power management unit, LED
interface, and push-button switches.

CLK

DATAA

DATAB

DATAC

DATAD

ENA

REGOUT

LCELL (5F0C)

CLK

DATAA

DATAC

DATAD

ENA

REGOUT

LCELL (AAF0)

CLK

DATAA

DATAB

DATAD

ENA

SYNCH_DATA

COMBOUT

LCELL (BBC0)

CLK

DATAA

DATAB

DATAD

ENA

SYNCH_DATA

COMBOUT

LCELL (F388)

CLK

DATAA

DATAB

DATAD

ENA

SYNCH_DATA

COMBOUT

LCELL (E6A2)

CIN

CIN0

CIN1

CLK

ENA

COMBOUT

REGOUT

LCELL (0F0F)

CIN

CIN0

CIN1

CLK

ENA

COMBOUT

REGOUT

LCELL (0F0F)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

!ACLR

CIN

CIN0

CIN1

CLK

DATAB

COUT0

COUT1

REGOUT

LCELL (3C3C)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

!ACLR

CIN

CLK

DATAB

COUT0

COUT1

REGOUT

LCELL (C3C3)

!ACLR

CIN

CIN0

CIN1

CLK

DATAA

REGOUT

LCELL (A5A5)

DATAA

DATAD
COMBOUT

LCELL (AA00)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

DATAA

DATAC

DATAD

COMBOUT

LCELL (AAA0)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

!ACLR

CIN

CIN0

CIN1

CLK

DATAB

COUT

REGOUT

LCELL (3C3C)

!ACLR

CIN

CIN0

CIN1

CLK

DATAA

COUT0

COUT1

REGOUT

LCELL (A5A5)

DATAA

DATAB

DATAC

DATAD

COMBOUT

LCELL (8088)

DATAA

DATAB

DATAC

DATAD

COMBOUT

LCELL (A080)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

!ACLR

CIN

CIN0

CIN1

CLK

DATAA

COUT0

COUT1

REGOUT

LCELL (5A5A)

!ACLR

CLK

DATAA

DATAB

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (22A0)

DATAA

DATAC

DATAD

COMBOUT

LCELL (00A0)

!ACLR

CIN

CIN0

CIN1

CLK

DATAB

COUT0

COUT1

REGOUT

LCELL (C3C3)

!ACLR

CLK

DATAA

DATAB

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F0B0)

!ACLR

CLK

SYNCH_DATA

REGOUT

LCELL (0000)

!ACLR

CLK

DATAA

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (50F0)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (00F0)

CLK

DATAA

DATAC

DATAD

ENA

REGOUT

LCELL (505A)

!ACLR

CLK

DATAA

DATAB

DATAC

DATAD

REGOUT

LCELL (ECA0)

!ACLR

CLK

DATAA

DATAB

DATAC

DATAD

REGOUT

LCELL (F222)

DATAA

DATAB

DATAC

DATAD

COMBOUT

LCELL (8000)

CLK

DATAA

DATAB

DATAC

DATAD

ENA

REGOUT

LCELL (F222)

CLK

DATAB

DATAC

DATAD

ENA

REGOUT

LCELL (0CFC)

!ACLR

CLK

DATAA

DATAB

DATAC

DATAD

REGOUT

LCELL (ECA0)

!ACLR

CLK

DATAA

DATAD

REGOUT

LCELL (AA00)

DATAA

DATAB

DATAC

DATAD

COMBOUT

LCELL (8000)

DATAA

DATAD
COMBOUT

LCELL (AA00)

!ACLR

CLK

DATAA

DATAB

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (FF02)

DATAA

DATAB

DATAC

DATAD

COMBOUT

LCELL (E000)

!ACLR

CLK

DATAB

SYNCH_DATA

COMBOUT

REGOUT

LCELL (3030)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

DATAA

DATAC

DATAD

COMBOUT

LCELL (FA00)!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

DATAA

DATAB

DATAC

DATAD

COMBOUT

LCELL (2700)

CLK

DATAA

DATAB

DATAC

DATAD

ENA

REGOUT

LCELL (BBA0)

CLK

DATAA

DATAB

DATAC

DATAD

ENA

REGOUT

LCELL (FFA8)

CLK

DATAA

DATAB

DATAC

DATAD

ENA

REGOUT

LCELL (FEAA)

Selector39~79_COMBOUT

state.init_REGOUT

lpm_divide:Div15_add_sub_cella[2]~27
lpm_divide:Div12_add_sub_cella[2]~27

prouh[7]_REGOUT

probh[7]_REGOUT
result[0]~1435_COMBOUT

progl[7]_COMBOUT
lpm_divide:Div5_add_sub_cella[2]~27

progm[7]_COMBOUT

prodl[7]_REGOUT
result[0]~1539_COMBOUT

result~1496_COMBOUT
lpm_divide:Div14_add_sub_cella[2]~27

result[0]~1443_COMBOUT
result[0]~1432_COMBOUT

lpm_divide:Div13_add_sub_cella[2]~27

prosl[7]_COMBOUT

lpm_divide:Div19_add_sub_cella[3]~72
lpm_divide:Div19_add_sub_cella[3]~68

lpm_divide:Div19_add_sub_cella[3]~68COUT1_86

result2[3]~0_COMBOUT

result2[1]_COMBOUT
result2[1]_REGOUT

lpm_divide:Div19_add_sub_cella[3]~68
lpm_divide:Div19_add_sub_cella[3]~70

lpm_divide:Div19_add_sub_cella[3]~70COUT1_86

result2[2]_COMBOUT
result2[2]_REGOUT

state.compute_3_COMBOUT
state.compute_3_REGOUT

count[18]_REGOUT

state.sw_sel1_REGOUT

state.data_sel_COMBOUT

count[19]_REGOUT

state.compute_0_REGOUT probm[11]~4_COMBOUT

state.compute_1_COMBOUT
state.compute_1_REGOUT

state.compute_5_COMBOUT

prouh[15]~100_COMBOUT

state.compute_8_COMBOUT

count[9]_COUT

disp0[0]~2483_COMBOUT

disp0[6]~2478_COMBOUT

disp0[0]~2484_COMBOUT

Equal13~137_COMBOUT
disp2[0]~1315_COMBOUT

disp0[4]~2480_COMBOUT

disp2[0]~1316_COMBOUT

state.compare_COMBOUT

LessThan68~176_COMBOUT

state.res_sel_1_REGOUT

state.compute_4_COMBOUT

state.compute_4_REGOUT

disp2~1309_COMBOUT

result[11]~1450_COMBOUT

count[12]_COUT0
count[12]_COUT1

result1[0]_REGOUT
result1[1]_REGOUT
result1[2]_REGOUT

state.compute_2_COMBOUT

state.compute_2_REGOUT

state.critical_REGOUT

j[0]_REGOUT
j[1]_REGOUT

state.compute_sp_REGOUT

state.compute_dp_COMBOUT
state.compute_dp_REGOUT

Equal32~69_COMBOUT

state.res_disp_COMBOUT

state.res_disp_REGOUT

state.sw_sel2_REGOUT

i[0]_REGOUT

state.sp_sel_1_REGOUT
Selector79~68_COMBOUT

state~1328_COMBOUT

Equal0~71_COMBOUT

state.sp_sel_REGOUT

Selector68~69_COMBOUT
Selector68~70_COMBOUT

state.ht_sel_1_REGOUT

state.compute_REGOUT

b[3][0]~16_COMBOUT

WideOr1~14_COMBOUT
Add1~503_COMBOUT
state.delay1_REGOUT

cnt2[14]_REGOUT

Selector72~44_COMBOUT

cnt2[0]_REGOUT

Selector61~41_COMBOUT
Selector76~39_COMBOUT

state.wt_sel_1_REGOUT

state.wt_sel_REGOUT

state.pb_sel2_REGOUT
pb_s_REGOUT

state.delay_REGOUT

state.compute_ht_REGOUT

b1[3][0]~16_COMBOUT

data1[0]~274_COMBOUT

data1[0]~275_COMBOUT

WideOr0~4_COMBOUT
state.htwt_sel_REGOUT

disp0[4]~2487_COMBOUT
state.hold_REGOUT

state.htwt_sel_1_COMBOUT
state.htwt_sel_1_REGOUT

cnt[1]~1163_COMBOUT
Selector127~280_COMBOUT

WideOr0~5_COMBOUT

cnt[0]~1164_COMBOUT

Equal9~30_COMBOUT

state.display_COMBOUT

state.display_REGOUT

state.compute_6_COMBOUT

probh[15]~100_COMBOUT

state.compute_7_COMBOUT

state.compute_7_REGOUT

WideOr12~15_COMBOUT

data0[0]~105_COMBOUT

Equal15~97_COMBOUT
dp3_REGOUT

Selector137~411_COMBOUT
Selector137~409_COMBOUT

disp3[3]_REGOUT

Selector56~544_COMBOUT
Selector56~547_COMBOUT

Selector138~248_COMBOUT dp1_REGOUT

mc~reg0

clk

rst

mc

prouh[7]

prosm[7] prosl[7]

result2[1]

result2[2]

count[18]

count[15]

count[19]

probm[11]~4

state.compute_1

state.compute_5

prouh[15]~100

state.compute_8

count[14]

count[17]

disp2[0]~1316

state.compare

result[11]~1450

count[13]

state.compute_2

state.critical

state.res_disp

state.sp_sel

state.ht_sel_1

b[3][0]~16

cnt2[14]

cnt2[0]

state.wt_sel

state.delay

b1[3][0]~16

data1[0]~275

state.htwt_sel_1

cnt[0]~1164

state.display

state.compute_6

probh[15]~100

state.compute_7

data0[0]~105

dp3

disp3[3]

dp1

state.compute_dp

state.compute_4

state.data_sel

i[0]

disp0[0]~2484

progm[7]

count[16]

state.compute_3
387

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
To make it easy to understand the system hardware design process, we split the design description into
the following sections:

■ Schematic diagram design—Because we completed most of the functional testing and simulation
on the UP3 development board and self-designed circuits, the schematic diagram mainly refers to
designs that combine these elements into the schematic most representative of the circuit system.
With Altera’s SOPC solution, we integrated all processors and functional control units into the
FPGA, further simplifying the design structure.

■ Schematic diagram functional verification—Although most of the functional testing was
completed on the test board, we needed to functionally verify the hardware integration. The
schematic diagram functional verification primarily demonstrates the proof of concept. This
process confirmed our complete circuit design.

■ Component purchase—We purchased the necessary components, such as the 7-segment displays
and push-button switches, while designing the schematic diagram and verifying it. All component
packages were clearly marked on the schematic, which made PCB development easier.

■ Implementing the LUTs— Our design requires two LUTs. One LUT stores the conversion weights
that convert the binary data entered using the push-button switches to integers and real numbers
for data computation purposes. The other LUT stores the display codes for displaying data in the
7-segment displays.

We added peripherals using SOPC Builder (see Figure 8).

Figure 8. Adding Peripherals Using SOPC Builder

Software Implementation
Our software design task was to migrate the VHDL and C language programs of the previously
described functions (on the UP3 development board and self-designed circuits) to the Cyclone
EP1C6Q240C8 FPGA with a Nios II soft-core processor. We based the software module design on
highly integrated hardware modules so that we could complete core modification and perform
upgrades. We used the Altera Quartus II software, SOPC Builder, and Nios II IDE to build the Nios II
processor and to develop the system control program, highlighting the SOPC solution’s highly
integrated and programmable concepts. The design made it possible to implement, add, and remove
multiple peripherals easily, access user-defined peripherals, and design user-defined instructions.
Generally, the Nios II processor controls the system. However, we implemented most of the software
modules based on cooperation between the Nios II processor and the FPGA logic.

We used the VHDL and C languages for the software design. We wrote the logic control and data
processing program in VHDL, and used C language routines for the control program of the main and
sub Nios II processors. Based on the functional tasks, the system software is divided into system
initialization, data acquisition, data display, and patient state prediction. The implementation method
and steps are as follows:

■ System initialization—The system is initialized by the Nios II processor via the tri-state bus,
which includes user buttons, 7-segment displays, and the flash memory.
388

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
■ Data acquisition—The patient data is acquired through push-button switches. The system
receives a binary 0 input when each switch is pressed. The binary data entered through the push-
button switch array is converted into real numbers for computation using conversion weights
stored in a LUT.

■ Data display— The output therapeutic decision is displayed on 7-segment displays. The displays
indicate the possibilities of low, moderate,and high values of the different pathological parameters
at the patient’s next physiological state. Because there are four 7-segment displays for output in
the final system and there is only one port available for display, we used a 4-bit output called
SCAN (0 to 3). The display codes corresponding to the 7-segment display are stored in ROM.

■ Patient state prediction—The patient state is predicted by the smart agent implemented on the
FPGA and interfaced with the Nios II processor. The smart agent’s operation logic is discussed in
“Function Description” on page 374.

Design Features
Using Altera’s SOPC solution, we learned a new way to solve system design problems. By creating an
SOPC design, we learned its advantages and disadvantages. Because SOPC designs use multiple IP
modules to optimize the hardware design, we could simplify the system revision and debug process.
This approach also allowed us to design software and hardware modules simultaneously. In this design
contest, we acquired hands-on experience and were able to use some excellent hardware development
tools. The Quartus II software and SOPC Builder made it easy for us to modify and change hardware,
depending on the application. We also think that this design approach is economical—you do not need
to buy additional hardware, you just change the Nios II configuration. We can easily build new
functions by adding related hardware based on the changed Nios II processor.

The main features of our design are:

■ Portability—Because the requirements of the medical diagnostic system software may change
from time to time, we can design the system such that it can port to different hardware
configurations. The Nios II processor provides this flexibility.

■ Power consumption—The system is applicable for rural health care centers where power sources
may not be available; therefore, the system should consume very low power. The whole system
consumes as little as 60.00 mW.

■ Ease of operation—The system is designed and developed to be operable easily so that it can be
handled by health care professionals. Moreover, it can give an indication about the future
pathophysiological state of a patient in the absence of the physician.

■ Integration—The Nios II processor makes it possible to integrate the FPGA with the peripherals.

Conclusion
During Altera’s 2007 Nios II processor competition, our design group divided the design tasks into
system integration, hardware development, and software design.

■ System intregration—The convenience of the Nios II IDE and the SOPC Builder tools gave us the
flexibility to implement the design quickly on a prototype machine, which accelerated the
development process. In this competition, we learned the process of consumer-electronics product
development. The SOPC design approach reduces the cost of manpower and material resources
during development. Therefore, we believe that this design approach will become popular in the
future. Although we did not add many components, this competition made us appreciate the
potential system integration capabilities. Additionally, we hope that Altera can provide a variety
of demonstration board programs that will help interested students quickly grasp the FPGA design
development process.
389

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Hardware development—In this competition, we used a top-down design approach and planned
the complete hardware design in the beginning. Therefore, we needed to establish data stream
rules at the start of the planning process. These rules eliminated problems during the design stage,
allowing us to complete the project on time. Teamwork was an integral part of this contest.
Although the Quartus II tool was easy and flexible to use, there were design issues that required
experience; for example, using different frequencies while accessing the SDRAM. This
competition gave us an important opportunity to learn about teamwork and problem-solving,
understand system development, and resolve challenging design questions.

■ Software design—We developed the necessary software interface, focusing on implementing the
smart agent on the FPGA and interfacing peripherals with the Nios II processor. We used the
SOPC Builder C++ tool to create the software design for the Window’s interface. We also used it
as a verification tool and performed Nios II communication debugging for the phase test. We hope
to learn more about SOPC design in the future!
390

	FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Soft-Core Processor
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Description
	Design Features
	Conclusion

