
Final Project Report:
Cryptoprocessor for Elliptic Curve Digital

Signature Algorithm (ECDSA)

Team ID: IN00000026
Team member: Kimmo Järvinen

tel. +358-9-4512429, email. kimmo.jarvinen@tkk.fi
Instructor: Prof. Jorma Skyttä

tel. +358-9-4512450, email. jorma.skytta@tkk.fi

Helsinki University of Technology, Signal Processing Laboratory
Otakaari 5A, FIN-02150, Espoo, Finland

August 7, 2007

Abstract
Elliptic Curve Digital Signature Algorithm (ECDSA) is implemented on

an Altera Cyclone II EP2C20F484C7 FPGA using a DE1 development and
education board. Digital signatures are digital counterparts of handwritten
signatures. They provide proof of authorship and authenticity and they are
unforgeable. They also provide proof that the document has not been altered
after signing. The design includes a Nios II processor together with custom-
designed modules for elliptic curve cryptography, SHA-1 hash function and
modular arithmetic. A pseudo-random number generator is also included
for rapid and secure generation of pseudo-random numbers. A user inter-
face is designed with Nios II Integrated Development Environment (IDE)
for demonstrating the use of the design. The design requires approximately
85 % of the device resources. Signature generation is computed in 0.94 ms
and signature verification requires 1.61 ms.

1 Preliminaries

Research on hardware implementation of cryptographic algorithms has been in-
tensive during the recent years. Field-programmable gate arrays (FPGAs) are very
attractive platforms for implementing cryptographic algorithms for various reasons
including performance, flexibility and cost efficiency [15]. This report presents an
efficient implementation of Elliptic Curve Digital Signature Algorithm (ECDSA)
by using a standardized curve B-163 which is listed in [11].

Digital signatures play a central role in modern cryptosystems. They can be
viewed as digital counterparts for handwritten signatures and they are authentic,

1



unforgeable and non-reusable. A signed document is also unalterable and the sig-
nature cannot be repudiated meaning that the signer cannot afterwards claim that
(s)he did not sign the document. [13]

Digital signature algorithms are public-key cryptographic algorithms and thus
they involve two keys; one which is private and one which is public. A document is
signed with the private key and the signature is verified with the public key. Only
the private key needs to be kept in secret in order to prevent other people from
forging one’s signature.

Public-key cryptographic algorithms are based on mathematics (or number the-
ory to be more precise) and it is impossible to discuss these algorithms without any
math. The focus of this report is in implementing ECDSA on an FPGA and details
of the algorithms are consider only to the point which is necessary for understand-
ing the implementation. If more detailed descriptions of algorithms are wanted,
then the reader should consult references which are listed in the end of the docu-
ment.

The implementation is optimized especially for Altera FPGAs and it is de-
signed to take advantage of embedded memory blocks inside Cyclone II. Most of
the design efforts have been dedicated to elliptic curve operations which are the
most time consuming operations in ECDSA, by far. The results show that even a
low-cost FPGA such as Cyclone II can be efficiently used for implementing com-
plex high-security public-key cryptographic algorithms.

Sec. 1.1 presents the basics of elliptic curve cryptography and Sec. 1.2 de-
scribes ECDSA. Hardware architecture is presented in Sec. 2 and a user interface
implemented by using Nios II IDE is considered in Sec. 3. Results are presented
in Sec. 4 together with discussion on them. Finally, the report ends with a list of
possible improvements.

1.1 Elliptic Curve Cryptography

The theory of elliptic curves is deep and an enormous amount of research has been
done on elliptic curve cryptography during the past twenty years or so. Therefore,
it is impossible to present an extensive review of the field here and only subjects
which are the most relevant are discussed in the following. Interested readers are
referred to [3], for example, for further information.

All elliptic curve cryptosystems are based on an operation called elliptic curve
point multiplication which is defined as

Q = kP (1)

where k is an integer and Q and P are points on an elliptic curve. A point is
represented with two coordinates as (x, y).

The reason why elliptic curve point multiplication is used in cryptosystem is
that it is relatively easy to compute but its inverse operation called elliptic curve
discrete logarithm problem, that is finding k if P and Q are known, is considered

2



impossible to solve with present computational resources if parameters are cho-
sen correctly. Thus, elliptic curve discrete logarithm problem can be compared,
for example, to integer factorization problem which is used in the popular RSA
cryptosystems. There is, however, a notable difference because sub-exponential
algorithms for solving elliptic curve discrete logarithm problem are not known
and, therefore, key lengths can be shorter than in RSA.

Elliptic curve point multiplication is computed by using two principal opera-
tions; namely, point addition and point doubling. Point addition is the operation
P3 = P1 + P2 where Pi are points on an elliptic curve. Point doubling is the oper-
ation P3 = 2P1. In this design, point multiplication is computed with the so-called
Montgomery’s ladder [10] which operates as shown in Alg. 1 of the Appendix.

Elliptic curves used in cryptosystems are defined over finite fields denoted by
GF (q) where q is the number of elements in the field. It is commonly preferred
especially in hardware implementations to use binary fields GF (2m) where an
element of the field is presented with m bits. In this design, the field GF (2163)
is used and it is constructed by using normal basis. Arithmetic operations are
computed as follows:

• Addition a + b is computed with a bitwise exclusive-or (XOR).

• Multiplication a × b is computed as presented by Wang et al. in [14]. This
multiplier structure is referred to as Massey-Omura multiplier and it is dis-
cussed in Sec. 2.1.1.

• Squaring a2 is simply a cyclical rotation of the bit vector representing a.

• Finding an inverse element a−1 such that a−1 × a = 1 is performed as sug-
gested by Itoh and Tsujii in [4] and it is called henceforth Itoh-Tsujii inver-
sion. One Itoh-Tsujii inversion requires 9 multiplications and 162 squarings
if m = 163 [4].

Point representation with two coordinates as (x, y) is referred to as the affine
coordinate representation. When points are represented in affine coordinates, both
point addition and point doubling require inversion in GF (2m). Inversion is by
far the most expensive operation and, thus, it is advantageous to trade inversions
for multiplications. This can be done by representing points with projective coor-
dinates as (X, Y, Z); that is, with three coordinates. Mappings between these two
representations are performed as (x, y, 1) and (X/Z, Y/Z). As can be seen, the
mapping from affine to projective coordinates does not require any operations but
the mapping from projective to affine coordinates requires two multiplications and
one inversion. Using projective coordinates is very advantageous because point
additions and point doublings can be performed without inversions and the total
number of inversions in elliptic curve point multiplication is therefore one.

A very efficient algorithm for computing (1) on elliptic curves over GF (2m)
was presented by Julio López and Ricardo Dahab in [9]. They showed that, when
Alg. 1 is used, it suffices to consider only the x-coordinate and the y-coordinate can

3



be recovered in the end [9]. This leads to a very efficient algorithm with projective
coordinates. Point addition (X3, Z3) = (X1, Z1) + (X2, Z2) can be computed as
follows: [9]

Z3 = (X1Z2 + X2Z1)2, X3 = xZ3 + X1Z2X2Z1 (2)

where x is the x-coordinate of the base point P in Alg. 1. The cost of point addition
is four multiplications, two additions and one squaring. Point doubling (X3, Z3) =
2(X1, Z1) is even simpler [9]

X3 = X4
1 + a6Z

4
1 , Z3 = X2

1Z2
1 (3)

where a6 is a fixed curve parameter. Thus, point doubling costs two multiplica-
tions, four squarings and one addition. The y-coordinate is recovered in the end by
computing x1 = X1/Z1 and x2 = X2/Z2 and then by using the formula [9]:

y1 =
(x1 + x)

(
(x1 + x) (x2 + x) + x2 + y

)
x

+ y (4)

where (x, y) is the base point P . This can be computed with one inversion, ten
multiplications, six additions and one squaring.

1.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA is a standard of ANSI, IEEE, and NIST, among others. The following
description is based on Johnson and others’ presentation in [5].

The algorithm operates so that first the user, who is commonly called Alice
or A for short, generates two keys, private and public, by performing a key pair
generation procedure. Then, she publishes her public key. Alice signs a message
by performing a signature generation procedure after which she sends both the
message and the attached signature to the receiver who is called Bob, or B for
short. Bob can verify the signature on the message by first getting Alice’s public
key and then by performing the signature verification procedure.

Key pair generation, signature generation and signature verification are con-
sider in the following sections.

1.2.1 Key Pair Generation

Private and public key for an identity A is generated as follows:

d ∈R [1, n− 1]
Q = dG

(5)

where d ∈R [1, n − 1] means that d is an integer selected at random from the
interval [1, n − 1]. The integer d is A’s private key and Q is A’s public key. The
computation of (5) requires generation of one random integer and computation of
one elliptic curve point multiplication.

4



1.2.2 Signature Generation

In order to generate a signature for a messageM the identity A computes

k ∈R [1, n− 1]
r = [kG]x (mod n)
e = SHA-1(M)

s = k−1(e + dr) (mod n) .

(6)

A’s signature onM is (r, s). The notation [kG]x denotes the x-coordinate of the
result point of kG. Notice that A uses his/her private key d in the signature genera-
tion. Thus, other identities cannot produce the same signature without knowing d.
Signing a message requires generation of one random integer, computation of one
elliptic curve point multiplication and one hashing. In addition, modular inversion,
addition and multiplication are required.

1.2.3 Signature Verification

Identity B verifies A’s signature (r, s) on the messageM by computing

e = SHA-1(M)

w = s−1 (mod n)
u1 = ew (mod n)
u2 = rw (mod n)
v = [u1G + u2Q]x (mod n)

(7)

where Q is A’s public key and thus known by B. If v = r, B accepts the signa-
ture, otherwise (s)he rejects it. Verification requires one hashing and two elliptic
curve point multiplications which are combined with a single elliptic curve point
addition. Modular inversion and two multiplications are needed, as well.

2 Hardware Architecture

Based on the description of ECDSA given in Sec. 1.2, it is clear that the implemen-
tation of ECDSA must be capable of performing the following operations:

• Elliptic curve point multiplication

• SHA-1 hash function

• Modular addition, multiplication and inversion

• (Pseudo-)random number generation

5



Figure 1: Block diagram of the system

The implementation includes custom-build blocks for each of the above operations
in order to ensure fast performance. The most time and resource consuming oper-
ation is elliptic curve point multiplication and thus most of the effort was devoted
in optimizing it.

Fig. 1 shows the block diagram of the ECDSA system. The Nios II processor
is used for user interface and control. Four peripheral components are attached
to Nios II and the actual ECDSA computations are performed with them. The
peripheral components are elliptic curve module (ECC in Fig. 1), hash module
(SHA-1), modular arithmetic module (MOD arithm), and pseudo-random number
generator (PRNG) and they are considered in the following sections. The user
interface was realized on Nios II by using Nios II IDE 6.0, and it is considered in
Sec. 3.

In order to enhance performance a phase-locked loop (PLL) is used for gen-
erating different clocks for different parts of the design. Nios II runs at 50 MHz,

6



Storage

RAM

dual-port

RAM

decoder

DATA IN

DATA OUT

Adder Multiplier(s) Squarer

m

mm

m

m

ADDRA

W ×m-bit

Instruction

ADDRB

INSTR

SQUARE

Figure 2: Block diagram of the FAP

ECC, PRNG and SHA-1 blocks at 75 MHz and modular arithmetic blocks at 20
MHz.

2.1 Elliptic Curve Module

The elliptic curve module consists of a field arithmetic processor (FAP) and logic
controlling it. That is, the FAP performs operations in GF (2163) and the control
logic implements elliptic curve operations by using the FAP for field operations.
The architecture is based on an elliptic curve processor which has been used in [2,
7, 8] which are scientific publications (co-)authored by the author. The author is
alone responsible for the development of the architecture and all VHDL coding.

2.1.1 Field Arithmetic Processor

The FAP consists of adder, squarer, multiplier, storage RAM and instruction de-
coder. Block diagram of the FAP is presented in Fig. 2.

Adder and Squarer The adder computes a bitwise XOR of two m-bit operands,
and it has a latency of one clock cycle. The squarer supports computation of mul-
tiple successive squarings, i.e. x2d

where x is an element of GF (2163) and d is
an integer in the interval [0, dmax] with dmax = 25 − 1. In normal basis squaring
is a rotation of the bit vector as mentioned in Sec. 1.1, and the squarer is a shifter
which computes x2d

in one clock cycle.

Multiplier Field multiplication is critical for the overall performance. Multipli-
cation in normal basis is performed with a multiplier which is a digit-serial im-
plementation of the Massey-Omura multiplier [14]. In a bit-serial Massey-Omura

7



multiplier, one bit of the output is calculated in one clock cycle and, hence, m
cycles are required in total. One bit zi of the result z = x × y, where x, y, z are
elements of GF (2163), is computed from x and y by using an F -function. The
F -function is field specific, and the same F is used for all output bits zi as follows:
zi = F (x≪i, y≪i), where ≪ i denotes cyclical left shift by i bits. Hence, a bit-
serial implementation of the Massey-Omura multiplier requires three m-bit shift
registers and one F -function block. A bit-parallel implementation, where all bits
zi are computed in parallel in one clock cycle, requires m F -function blocks and
an m-bit register for storing the result. [11, 14]

In practice, the bit-serial implementation requiring at least m + 1 clock cycles
is too slow and the bit-parallel implementation requires too much area. A good
tradeoff is a digit-serial multiplier, where p bits are computed in parallel with p
F -function blocks. The F -function blocks can be pipelined in order to increase the
maximum clock frequency. As one clock cycle is required in loading the operands
into the shift registers and each pipeline stage increases latency by one clock cycle,
the latency becomes ⌈

m

p

⌉
+ c + 1 (8)

where d·e denotes rounding up to the nearest larger integer and c is the number
of pipeline stages inside the F -function blocks, i.e. c ≥ 0. In this design, the
parameters were selected to be c = 1 and p = 12.

Others The storage RAM is used for storing elements of GF (2163) and it is
implemented as a dual-port RAM by using embedded memory blocks in the FPGA,
i.e. M4K blocks. The storage RAM is capable of storing W elements. When the
architecture is implemented in a Cyclone II FPGA, a logical choice is W = 256
because, while in true dual-port mode, the widest mode that an M4K block can be
configured to is 256 × 18-bits. Thus, the storage RAM requires d163/18e = 10
M4Ks resulting in a storage capacity of 256 × 163-bits. This much storage space
is rarely needed, but it can be used for example for storing pre-computed points,
and selecting a smaller depth than 256 would not reduce the number of required
M4Ks. Both writing and reading to and from the storage RAM require one clock
cycle. However, the dual-port RAM can be configured into the read-during-write
mode [1] which saves certain clock cycles; see Sec. 2.1.2.

The instruction decoder decodes instructions to signals controlling the FAP
blocks.

2.1.2 Control Logic

The logic controlling the FAP consists of finite state machine (FSM) and ROM
containing instruction sequences.

The instruction sequences are carefully hand-optimized, and certain tricks are
used in order to minimize latencies of point operations. As mentioned in Sec 2.1.1,

8



the read-during-write mode can be used for reducing latencies. In order to max-
imize the advantages in this case, operations are ordered so that the result of the
previous operation is used as the operand of the next operation whenever possible.
This saves one clock cycle because the operands of the next operation can be read
simultaneously while the result of the previous operation is being written.

Inversions in GF (2163) are computed with successive multiplications and squar-
ings as suggested by Itoh and Tsujii in [4]. An Itoh-Tsujii inversion has the con-
stant cost of 9 multiplications and 162 squarings when m = 163 [4]. Although
the number of squarings is high, the successive squaring feature of the squarer (see
Sec. 2.1.1) ensures that the computational cost of the squarings remains reasonable.

The elliptic curve module computes point addition and point doubling (one
step in Alg. 1) in 125 clock cycles. Interfacing and mapping back to affine coor-
dinates requires 404 clock cycles. In total 162 point additions and point doublings
are needed because ` = 163 in Alg. 1. Thus, one elliptic curve point multiplication
requires 20,654 clock cycles. Signature verification requires computation of two
elliptic curve point multiplications whose results are added with a point addition.
This point addition is performed in affine coordinates and it requires 247 clock cy-
cles and the elliptic curve operations computed in verification thus require 41,555
clock cycles.

2.2 Hash Module

The hash module implements SHA-1 hash algorithm according to the standard [12].
The architecture is described in detail in [6] but a short review is given here.

First of all, SHA-1 handles messages in blocks of 512 bits each of which re-
quires computation of 80 steps. One step handles five 32-bit variables by com-
puting four 32-bit modular additions (a + b mod 232) and certain 32-bit logical
functions which depend on the step index. When all blocks have been processed,
the hash of the message is in the five variables and thus SHA-1 outputs a 160-bit
hash. [12]

The hash module implements SHA-1 in a straightforward manner and the de-
sign utilizes only logic resources. The VHDL describing the design is portable and
device independent1.

The implementation consists of four main components; namely, step function,
message schedule, constants block and control logic. The step function block de-
termines the maximum clock cycle of the implementation and it was carefully op-
timized. The four 32-bit additions form the critical path and all other operations
(logic operations and rotations) are computed in parallel with these additions. The
message schedule stores 512-bits message bits and derives a 32-bit word for each
step from these 512 bits by using three 32-bit bitwise XORs and a rotation. The
constants block includes step constants. The word from the message schedule and

1Actually, the code was originally written for Xilinx Virtex-II FPGA but it synthesized for Cy-
clone II without any modifications.

9



the constants are then used in the step function. The control logic is used for con-
trolling the computation and it consists of a counter, multiplexors and coders. [6]

2.3 Modular Arithmetic Modules

Modular arithmetic modules implement the following operations:

• c = a + b (mod n)

• c = a× b (mod n)

• Computation of a−1 such that a−1 × a = 1 (mod n)

where a, b, c are integers in the interval [0, n − 1] and n is a fixed prime number
which is hardwired into the design. The length of all integers is 163 bits.

Addition and multiplication are implemented in the same block. Modular addi-
tion is trivial. Addition is first carried out as a traditional 163-bit integer addition.
If the result is larger or equal to n, then n is subtracted from the result. An addition
is computed in two clock cycles.

Modular multiplication is more involved. In this design, it is carried out as
shown in Alg. 2 of the Appendix. Computation of 2ib is a shift to the left. The
register holding a is shifted to the right so that it suffices to observe only the lsb of
the register. One step in the for-loop in Alg. 2 requires three clock cycles and thus
multiplication requires 489 clock cycles.

Inversion is the most complex operation of the three. It is performed with a
binary algorithm as presented in [3], for example. The algorithm is presented in
Alg. 3 of the Appendix. The binary algorithm was chosen because it does not re-
quire any integer divisions and is therefore efficient to implement. The latency
of inversion is not constant but on average it is about the same as the latency
of multiplication. Inversion, however, requires significantly more resources than
multiplication.

2.4 Pseudo-Random Number Generator

A pseudo-random number generator (PRNG) is used in generating random inte-
gers in key pair generation and signing. The PRNG was implemented as a Linear
Feedback Shift Register (LFSR). The length of the shift register was chosen to be
128 bits, and an irreducible polynomial [13]

p(x) = x128 + x7 + x2 + x + 1 (9)

was used as a feedback function. Thus, the LFSR has a period of 2128−1 bits [13].
The output bits from the LFSR are stored in a 32-bit shift register whose value is
shown as the output of the PRNG every 32nd clock cycle. At the beginning, the
PRNG is set to an initial state (all ones) with the reset signal.

10



Figure 3: Main menu of the user interface

3 User Interface in Nios II IDE

A user interface was created in order to be able to demonstrate the operation of
the ECDSA blocks. It should be noticed that the user interface was designed for
demonstration purpose only, and it was not optimized for performance. In order to
use the blocks in an application requiring fast performance, the user interface (and
probably the Nios II processor altogether) should be replaced with custom-written
logic.

The user interface was written in C language and it is used with the Nios II
IDE. It supports four operations:

• Generation of new identities

• Signing of messages

• Verification of signatures

• Performance evaluation

The above list also forms the main menu of the user interface which is shown
in Fig. 3. Three first ones are ECDSA operations and they implement equations
given in Sec. 1.2. The last operation is used for measuring the performance of the
implementation. A performance counter was attached to the Nios II processor and
it can be used for measuring different parts of the code.

The user interface uses host file system supported by the IDE and it stores and
handles identities, messages and signatures which are located on the harddisk of
the host computer. This slows down the performance of the user interface but this
approach was chosen because of the ease of implementation and use.

The C code is structured so that ecdsa interface.c describes the user
interface and ECDSA functions are given in ecdsa.h/c. The ECDSA functions
directly control the peripheral components attached to Nios II. The functions in-
clude both top level functions for performing high-level tasks such as signature
generation and verification and low-level handles for controlling each component

11



Table 1: Area consumption

Component LEs Regs. M4Ks
Nios II 2,879 1,715 14
ECC 6,441 3,696 22
SHA-1 1,855 1,228 0
MOD addmul 1,547 542 0
MOD inv 2,871 1,026 0
PRNG 199 197 0
Total 15,879 8,472 36

individually. There are also handles for starting and stoping operations so that com-
putations can be easily parallelized. For example, one can first begin computation
of elliptic curve point multiplication which is the most time consuming operation,
then begin hash function, compute some modular arithmetic operations after which
different handles can be used for collecting the results of hashing and point multi-
plication. Considerable performance increases can be achieved with this approach
compared to computing all operations sequentially.

The ECDSA functions are fast enough to be used also in real applications.
However, custom-written control logic is probably needed for applications requir-
ing very fast performance because Nios II will become the bottleneck as it already
slows down the performance considerably as will be shown in Sec. 4.

4 Results and Discussion

The architecture described in Sec. 2 was written in VHDL and synthesized for Cy-
clone II EP2C20F484C7 with Quartus II 6.0 SP1. ModelSim SE 6.1b was used
for simulating the code. Table 1 presents the area consumption of the design com-
ponents. The design occupies 85 % of the logic elements (LEs) available on the
device. Memory block (M4K) usage is 69 %.

Timing evaluations can be computed based on theoretical values and by mea-
suring them with the performance counter. The theoretical values represent the
time that the hardware module computes an operation whereas values given by the
performance counter always include some overhead caused by Nios II. Thus, both
of these values are provided in Table 2. Measured timings in Table 2 are averages
from five runs. End-to-end time includes printings to the console and communica-
tion with the host computer using host file system. Computation time is the time
consumed for computation of the ECDSA operations. ECC only time denotes the
time that is taken by elliptic curve operations. Theoretical computation time as-
sumes that parallel computation is used for all operations whenever possible. The
time required in interfacing is neglected in theoretical times but included in mea-
sured times, and theoretical times equal with the actual computation times without

12



Table 2: Timings in milliseconds

Operation Theoretical Measured
Key pair generation
End-to-end n/a 1143.32
Computation 0.28 0.60
ECC only 0.28 0.50
Signature generation
End-to-end n/a 2073.84
Computation 0.35 0.94
ECC only 0.28 0.54
Signature verification
End-to-end n/a 2296.73
Computation 0.67 1.61
ECC only 0.55 1.00

time spent in interfacing. Notice that the bolded values in Table 2 should be used
for comparisons to other designs because the user interface was designed only for
demonstration purposes.

Key pair generation is expectedly the fastest operation because it requires only
one point multiplication and generation of a random integer. Verification which
requires computation of two point multiplications is, again, expectedly the slowest
operation. Elliptic curve point multiplication dominates in computation of all three
operations.

5 List of Possible Improvements

• Modular arithmetic components are currently straightforward implementa-
tions of simple algorithms and considerable increases in performance and
reductions in area would probably apply if more efficient algorithms were
implemented.

• The two elliptic curve point multiplications in verification could be acceler-
ated by using multiple point multiplication techniques. In these techniques,
both point multiplications are computed simultaneously resulting in consid-
erable increase in speed.

• Koblitz curves could be used instead of general elliptic curves. This would
speed up elliptic curve operations by approximately 50 % as shown in [8].

13



References
[1] Altera Corporation. Cyclone II device handbook, February 2007.

[2] V.S. Dimitrov, K.U. Järvinen, M.J. Jacobson, W.F. Chan, and Z. Huang. FPGA imple-
mentation of point multiplication on Koblitz curves using Kleinian integers. In Pro-
ceedings of Workshop on Cryptographic Hardware and Embedded Systems, CHES
2006, volume 4249 of Lecture Notes in Computer Science, pages 445–459, Yoko-
hama, Japan, October 10–13, 2006.

[3] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.
Springer, 2004.

[4] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses
in GF (2m) using normal bases. Information and Computation, 78(3):171–177,
September 1988.

[5] D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signature algo-
rithm (ECDSA). International Journal of Information Security, 1(1):36–63, August
2001.

[6] K. Järvinen. Design and implementation of a SHA-1 hash module on FPGAs. Techni-
cal report, Helsinki University of Technology, Signal Processing Laboratory, Novem-
ber 2004. http://wooster.hut.fi/˜kjarvine/documents/sha.pdf.

[7] K. Järvinen, J. Forsten, and J. Skyttä. FPGA design of self-certified signature verifica-
tion on Koblitz curves. In Proceedings of the Workshop on Cryptographic Hardware
and Embedded Systems, CHES 2007, Vienna, Austria, September 10-13, 2007. To
appear.

[8] K. Järvinen and J. Skyttä. On parallelization of high-speed processors for elliptic
curve cryptography. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 2007. Submitted.

[9] J. López and R. Dahab. Fast multiplication on elliptic curves over GF (2m) without
precomputation. In Proceedings of the Workshop on Cryptographic Hardware and
Embedded Systems, CHES 1999, volume 1717 of Lecture Notes in Computer Science,
pages 316–317, Worcester, Massachusetts, USA, August 12–13, 1999.

[10] P. L. Montgomery. Speeding the pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48(177):243–264, January 1987.

[11] National Institute of Standards and Technology (NIST). Digital signature standard
(DSS). Federal Information Processing Standard, FIPS PUB 186-2, January 27,
2000.

[12] National Institute of Standards and Technology (NIST). Secure hash standard (SHS).
Federal Information Processing Standard, FIPS PUB 180-2, August 1, 2002.

[13] B. Schneier. Applied Cryptography. John Wiley & Sons, Inc., 2nd edition, 1996.

[14] C. C. Wang, T. K. Troung, H. M. Shao, L. J. Deutsch, J. K. Omura, and I. S. Reed.
VLSI architectures for computing multiplications and inverses in GF (2m). IEEE
Transactions on Computers, 34(8):709–717, August 1985.

[15] T. Wollinger, J. Guajardo, and C. Paar. Security on FPGAs: State-of-the-art im-
plementations and attacks. ACM Transactions on Embedded Computing Systems,
3(3):534–574, August 2004.

14



Appendix: Algorithms

Algorithm 1 Point multiplication using Montgomery’s ladder

Require: Point P , integer k =
∑`−1

i=0 ki2i where ki ∈ {0, 1} and k`−1 = 1
Ensure: Point Q = kP

P1 ← P and P2 ← 2P
for `− 2 downto 0 do

if ki = 0 then
P1 ← 2P1 and P2 ← P1 + P2

else
P1 ← P1 + P2 and P2 ← 2P2

end if
end for
Q← P1

Algorithm 2 Modular addition, c = a× b mod n

Require: Two `-bit integers a and b in the interval [0, n− 1] and a prime n
Ensure: c = a× b (mod n)

c← 0
for i = 0 to `− 1 do

if a is odd then
c← c + b

end if
a← ba/2c {a ≫ 1}
b← 2b {b ≪ 1}
if b ≥ n then

b← b− n
end if
if c ≥ n then

c← c− n
end if

end for

15



Algorithm 3 Modular inversion, c = a−1 mod n

Require: An integer a in the interval [1, n− 1] and a prime n
Ensure: c = a−1 (mod n)

u← a, v ← n
x1 ← 1, x2 ← 0
while u 6= 1 and v 6= 1 do

while u is even do
u← u/2
if x1 is even then

x1 ← x1/2
else

x1 ← (x1 + n)/2
end if

end while
while v is even do

v ← v/2
if x2 is even then

x2 ← x2/2
else

x2 ← (x2 + n)/2
end if

end while
if u ≥ v then

u← u− v, x1 ← x1 − x2

else
v ← v − u, x2 ← x2 − x1

end if
end while
if u = 1 then

if x1 ≥ 0 then
c← x1

else
c← x1 + n

end if
else

if x2 ≥ 0 then
c← x2

else
c← x2 + n

end if
end if

16


