

Innovate Nordic is a multi-discipline engineering design contest open to all
undergraduate and graduate engineering students in the Nordic region. Innovate
brings together the smartest engineering students in Nordic region and the
programmable logic leadership of Altera Corporation to create an environment of
learning through innovation. Innovate is not only about smart design projects, it is
about designing complete products that target specific markets. Students participating
in Innovate are judged equally on the market value of their design as well as on the
quality of execution.

Many entries were received but the best projects were invited to present and
demonstrate their projects at the FPGA world event in Stockholm in Sweden. This
Volume contains the submitted papers from the seven finalists.

The final results were:

1st Place: Team Digital Stereo from Engineering College of Aarhus, Denmark
This project used an fpga to stream and process audio from a commercial CD drive
over the IDE interface – their objective was to drive a class D amplifier and deliver a
100% digital audio system

2nd Place: Team Aliasing from Aalborg University, Denmark
The objective here was to cost reduce Software Defined Radio systems by designing a
novel architecture for SSB demodulation, using multirate signal processing and FPGA.

3rd Place: Team Panda from KTH in Stockholm, Sweden
This team designed an implemented and FPGA based Voiceprint authentication
System

Runners Up:

Team SO-SIG from Helsinki University of Technology, Finland
An FPGA based Biosignal measurement system
Team Kimmo Järvinen from Helsinki University of Technology, Finland
A Cryptoprocessor for Elliptic Curve Digital Signature Algorithm
Team Min Myra from Linköping University, Sweden
An autonomous robot design
Team Hervanta from Tampere University of Technology, Finland
A Leon3 Multi-processor system on an Altera FPGA

 www.innovatenordic.com

2007

Project documentation of

Digital Stereo

Peter Stensgaard Karlsen
psk@mp-tech.dk

Jens Egeløkke Frederiksen
jef@jefec.dk

Team: DigitalStereo ID: IN00000014
Associated lecturer: Stig Kalmo, Engineering College of Aarhus

2007-08-21

Abstract

This is project documentation. In here is developed a fully digital HIFI stereo
set. Audio data is read from a CD utilizing a standard CD-ROM drive and routed
to a custom made class D amplifier. The amplifier is based on Texas
Instruments TAS5504 and TAS5142. All routing and configuration are
implemented on the terasic DE1 demo board holding a Cyclone II FPGA. All
configurations are using the I2C bus, and all audio is routed using the I2S bus.
The NIOS II embedded processor is a key part of the system.
 All software implemented are working, but the class D power amplifier is
failing.
 There are no source codes in this project report. Electrical drawings are
provided.

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 2/41

1. Contents

2. Introduction ... 4
2.1 Background... 4
2.2 Project overview ... 4
2.3 Development responsibilities .. 5

3. CD drive interface ... 6
3.1 Interfacing the CD-Rom drive to the DE1 board 6
3.2 Nios II processor design ... 7
3.3 ATA/ATAPI interface... 10
3.4 CD player functionality .. 12
3.5 Audio transmitter... 14
3.6 Table of Contents (TOC) handler.. 15
3.7 Keypad.. 16
3.8 Display.. 16
3.9 CD-Text .. 16
3.10 I2S converter ... 17
3.11 Phase Locked Loops .. 18

4. The Wolfson WM8731 CODEC... 19
4.1 CODEC Hardware in this project .. 19
4.2 CODEC setup ... 19
4.3 I2C... 20
Write of one byte ... 20
Write of multiple bytes... 21
Read.. 21
I2C signal routing in present project... 21
I2C implementation.. 22

4.4 Test of CODEC... 23
Results .. 24

5. Power amplifier ... 25
5.1 Class D functional description... 25
5.2 The triangle wave ... 26
5.3 Texas Instruments 4 channel digital audio processor TAS5504 26
TAS5504 setup ... 27

5.4 Texas Instruments Stereo Digital Amplifier Stage TAS5142................... 27
Output filters.. 28

5.5 Hardware for the power amplifier.. 28
Error interaction... 28
Audio processor control signals .. 29
Power stage mode select .. 29
PCB layout .. 29
Cooling.. 30
Connection to the DE1 module ... 30
I2C pull up resistors ... 30
PCB power supply... 31

5.6 Test of power amplifier module... 31
Test of control structure... 31

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 3/41

Test of audio path ... 31
6. Multiplexing and miscellaneous... 32
6.1 Audio multiplexer .. 32
6.2 I2S to parallel converter... 32
6.3 Level meter ... 33

7. Conclusions... 34
8. Further development ... 34

Appendix

A Electrical drawings .. 35

IDE ↔ DE1 interface schematics .. 35
IDE ↔ DE1 interface PCB layout .. 35
Power amplifier schematics... 36
Power amplifier PCB layout... 39

B FPGA top-level design .. 40
C References ... 41

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 4/41

2. Introduction

This project proposes a HIFI audio system where the path from the CD to the
loudspeaker is fully digitized. It is submitted as a contest proposal for the Altera
Innovate Nordic.

2.1 Background

Through the past 20 years storage of music has gone through a revolutionizing
digitalization. Phillips and Sony started this development in 1982 when they
introduced the Compact Disk (CD) media. Since then several other digital
Medias has been proposed, but the most successful is the MP3 format
(Fraunhofer, Phillips, CCETT and IRT) introduced around 1994. Today MP3 is
used by almost everyone, and it has been a very big part of computerizing
music handling for the end user.
 This digitalization of the media hasn’t had a great impact on HI-FI music
systems. Some systems have MP3 decoders build-in, but most systems
translate the digital audio into an analog signal fed to an analog amplifier. The
signal path from the digital media to the loudspeaker is still mostly analog,
which adds “colorization” and uncorrectable noise to the signal.

2.2 Project overview

The DE1 development (Cyclone II FPGA) board is the center of the system.

Figure 1: Simplified block diagram

Figure 1 shows a simplified block diagram over the construction developed in
this project. Only the CD drive, the power amplifier and the loudspeakers are
off-board modules. As CD drive is used an A-open CD-ROM drive. The CD
drive is controlled by the CD player; witch retrieves musical data through the
IDE interface. Audio stream from either the CD player or the ADC is routed to
the output by the multiplexer. The ADC and DAC is The Wolfson WM8731
CODEC on the DE1 board. MMI is push buttons, switches, LEDs and 7-
segment displays also on the DE1 board. Amplification is using class D
amplifiers and is a custom made external PCB module.

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 5/41

 A photograph of the project hard ware can be seen on Figure 2.

Figure 2: Photograph of prototype

In the photograph isn’t shown the SMD side of the PCB. It can be seen in the
chapter about the power amplifier.
 The external modules are connected to the DE1 board through ribbon cables.
The CD-ROM IDE interface pins have to be rerouted to fit the GPIO connector
(JP1) on the DE1 board. This is why the “GPIO↔IDE interface board” is
necessary.

2.3 Development responsibilities

The development work has been divided in the group. Jens has been working
on the Class D amplifier hardware and the design of the audio processing
system. Peter has been working on the CD-Rom interface and on retrieving the
audio data from the CD.

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 6/41

3. CD drive interface

The purpose of the CD-Rom interface is to access the CD in the drive, read the
audio data and send it to the audio processing/amplifier block in an acceptable
format. It is agreed to use the I2S format since it is widely used, and can be feed
directly into the audio processor that controls the amplifiers as well as the audio
codec placed on the DE1 board.
 The MMI is the keys and switches on the DE1 board as a simple interface for
controlling playback of the CD, and the 7 segment display to show the current
playing position of the CD. For controlling and reading data from the CD-Rom
drive it is decided to use the Nios II processor. The scope of this sub part of the
project is to provide CD player functionality and sending digital audio data to the
audio processing/amplifier block, which is another subpart of the project.

3.1 Interfacing the CD-Rom drive to the DE1 board

The IDE cable from the CD-Rom drive doesn’t just plug into one of the GPIO
ports on the DE1 board since the DE1 board has +3,3V and Gnd on pins that
are used for signals in the CD-Rom drive. In order to solve this problem an IDE
to DE1 converter was build. It is simply a small PCB with two 2x20 pin
connectors on it. The connectors are interconnected in a way that makes it
possible for the FPGA on the DE1 board to connect to the CD-Rom drive. The
schematic of the converter can be seen on Figure 4.

Figure 3: Photograph of IDE to DE1 converter

As it is seen in the schematic not all signal pins from the IDE interface are
connected to the DE1 board. They are not needed for the type of
communication we plan to have between the Nios II processor and the CD-Rom
drive. The extra pins are used for DMA transfer, which we are not going to use.
The interface consisting of 16 data pins, 5 address pins and 3 control pins is
sufficient to communicate with the CD-Rom drive. Earlier we have had success
using the same interface communicating with a Compact Flash memory card,

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 7/41

and since the interface also supports Hard Disc and CD-Rom access we are
confident that it will work.

Figure 4: Schematic of IDE to DE1 converter

3.2 Nios II processor design

The design and configuration of the Nios II processor is planned to evolve as
the work and design progresses. To begin with the Nios processor was
designed to have a jtag uart, some sram, some sdram, a 16 bit bidirectional PIO
for the data bus, a 5 bit output PIO for the address bus and a 3 bit output PIO
for the control signals for CD-Rom drive. To test the Nios processor one of the
software examples were used. This gave quite a bit of problems. Neither the
Nios IDE nor the Altera Debug Client was able to connect to the Nios processor
and download software. Over a week was spent trying to figure out what was
wrong. Different configurations of the Nios system in the SOPC builder were
tried without success. Finally a user forum was found on the internet, where
several people had the same problem. It seems it is a bug in the SOPC builder
version 7.0/7.1 when the Altera Avalon tri-state bus is used. There was no
obvious solution to the problem.
 As a work-around a pre-defined Nios II system found on the CD-Rom that
came with the DE1 kit under the DE1 demonstrations. This system was defined
in a previous version of SOPC builder (probably 6.x) so it needed an upgrade
when it was loaded in SOPC builder version 7.1. This system had no problems
with downloading software. An identical system was designed from scratch in
SOPC builder 7.1, but the Nios IDE wasn’t able to connect to this system either.
The effort to build a Nios system from nothing was abandoned with the
conclusion that there might be a bug in the SOPC builder. Instead the
demonstration system was modified to fit to our purpose.
 The modifications consist of removing the 7segment interface and the PIO
port for the red LEDs and adding the PIO ports mentioned earlier. The ports for
the green LEDs, switches and keys were kept. The keys were planned to be
used anyway, and the LEDs will be nice to have for debugging purposes.

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 8/41

 As the development progressed, the Nios II processor was expanded. An
interval timer was added to provide interrupts for polling the keys that became
the control interface for the CD player. Additional PIO ports were added for
sending audio data. These PIO ports include two 24bit output busses, one for
each audio channel. The CD audio is only 16 bit, but some CD’s are recorded in
20 bit, and DVD’s are 24 bit, so it seemed reasonable to make the system
capable to handle 24 bit data. The only changes needed to support this are
software. The parallel audio data is converted into I2S format by a VHDL design
outside the Nios processor. This design has a reset and an enable input as well
as a ready output that toggles when the converter is ready for new data. These
signals are also connected to the Nios processor through PIO ports. The ready
PIO port has an edge triggered interrupt. This is used to make sure that audio
data will be present at the audio output busses.

Figure 5: Nios II Processor System block diagram

 A 28 bit PIO output port for controlling the 7 segments on the board was
added. By controlling the 7 segments by software alone any of the LEDs in the
segments can be switched on or off individually (If one wishes to).
 For testing of the CD player block the audio codec on the DE1 board will be
perfect. The codec is controlled by an I2C interface. For easy control of the
codec the clock and data signals are implemented as PIO ports in the Nios

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 9/41

processor. The clock line as output and the data line as a bidirectional port. The
complete Nios II processor system can be seen on Figure 6 and as block
diagram on Figure 5.

Figure 6: Nios II configuration

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 10/41

3.3 ATA/ATAPI interface

The communication protocol for the ATA/ATAPI interface is described in the
standards published by the T13 group at www.t13.org . Here ATA/ATAPI-4
(d1153r18) was used. For communicating with the CD-Rom drive a different
standard was used. At first the obsolete SSF-8020i was used because it has a
very good description of the inner workings of the CD-Rom drive. Afterwards the
Multi Media Command Set standard (mmc2r11a) from the T10 group at
www.t10.org was used. It is not necessary to use a newer version of the
standards, because the changes made in the standards only affects newer
technologies. The newer versions of the MMC standards include support for CD
writers, Blue Ray etc. This is not needed for this project and the MMC2
document is significantly smaller than the later versions.
 First step in the development of the interface was hardware interface at the
lowest level. This is what is described in the ATA/ATAPI-4 standard. The
communication through the ATA interface is performed through 8 bit registers
addressed with the 3 address and 2 chip select signals. These signals are the 5
bit address PIO on the Nios processor. Only one of the chip select signals can
be active at the time. This makes 16 possible register addresses where only 9
are used. The reading from and writing to the registers are done with a read and
a write signal. These signals are in the control PIO on the Nios processor who
also contains a reset signal to the CD-Rom drive. The 8 bit register is bit 7 to 0
on the 16 bit data bus.
 The 9 registers are called the task file. These are used to control the
connected device. The task file of a data read/write register, error, status,
feature, command register and a few other registers. The short version of the
way it works is that commands on the device are performed by writing a byte to
the command register. The command the device performs depends on the byte
written to the command register. If the command need parameters to run these
are written to the rest of the task file registers. The commands available and the
parameters they take can be found in the ATA/ATAPI-4 standard. It is very well
documented.
 The most basic functionality for the interface is programmed in the
hw_interface.c and hw_interface.h files (See the source code). They contain
functions for reading from and writing to the registers in the task file and
functions to initialize and reset the interface. For convenience there is also
made a function that reads the value of the busy bit in the status register. It is
quite easy to get the busy bit from the status register. The only reason that this
has its own function is that it is used very often. On top of the simple basic
functions are the real ATA and ATAPI commands.
 As described in the MMC-2 ATAPI (or ATA Packet Interface) is an extension
of ATA that allows SCSI devices to be connected to the ATA interface. The
standard ATA interface is usually used by disk drives but Compact Flash cards
supports the ATA interface as well. ATAPI is normally used by CD/DVD Rom
drives.
 The ATAPI protocol works by first sending an ATA command called ”ATAPI
packet command” having the command byte A0h. Following this a packet of 12
bytes are send as data containing the packet command and the parameters for

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 11/41

the command. The device will then try to perform the command. If it fails an
error is indicated in the status register. If the command is successful no error is
indicated and if the command returns data the number of bytes to read from the
device is available in two of the task file registers. The commands available and
their parameters can be found in the Multi Media Command Set (MMC)
standard. The standard is very well written, and the protocols for different
ATAPI transfers are shown in detail.
 The programming of the ATAPI software was unproblematic. The biggest
challenge was getting an overview of the ATA/ATAPI-4 and the MMC-2
standards and sorting out which of the many commands are relevant for this
project.
 ATA and ATAPI commands used in this project can be found in ATAPI.h and
ATAPI.c.
Not all of the ATA and ATAPI commands in the files are used in the final
project, but they have been necessary during the development of the ATAPI
interface software.
 The CD-Rom drives used in this project are taken from an old computer. It
had an old AOPEN x52 speed CD-Rom drive and a Creative CD writer. Both
drives have been used during the development process.

Figure 7: CD-ROM drives used in the project

 The capabilities of the drives were not know. Therefore some of the first
commands written were the “Identify Device” and “Inquiry” commands. The first
command returns information on the serial number, firmware revision, model
number and electrical timing. The last command returns information on which
standards the device conforms to, and various vendor and product information.
 In order to get an idea of which data formats are supported and the hardware
capabilities of the drive another ATAPI command was needed. The command
“Mode Sense” has the ability to return a data packet (Called a page) containing
CD-Rom capabilities and mechanical status. By reading this page it was verified
that both drives support CDDA read operations. This means that the digital

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 12/41

audio data can be read directly from the CD. This wasn’t the plan to begin with.
At first the intention was to make the CD-Rom drive play the CD, and take the
digital output from the connector on the rear side of the drive and feed it to the
audio processing/amplifier stage. This was abandoned but more on that later.
 The ATAPI commands to read status and capabilities information from the
drive were a good way to test if the ATAPI interface software was working, and
to build a good skeleton for implementing more commands.
 After successful test of the first ATAPI commands several others were
implemented in order to be able to play, pause and stop the CD. These
functions were implemented and tested with success. To read the number of
audio tracks, their length and the total length of the CD the Read TOC (Table of
content) ATAPI command was implemented. The data received are processed
by the functions in the TOChandler.h and TOChandler.c. These functions are
described in the TOC handler section of this document. The ATAPI functions
implemented at this time were sufficient to begin making the basic CD player
functionality. Consult the CD player functionality section in this document for
further details on that subject. Several other ATAPI commands are
implemented. They are not that interesting. The way the ATAPI commands are
send comes in two variations. One that returns data and one that doesn’t. The
only difference in the different commands are the setup of the packet before it is
send to the CD-Rom drive.

3.4 CD player functionality

The basic CD player must contain a minimum of functions. This includes play,
pause, stop, eject and skip to next and previous audio track. A lot of other
features could be implemented, but since only four keys are available for control
it is better to keep the interface simple. The function of the keys can be seen in
the table below.

Key # Functionality
1 Skip to next track
2 Skip to previous track
3 Play, Pause
4 Stop, Open/close CD tray

The functionality of the CD player is implemented as a state machine with six
states. The states are: Check for CD, Ready, Not Ready, Tray Open, Playing
and Paused. The sequence of the states and which events cause which
transition can be seen on Figure 8.
 After Power up general initialization is performed, and the state machine loop
is entered. The relevant code for the current state are executed, and if an event
that can cause a change in state it is changed accordingly.
 In the Check for CD state it is attempted to read the TOC from the CD. If a
TOC is successfully read it is written to the console via the jtag uart and the
state changes to Ready. If it after several attempts fails to read the TOC the Not
Ready state is entered.

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 13/41

In the Not Ready state the only allowed action is to eject the CD tray and load a
new disk. When the CD tray is ejected the state changes to Tray Open.

Figure 8: CD player State Machine

 The Tray Open state does nothing. It only waits until the eject button is
pressed, which initiates the closing of the CD tray, and changes the state to
Check for CD.
 If the current state is Ready it indicates that the CD is ready to be played, and
the current position of the CD is at the beginning of the first track. Nothing is
performed in this state until the play button is pressed starting playback of the
CD and changing the state to Playing, or the eject button is pressed causing the
tray to open and changing the state to Tray Open.
 If the state is Playing all the keys have a function, but only two of them will
change the state of the state machine. If the stop button is pressed the state
changes to Ready, The audio playback is stopped and the current position on
the CD is set to the beginning of the first track. If the pause button is pressed
the audio playback will be stopped, but the current position on the CD when
paused is kept in order to be able to resume playing from the same position. If
the skip to next track button if pressed the current position on the CD is set to
the beginning of the next track. If the current track is the last one on the CD the
current position is set to the beginning of the first track. If the skip to previous
track button is pressed the relative position of the current track is checked. If the
relative position is more than three seconds into the current track the current
position in the CD is set to the beginning of the current track. If the relative
position is less the three seconds into the current track the current position on

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 14/41

the CD is set to the beginning of the track before the current track. If the current
track is the first one on the CD then the current position is set to the beginning
of the last track on the CD.
 When the state machine is in the Paused state the buttons have almost the
same function as in the Playing state. The only exceptions are that the play
button resumes audio playback and changes the state to Playing. The two skip
buttons and the Stop button have the exact same function as in the Playing
state.
 Every time the state machine loop has been executed the 7-segment displays
are updated depending of the current state of the state machine. If the state is
either Playing or Paused the current (absolute) position on the CD, the relative
position of the current track or the number of the current track can be displayed.
What information to display is chosen by the position of some of the switches on
the DE1 board.
 If the state machine is in the Playing state a bit of code is executed every time
the main loop is run. This has to do with the audio playback, and updating the
content of some data buffers. This will be described in detail in the section
about the audio transmitter.
 The CD player main loop seems to function alright. It hasn’t been subject to
extensive testing, but during the development process of the project it has been
used quite a lot, an a few bugs has been found and corrected. The current CD
player interface is very limited, and is only intended to use as a proof of concept
interface. The final version should contain more keys for the control interface,
and a different kind of display. Maybe a character or graphic LCD display. The
extended control interface should make it possible to implement more advanced
features. Some of the features could be repeat track, repeat disc, random track
play, program track sequence, etc. This must wait until version 2 of the project.

3.5 Audio transmitter

The initial idea in the development of the CD player part of the project was to
start the audio playback on the CD-Rom drive and route the digital audio output
from the rear side of the drive to the audio processing/amplifier block. Once the
audio playback is started the CD-Rom drive pretty much takes care of it self.
That was one of the very appealing properties of this approach. This idea
proved to be a bit harder to implement than first estimated. The format of the
digital output is SPDIF. It is significantly different from the I2S format that is
needed by the audio processing/amplifier block. A SPDIF to I2S converter could
be constructed, but only one of the two CD-Rom drives used for this project had
a SPDIF output. Because of that the design was reconsidered.
 The new design idea is to read the audio data from the CD and sending them
to a parallel to I2S converter implemented in VHDL outside the Nios II
processor.
 The I2S bus transmits data at 64 times the sampling frequency of the audio
data. This creates a requirement for data being available in a steady stream.
The I2S converter is constructed in such a way that it toggles a signal when the
parallel data has been read and the converter is ready for a new set of audio
samples. To insure that data is always present for the I2S converter an interrupt

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 15/41

function is set up to trigger on every edge received on the Ready pin in the
Audio Transmitter block in the Nios processor. The interrupt function has
access to two large buffers. They will be full of audio data. While one buffer is
being transmitted to the I2S converter the other buffer is being filled with data
from the CD-Rom drive. Audio data read from the CD is read in frames of 2352
bytes. Since the audio data is stereo and has a resolution of 16 bits each block
contains 588 samples, with a sampling frequency of 44100 Hz a frame of data
will take 1/75th of a second. This leads to the MSF structure/format used to
address data on the CD. The MSF structure consist of three bytes named M, S
and F. M indicated minutes, S is seconds and can hold the values zero to 59, F
is frames and can hold the values from zero to 74.
 The two buffers containing audio data can hold 30 frames each. Each buffers
length in time is 400 ms. The time needed for the CD-Rom drive to fill the buffer
is approximately 150 ms. This leaves plenty of time for the processor to perform
other tasks. The length of the two buffers can be set to other values, but a
length of 30 frames seemed to work fine, and there was no need to change this
setting. Two state variables are associated with each of the buffers. They are
used to tell the interrupt function if the buffers are ready to be played, and the
section of code in the main loop (mentioned earlier) which buffer is ready to be
filled with new audio data. The section of code in the main loop checks the state
of the two buffers. If one is empty it is loaded with data, and its state is changed
to ready.
 The interrupt function has an index pointer telling how far along in the buffer
the playback is. When the index pointer reaches the end of the buffer, the state
of the buffer is changed to empty making it possible for the main loop to fill it
with new data. If the other buffer is ready the interrupt function switches to this
buffer, resets the index pointer and sets the state of the now selected buffer to
playing. If the second buffer isn’t ready when the first buffer has been
processed, it is assumed that the end of the CD has been reached. In this case
both buffer states are set to empty.
 Along with the interrupt function there are a few other functions in the
AudioTransmit.h and AudioTransmit.c. These functions are primarily used to
read and write to the private variables of the AudioTransmit functions group.
There are also functions for initialization and control functions for the I2S
converter. They can reset, enable/disable the vhdl module. Reset returns the
I2S converter to the initial state. If the enable signal is active data is read form
the left and right data bus and transmitted on the I2S bus. If enable is inactive
the audio data is disregarded and the converter transmits zero values.

3.6 Table of Contents (TOC) handler

To process the TOC data read from the CD a set of functions has been written
in a grouping called TOChandler. These are found in TOChandler.c and
TOChandler.h. Since the length of the TOC varies with the number of tracks on
the CD the memory for storing the TOC is dynamically allocated. The setTOC
function gets a pointer to where the TOC data from the CD is located, and an
unsigned short telling the number of bytes in the TOC data. The function then

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 16/41

allocated the needed memory, and organizes the TOC information in a way that
is easily accessible for further use.
 A data structure called MSF_type is defined in the TOChandler function set. It
is used to contain position indexes on the CD in the MSF format mentioned
earlier. The TOChandler group also includes functions to reset the TOC and
free the allocated memory, to tell if a valid TOC is present and to retrieve
various information from the TOC. This includes the number of tracks and
length of the CD, the position of a given tracks beginning, and the current track
number calculated from the current position on the CD. Further more there are
a few functions to perform basic math and comparison operations on the
MSF_type data structure.

3.7 Keypad

The control interface for the CD player is based on the keys on the DE1 board.
The type of keys used has in previous projects proved to generate a lot of
contact bouncing. Although debounced on the DE1 board it is further eliminated
by combining polling with counters with hysteretic thresholds for each of the
keys. It works by polling the keys and updating counters depending on the state
of the keys. If a key is pressed the counter is incremented otherwise it is
decremented. The counters are limited to a certain value range. The range can
vary with the type of key used and the polling interval of keys. Upper and lower
thresholds are set to suitable values within the counter range. If the upper
threshold is exceeded the state of the key is considered active, if the counter
value goes below the lower threshold the key state is considered inactive.
 This method has proven successful in previous implementations on
embedded systems. And it worked quite well here too. The polling function is
triggered by a 1 ms interval timer interrupt. To check if a key has been pressed
a function called pressedKeypad is used. This function returns a bit pattern
corresponding to the pressed keys. Once read the bit pattern is reset until the
key has been released and is pressed again.
 The polling function is triggered by the timer interrupt repeatedly during
program execution. The pressedKeypad function is called in the beginning of
every main loop cycle.

3.8 Display

To control the four 7-segments a setDisplay function is used. It takes a string as
parameter, and writes the supported characters to the 7-segments. If a
character is not supported the 7-segment is left blank. The characters that are
supported are all the numbers and the “-“ sign. The display is quite easy to use
by first forming a string with the spritf function from the stdio.h library.

3.9 CD-Text

CD-text is text information stored in the CD. This can contain the name of the
CD, the recording artist, track names etc. Not all CD’s contain this information,
and not all CD-Rom drives support reading this information. Only one of the

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 17/41

drives used in this project had CD-text support. Just to se if it was possible CD-
text was support was implemented.
 It functions almost in the same way as the TOChandler. An initCDTEXT
function is called with a pointer to the CD-text data from the CD, the size of the
CD-text data in bytes and the number of tracks on the CD. The needed amount
of memory is allocated, and the track titles and artist names are sorted out, and
placed in memory for later retrieval. The getCDTEXTtitle and getCDTEXTartist
functions takes a tracknumber as parameter and returns a pointer to the
appropriate string. The CD-Text support has no crucial function, but it is a neat
little feature.

3.10 I2S converter

In order to be able to send data in the right format to the audio
processing/amplifier block it was necessary to design a parallel to I2S converter.
The design is made in VHDL. It takes parallel data form to 24 bit busses, and
sends it out on an I2S bus. The design creates all the necessary clock signals
for the I2S bus, but needs a master clock signal that is a multiple of 64 times the
audio sampling frequency. Here 256 times FS = 11,2896 MHz is used. The
clock is generated by a PLL with the 24 MHz clock on the DE1 board as input.
The I2S converter schematic symbol can be seen on Figure 9. The connections
on the left are inputs and those on the right are outputs. The reset is an
asynchronous reset meaning that it is independent clk signal. The clk signal if
divided by four internally in the converter. The divided clock signal is now equal
to 64 times FS. It is routed directly SCK output. The On the falling edge of the
divided clock signal data from an internal 64 bit register is shifted out on the SD
output while the index of the register is less than 32 the WS output is set to zero
otherwise it is set to one. When the index reaches the end of the register values
from the DataL and DataR busses are latched into the register if the enable
input is one. If enable is zero the register is loaded with zeros. After the register
is loaded the Ready output is toggled indicating that the converter is ready for
new data on the DataL and DataR busses. The SCK, WS and SD signals forms
the I2S bus. SCK is the clock signal, SD data and WS the word select or
left/right clock. It might seem a bit strange that two 24 bit busses are latched
into a 64 bit register indexed bit 63 to 0 with 63 as the msb. The DataL bus is
latched into bit 62 to 39 of the register and DataR into bit 30 to 7. This is to
conform to the I2S protocol.

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 18/41

clk

reset

enable

DataL[23..0]

DataR[23..0]

Ready

SCK

WS

SD

I2Stransmitter

inst

Figure 9: I
2
S converter symbol

The I2S converter design has been tested with simulated waveforms. The
results of the simulation looked correct. To test even further the I2S converter
was connected to the audio codec on the DE1 board.
 The codec is able to play the audio converted to I2S format by the converter
and read from the CD. It sounded quite good actually.

3.11 Phase Locked Loops

The system uses Phase Locked Loops to generate the needed clock signals.
One PLL doubles the 50 MHz to a 100 MHz clock used by the Nios processor
and a slightly delayed version of the 100 MHz clock used by the sram. The
audio clock must be a multiple of 44100 Hz. The 24 MHz clock can be made
into 22.5792 MHz which is 512 times FS.

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 19/41

4. The Wolfson WM8731 CODEC

The DE1 board is equipped with a WM8731 CODEC. In this project the CODEC
is used as both test equipment for other modules and as secondary input/output
for the audio system.

4.1 CODEC Hardware in this project

The CODEC is mounted on the DE1 board and has fixed connections to the
FPGA (hence fixed pins; refer to the FPGA pintable in the overall
implementation section). Initialization of the CODEC is through a standard I2C
(Inter-Integrated Circuit) bus, and sound transfer is through a 3-wire bus, witch
in this project is defined as a standard I2S (Inter-IC Sound) bus. Both the I2C [1]
and the I2S [2] bus is originally defined by Philips, but is now de facto
standards.

Figure 10: Connection diagram of CODEC part of the DE1 board

The figure above shows the structure of the CODEC connection to the project.
Pin numbers on the FPGA are marked just inside the FPGA frame. All control
signals for the CODEC are generated using the NIOS II processor. Routing of
the sound signals is done using VHDL modules.

NOTE: Errors are encountered in the DE1 manual. On page 38, figure 4.15 the
write (and read) addresses for the I2C bus is wrong. True write address is 34h.
On page 39 in table 4.9 the description for the I2C bus is wrong. I2C_DATA is
connected to PIN_B3 and I2C_CLOCK is connected to PIN_A3.

4.2 CODEC setup

Registers of the CODEC is initialized as shown in the table below. All registers
are written using slave device address 34h on the I2C bus. The sub address of
this device operates with only 7bit. This deviates from the standard, witch

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 20/41

suggest an 8bit sub address. Because of this the sub address will not be
uniquely identifiable in the hexadecimal value to send.

Register Sub

address
7bit

Binary setting
9bit

Hex to
send

Description

R0 0000000b 000010111b 0017h
R1 0000001b 000010111b 0217h

Line input amplification is 0dB and mute is
disabled. Left (R0) and right (R1) input
registers do not load simultaneously.

R2 0000010b 011100101b 04E5h
R3 0000011b 011100101b 06E5h

Output amplification is -20dB and mute is
disabled. Left (R2) and right (R3) output
registers do not load simultaneously.

R4 0000100b 000010010b 0812h Connect input to ADC. No mic or bypass
from input to output.

R5 0000101b 000000000b 0A00h Enable ADC high pass filter. Disregard DC
level. No mute or other filtering.

R6 0000110b 001100010b 0C62h Power down: mic. ampl., oscillator and
CLKOUT.

R7 0000111b 000001010b 0E0Ah Use I2S, 24bit, lrclk as in standard and
CODEC is slave.

R8 0001000b 000101000b 1028h Use normal mode with fs=44.1kHz and
XCLK=256fs

R9 0001001b 000000001b 1201h Activate device.
R10 0001111b Reset register is not used in this application

The CODEC output volume is corrected by user intervention at runtime,
otherwise all CODEC registers is only set at power on.

4.3 I2C

The standard defines a master/slave based bus system. In the CODEC case
the slave is the WM8731 and the master the FPGA.

Write of one byte

The protocol is shown in Figure 11. From last chapter is recognized 8bit data,
8bit sub address and a 7bit address followed by a R/W bit. In the CODEC case
only writing is interesting, and these 8bits give the 34h mentioned earlier.

Figure 11: I2C protocol (from Philips I

2
C specification)

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 21/41

ACK is a low response from the slave.
The protocol defines that idle of the bus is logic high. This is achieved by using
pull-up resistors on the physical bus (R=2kΩ on the DE1 board), and putting
outputs of slaves and masters on the bus in tristate when idle. This also means
that when a device is transmitting logic high, it should tristate the output, and
when low it must pull the wire to ground. In this project however logic high and
low is used. This will not pose a problem.

Write of multiple bytes

Some I2C devices require the writing of several bytes for each sub address. The
power amplifier circuits used I the project requires a four byte write for some of
the sub addresses. There don’t seem to be basis for this kind of operation in the
I2C standard but never the less it is used. Below is the impulse diagram of the
SDA, the start and stop is similar to Figure 11.

Figure 12: Multiple byte write transfer (from TI datasheet TAS5504)

Read

First part of the read process is similar to the write. The master device transmit
START condition, address of the slave, ‘0’ in the R/W bit. After ACK the sub
address is transmitted. Here the similarities end, because a new START
condition is transmitted followed by the slave address but a ‘1’ as R/W bit. Now
the slave takes control of the SDA, and the master replies with ACK.

Figure 13: Read of a single byte (from TI datasheet TAS5504)

I2C signal routing in present project

Due to the DE1 hardware there is only two devices on the bus (I2C_bus_A),
however the need to attach further devices have arisen in this project (the
power amplifier also needs I2C bus connectivity). To overcome this problem a
second pair of bus pins will be assigned the exact same signals as the
I2C_bus_a. This second bus is named I2C_bus_b. This approach is chosen

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 22/41

because the FPGA software will not allow two bidirectional wires to be
connected directly.

Figure 14: Routing of I
2
C signals

Because of the chosen routing, the devices on either I2C_bus_a or I2C_bus_b
will appear to be on the same bus. When using the send, long send and receive
functions (I2C implementation in next section) the programmer will not have to
distinguish between two hardware busses. A second master device on
I2C_bus_b will not be able to see the I2C_bus_a though.
 Figure 14 shows the setup of the I2C routing. The off-board I2C bus uses
GPIO socket 1 (JP2) pin 5 for SDAT and pin 8 for SCLK (pin G14 and G16 on
the FPGA). Future devices on the figure are not a part of the project, but merely
to show the expandability of the bus.

I2C implementation

The I2C_bus_a and I2C_bus_b hardware are generated by adding PIOs to the
Avalon bus using the SOPC builder. All address configurations is also managed
by the SOPC builder.

Figure 15: Snapshot of the SOPC builder of I
2
C hardware

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 23/41

Addresses of the I2C hardware is shown in
Figure 15, but are automatically copied to the system.h file on “make clean”
command in the Nios II environment.
 Protocols are implemented by driving the bus to hard low or high according to
the previously described. When the ACK is expected the direction of the SDA
pin is reversed, if the slave pulls SDA low no error is returned, else error is
indicated. The error indication is displayed in the IDE console (via JTAG), but
do not affect the program in present implementation.

4.4 Test of CODEC

To ensure the CODEC doesn’t corrupt test data (and audio data) the transfer
function of the codec is measured. During test output amplification is set to 0dB
(R2: 04F9h and R3: 06F9). In the FPGA the DACDAT is connected ADCDAT
(Figure 17). Test setup is shown below.

Figure 16: Test setup

To compensate for the standard soundcard in the PC, the right output channel
is patched directly to the right input channel, and the computer software
(WinMLS 2004) automatically subtracts this transfer function from the one
measured by the left channel. The left channel is used to measure the System
under Test (SUT), namely the DE1 board. The DE1 board loaded with NIOS II
code witch produces I2C, I2S clock signals and init registers in the CODEC. Part
of FPGA schematics specific for the test is shown in the figure below.

Figure 17: Software for test of CODEC transfer function.

The WinMLS 2004 uses sinus sweeps to measure the transfer function.

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 24/41

Results

Magnitude plot from the measurement is shown in Figure 18.

Figure 18: Measurement of CODEC

From the figure it is evident that the CODEC not will pose a problem. The ripple
is much less than 1dB, the upper cut-off frequency is about fU=20kHz and the
lower below fL=10Hz.

-1dB level

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 25/41

5. Power amplifier

The output part of the project is utilizing class D amplifiers.

5.1 Class D functional description

Figure 19 shows the basic setup for a class D amplifier. The desire is to amplify
a signal (marked audio in the figure).

Figure 19: Basic Class D amplifier

This signal is fed to a comparator, where it is compared with a triangle wave (or
a saw tooth wave). The output of the comparator is a modulated square wave,
or a Pulse-with Modulated (PWM) signal (Figure 20). The duty cycle of the
PWM reflects information about the amplitude. The frequency of the signal is
represented by the PWM’s change over time.

Figure 20: Generating a PWM signal.

The PWM signal drives the power stage. The power stage is in this example a
pair of FET’s, but often the speaker is the center of an H-bridge. The FET’s
reproduce the PWM at power supply levels, so demodulation must be
conducted. This is done by low-pass filtering the signal. After filtering the signal
is analog and ready for the speaker.

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 26/41

5.2 The triangle wave

The frequency of the triangle wave must be way outside the audio signal
frequency range, and always higher. If the triangle wave were equal to or had a
lower frequency, the harmonics would corrupt the audio signal. The normal
audible frequency range is in the interval fh=[18; 20

.103] Hz, so the switch
frequency should be about fsw=30kHz.
 The waveform can easily be generated with a up/down counter, but to avoid
degrading the audio signal by the amplifier, the solution of the triangle should be
as good as the audio signal. In this project that is 24bit.
 This means that we need a 24bit counter that can count an up/down cycle in
t=1/fsw=33.3µs or by other words, the clock supplying the counter operates at

GHzff B

swclk 3.503210302
243
=⋅⋅=⋅=

witch is simply not doable in a FPGA. Even if the demands are loosen there is a
long way down to the maximum clock frequency of the FPGA at fmax=300MHz.
 This forces the PWM modulation outside the FPGA.

5.3 Texas Instruments 4 channel digital audio processor
TAS5504

The TAS5504 is chosen to do the PWM modulation. Besides being able to
PWM modulate 24bit at a switching frequency in the range from 32k-48k Hz it
has an enormous amount of features. For this project the important features
are: I2C interface for programming. I2S interface for transfer of audio signals.
Four PWM channels, capable of driving four H-bridge power stages.

Figure 21: Block diagram of power amplifier

Figure 21 show the power amplifier and the connection to the DE1 board. For
each power stage shown, there are two channels. This offer the possibility to
move the crossover filter from the analog domain (in the speakers) to the digital
domain (in the FPGA). Such configurations require an amplifier for each
speaker driver (Tweeder and bass for both left and right).

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 27/41

TAS5504 setup

There are more than 50 registers to setup in the TAS5504, so only registers that
differ from the default setting is described here.

Sub address 8bit Binary setting Hex to send Description
00h 01000001b 0041h 44.1kHz sampling and master clk is 64fs
D1h 00000000b

00000000b
00000000b
01000100b

D1h
00000044h

Volume of ch1 to 0dB.
This register requires four data bytes.

D2h 00000000b
00000000b
00000000b
01000100b

D2h
00000044h

Volume of ch2 to 0dB.
This register requires four data bytes.

D7h 00000000b
00000000b
00000000b
01000100b

D7h
00000044h

Volume of ch3 to 0dB.
This register requires four data bytes.

D8h 00000000b
00000000b
00000000b
01000100b

D8h
00000044h

Volume of ch4 to 0dB.
This register requires four data bytes.

D9h 00000000b
00000000b
00000000b
01000100b

D9h
00000044h

Master volume to 0dB.
This register requires four data bytes.

The clock control register is automatically updated by TAS5504 auto detection,
so it doesn’t really need to be initialized.

5.4 Texas Instruments Stereo Digital Amplifier Stage TAS5142

The power stage, or the backend, of the system is based on semiconductors. In
the example in the beginning of this section both a P channel and an N channel
MOSFET is used. Both the on and off switching time will probably be different.
When both FETs are on, the current through the components will be
destructive. Therefore some kind of protection is required. This project utilizes
the TAS5142 Power stage. Here the protection is embedded. Further more the
FETs are produced on the same piece of silicon witch reduces time differences.
 TAS5142 also offer over temperature detection capabilities and automatic
shutdown when the temperature level is damaging.

Figure 22: TAS5142 channel A (from TI datasheet TAS5142)

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 28/41

There are two full H-bridges in a TAS5142. Figure 21 show channel A of the
power stage. TAS5142 has four of these channels. The PWM signal produced
by the TAS5504 is received by the PWM receiver. Here levels and waveform
are reconstructed, before latched through the control block. If the power stage is
experiencing an error (power or temperature) or external reset is at logic low,
the output of the block is low. Otherwise the PWM signal is latchet to the timing
block. Here the PWM is split for the two FET’s and are manipulated to deal with
the FET’s different switching time. Last the PWM is converted to drive signals
with the high-side drivers (gate drive block). The gate drive needs a boot-strap
capacitor, from GVDD to BST, to build up charge to drive the high-side of the
half bridge.

Output filters

The filters needed to reconstruct the analog audio signal are suggested in the
data sheet for the TAS5142.

Figure 23: Schematics of output filter

Figure 23 shows the schematics of the output filter.

5.5 Hardware for the power amplifier

The overall schematics and PCB layout can be found in appendix A. This
chapter discusses details in the HW design.

Error interaction

Figure 24 show how the audio processor and the power stage exchange error
signals. Numbers in parentheses are pin numbers on actual components. The

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 29/41

audio processor produces a high valid signal when the PWM is a valid
representation of the incoming I2S signal, according to register setup. The valid
pin controls the reset pin on the power stage. The reset pin is active low, so
when the PWM is valid the power stage is not in reset.

Figure 24: Error interaction between Audio Processor and Power Stage

The power stage has two error signaling pins. The Over Temperature Warning
(OTW) warns that the component is above T=125°C. The OTW signal does not
effect the operation of the TAS5142. The other error signaling pin is the
Shutdown (SD). When this is low the device switches all FET’s off. This signal is
active on higher temperature, voltage errors or overload. These signals are
combined in and AND gate and connected to the audio processors Backend
Error (BKND_ERR) input. If the BKND_ERR is low the PWM is put in 50% duty
cycle and the valid signal is pulled low. The AND gate is implemented in the
FPGA.

Audio processor control signals

The control pins of the audio processor are routed to the FPGA. The pins in
question are reset and mute. In the FPGA the reset is fixed to logic high, but the
mute pin is controlled by DE1 switch 9 (SW9).

Power stage mode select

The power stage mode select pins (11, 12 and 13) are fixed to gnd. This means
that the power stage expects two PWM signals that are inverts of each other,
and also uses two channels for each output (using full H-bridges).

PCB layout

In the layout there are numerous decoupling capacitors and load capacitors.
Capacitors are placed close to the components and on all connections to power
supplies.
 Ground is routed so digital and analog ground meet in a star architecture or at
high cobber cross-sections. The ground is also filling on the board. This helps to
shield signal connection and always provide large cobber cross-sections.
 Inductors are placed in an angle of 90° to its neighbor inductors to avoid
mutual induction and cross talk.
 Lines for output of power stages are also chosen with larger cobber cross-
sections to meet the requirements of currents up to I=10A.

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 30/41

Figure 25: SMD components on power amplifier PCB

Cooling

The TAS5142 must be equipped with an appropriate heat sink to avoid
overheating. At present no calculations is made on temperature, but holes are
prepared for heat sink mounting. Figure 25 only marks one of these holes, but
there are four placed quadratic.

Connection to the DE1 module

The power amplifier PCB is connected to the DE1 module GPIO port 1 (JP2).
While the CD drive is connected trough a standard IDE ribbon cable, the power
amplifier has to be connected through an ATA ribbon cable. The difference
between these two cables is that every second line in the ATA cable is a ground
connection. This shields the signal lines from ambient noise and more important
from cross talk.
 Cross talk was found to be a problem when the ordinary IDE connection was
used.

I2C pull up resistors

Pull up resistors on the I2C bus is placed on the power amplifier PCB. To sink
as little current as possible, the pull up resistors is chosen to R=200kΩ (16.5µA
@ Vcc=3.3V). This posed a problem though. The resistors could not raise the
I2C bus to logic high sufficiently fast, when the bus is tri-stated.

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 31/41

 In the present project this isn’t a problem, because the I2C masters violates
the standard by pulling the bus to hard high (and do not tri-states the bus) when
logic high is needed.

PCB power supply

The logic power Vcc=3.3V for the PCB is supplied from the DE1 board through
the GPIO connector (JP2, pin 29). Power to drive the speakers PVDD=30V is
supplied from a LAB power supply directly to the power amplifier board (screw
terminals).

5.6 Test of power amplifier module

There are two paths there should be testes. The first is the I2C bus for setting
up the audio processor. The second is the audio path.

Test of control structure

First test is to ensure the ability to communicate with the audio processor via
I2C. The I2C routine confirms that the device answers the transmission with ACK
(logic low). Second register 01h (General Status Register) is read and the chip
identification code is confirmed with the datasheet. Last 00h is first written to
register 02h (Error Status Register). This reset sticky errors that might be
obsolete, and then register 02h is read to ensure no errors occur.
 Unfortunately there is an error: “PLL auto lock error”. This error is fatal, and
prevents the processor from producing PWM. The course of the problem is at
deadline not found, so the power amplifier does not work.

Test of audio path

This is obviously not possible due to the faults found in the audio processor
PLL. But a transfer function would have been obtained similar to that of the
CODEC.

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 32/41

6. Multiplexing and miscellaneous

Figure 26 show VHDL modules described in this chapter.

Figure 26: Routing of audio signal and level meter

The important part of the figure is the I2S_mux. This is the audio multiplexer. To
the left is the I2S_receive there converts the I2S to parallel data. The
level_meter is indicating level of action on the parallel bus.

6.1 Audio multiplexer

Details of the audio multiplexer are shown on Figure 27.

Figure 27: Details of the I2S_MUX

On a positive clock edge a low EN_1 will select SDAT_2 otherwise SDAT_1 will
be selected. EN_1 is directly controlled by SW9 on the DE1 board.
 The output of the multiplexer is always routed to the CODEC, the power
amplifier and to the I2S/par converter.

6.2 I2S to parallel converter

Figure 28 show the functional simulation of the I2S to parallel converter
(i2s_recieve). The lower three sequences are internal signals. The signal LD is
generated to mark a level shift in the LRCLK. The generation of the signal is
generated as follows:

1−
⋅⊕= zLRCLKLRCLKLD

Where ⊕ is the “exclusive or” operator and the z-1 is a unity delay.

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 33/41

The operation is triggered by the SCLK. This means that difference in the
LRCLK from one positive SCLK edge to the next is detected.

Figure 28: Functional simulation of i2s_recieve

LRCLK difference is indicated by a high LD. When LD is high the input_buffer is
copied to the respective output. This is indicated by arrows in the figure. When
LRCLK is low the input_buffer contains left data, else the data is from the right
channel.
 Filling of the input_buffer is done from the first positive SCLK edge after the
LD goes low, and 24bits ahead. The input_buffer is indexed by the sclk_count
signal.
 In the simulation the SDAT is random data. It is shown that the output data is
indeed equal to SDAT in the described interval.

6.3 Level meter

The level meter is producing a visual effect and can be used as a diagnostics
tool. The meter is comparing positive audio values (MSB is low) to a fixed
number and then turning red LED’s on according to the value. The concept is
illustrated in Figure 29.

Figure 29: Level meter concept

Numbers in the columns refer to the reds LED on the DE1 board. The values
compared to are chosen only on the basis of “what looks good”, and are not
necessarily linear. Only comparison on every 10th sample is performed.

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 34/41

7. Conclusions

Development of the digital stereo is complete. Unfortunately the class D power
amplifier is failing. The exact reasons for this are still uncovered. PCB,
hardware setup and soft setup are examined and no apparent reasons are
found.

Århus, Denmark the 21. of August 20, 2007 and the project is ended.

8. Further development

The project continues. Next step (aside from fixing the class D problem) is to
digitize the crossover filters. Also the amplifiers are considered moved to the
loudspeakers. If this is done, the possibility to network the speakers with each
other and other devices comes naturally. Also other input devices are a natural
extension to the project.

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 35/41

A Electrical drawings

IDE ↔ DE1 interface schematics

IDE ↔ DE1 interface PCB layout

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 36/41

Power amplifier schematics

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 37/41

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 38/41

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 39/41

Power amplifier PCB layout

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 40/41

V
C
C

C
O
D
E
C
_
a
d
c
d
a
t

IN
P
U
T

V
C
C

S
W
[7
..
0
]

IN
P
U
T

V
C
C

T
D
I

IN
P
U
T

V
C
C

T
C
K

IN
P
U
T

V
C
C

T
C
S

IN
P
U
T

V
C
C

S
W
[9
]

IN
P
U
T

V
C
C

S
W
[8
]

IN
P
U
T

V
C
C

K
E
Y
[3
..
0
]

IN
P
U
T

V
C
C

C
L
O
C
K
_
5
0
M
H
z

IN
P
U
T

V
C
C

C
L
O
C
K
_
2
4
M
H
z[
1
..
0
]

IN
P
U
T

C
O
D
E
C
_
X
C
L
K

O
U
T
P
U
T

A
M
P
L
_
M
C
L
K

O
U
T
P
U
T

A
M
P
L
_
m
u
te

O
U
T
P
U
T

C
O
D
E
C
_
D
A
C
D
A
T

O
U
T
P
U
T

A
M
P
L
_
S
D
A
T

O
U
T
P
U
T

C
O
D
E
C
_
B
C
L
K

O
U
T
P
U
T

C
O
D
E
C
_
A
D
C
L
R
C
L
K

O
U
T
P
U
T

C
O
D
E
C
_
D
A
C
L
R
C
L
K

O
U
T
P
U
T

A
M
P
L
_
S
C
L
K

O
U
T
P
U
T

A
M
P
L
_
L
R
C
L
K

O
U
T
P
U
T

D
R
A
M
_
A
D
D
R
[1
1
..
0
]

O
U
T
P
U
T

D
R
A
M
_
L
D
Q
M

O
U
T
P
U
T

D
R
A
M
_
U
D
Q
M

O
U
T
P
U
T

D
R
A
M
_
C
A
S
_
N

O
U
T
P
U
T

D
R
A
M
_
R
A
S
_
N

O
U
T
P
U
T

D
R
A
M
_
C
S
_
N

O
U
T
P
U
T

D
R
A
M
_
B
A
_
0

O
U
T
P
U
T

D
R
A
M
_
B
A
_
1

O
U
T
P
U
T

D
R
A
M
_
C
L
K

O
U
T
P
U
T

D
R
A
M
_
C
K
E

O
U
T
P
U
T

F
L
_
A
D
D
R
[2
1
..
0
]

O
U
T
P
U
T

F
L
_
W
E
_
N

O
U
T
P
U
T

F
L
_
R
S
T
_
N

O
U
T
P
U
T

F
L
_
O
E
_
N

O
U
T
P
U
T

F
L
_
C
E
_
N

O
U
T
P
U
T

S
R
A
M
_
A
D
D
R
[1
7
..
0
]

O
U
T
P
U
T

S
R
A
M
_
U
B
_
N

O
U
T
P
U
T

S
R
A
M
_
L
B
_
N

O
U
T
P
U
T

S
R
A
M
_
W
E
_
N

O
U
T
P
U
T

S
R
A
M
_
C
E
_
N

O
U
T
P
U
T

S
R
A
M
_
O
E
_
N

O
U
T
P
U
T

C
O
D
E
C
_
I2
C
_
S
C
L
K

O
U
T
P
U
T

A
M
P
L
_
I2
C
_
S
C
L
K

O
U
T
P
U
T

T
D
O

O
U
T
P
U
T

C
D
_
A
D
D
R
E
S
S
[4
..
0
]

O
U
T
P
U
T

C
D
_
C
T
R
L
[2
..
0
]

O
U
T
P
U
T

D
R
A
M
_
W
E
_
N

O
U
T
P
U
T

L
E
D
G
[7
..
0
]

O
U
T
P
U
T

D
IS
P
L
A
Y
[2
7
..
0
]

O
U
T
P
U
T

L
E
D
R
[9
..
0
]

O
U
T
P
U
T

A
M
P
L
_
R
e
s
e
t

O
U
T
P
U
T

A
M
P
L
_
s
h
u
td
o
w
n

O
U
T
P
U
T

V
C
C

D
R
A
M
_
D
Q
[1
5
..
0
]

B
ID
IR

V
C
C

F
L
_
D
Q
[7
..
0
]

B
ID
IR

V
C
C

S
R
A
M
_
D
Q
[1
5
..
0
]

B
ID
IR

V
C
C

C
O
D
E
C
_
I2
C
_
S
D
A
T

B
ID
IR

V
C
C

A
M
P
L
_
I2
C
_
S
D
A
T

B
ID
IR

V
C
C

C
D
_
D
A
T
A
[1
5
..
0
]

B
ID
IR

S
D
A
T
_
1

S
D
A
T
_
2

E
N
_
1

c
lk

S
D
A
T

I2
S
_
M
U
X

in
s
t1

s
c
lk

lr
c
lk

s
d
a
t

le
ft
_
d
a
t[
2
3
..
0
]

ri
g
h
t_
d
a
t[
2
3
..
0
]

i2
s
_
re
c
e
iv
e

in
s
t3
9

le
ft
_
d
a
t[
2
3
..
0
]

ri
g
h
t_
d
a
t[
2
3
..
0
]

c
lk

le
d
[9
..
0
]

le
v
e
l_
m
e
te
r

in
s
t4
5

V
C
C

C
L
O
C
K
_
2
4
[1
..
0
]

C
L
O
C
K
_
5
0

K
E
Y
[3
..
0
]

S
W
[7
..
0
]

T
D
I

T
C
K

T
C
S

L
E
D
G
[7
..
0
]

D
R
A
M
_
A
D
D
R
[1
1
..
0
]

D
R
A
M
_
L
D
Q
M

D
R
A
M
_
U
D
Q
M

D
R
A
M
_
W
E
_
N

D
R
A
M
_
C
A
S
_
N

D
R
A
M
_
R
A
S
_
N

D
R
A
M
_
C
S
_
N

D
R
A
M
_
B
A
_
0

D
R
A
M
_
B
A
_
1

D
R
A
M
_
C
L
K

D
R
A
M
_
C
K
E

F
L
_
A
D
D
R
[2
1
..
0
]

F
L
_
W
E
_
N

F
L
_
R
S
T
_
N

F
L
_
O
E
_
N

F
L
_
C
E
_
N

S
R
A
M
_
A
D
D
R
[1
7
..
0
]

S
R
A
M
_
U
B
_
N

S
R
A
M
_
L
B
_
N

S
R
A
M
_
W
E
_
N

S
R
A
M
_
C
E
_
N

S
R
A
M
_
O
E
_
N

I2
C
_
S
C
L
K
_
A

I2
C
_
S
C
L
K
_
B

T
D
O

A
D
D
R
E
S
S
[4
..
0
]

C
T
R
L
[2
..
0
]

D
IS
P
L
A
Y
[2
7
..
0
]

C
L
K
_
2
5
6
F
S

C
L
K
_
5
1
2
F
S

I2
S
_
C
L
K

I2
S
_
W
S

I2
S
_
S
D

D
R
A
M
_
D
Q
[1
5
..
0
]

F
L
_
D
Q
[7
..
0
]

S
R
A
M
_
D
Q
[1
5
..
0
]

I2
C
_
S
D
A
T
_
A

I2
C
_
S
D
A
T
_
B

D
A
T
A
[1
5
..
0
]

C
D
p
la
y
e
r

in
s
t

B FPGA top-level design

Digital Stereo Innovate Nordic

PSK & JEF 2007-08-21 41/41

C References

1. ANSI standard: AT Attachment with Packet Interface Extension
(ATA/ATAPI), Rev.18, 1998.

2. IEC standard: Compact disk digital audio system (IEC60809), “The Red

book”, 2nd edition, 1999-02.

3. Datasheet: Texas Instruments TAS5142 Stereo Digital Amplifier Power
Stage, MAY 2005.

4. Datasheet: Texas Instruments TAS5504 4 Channel Digital Audio PWM

Processor, October 2004.

5. W. Marshall Leach, Jr.: Introduction to Electroacoustics & Audio Amplifier
Design, 3rd edition, Kendall/Hunt Publishing Company, 2003.

6. Maxim Application note: Class D Amplifiers: Fundamentals of Operation

and Recent Developments, Dec 2006, Note # 3977.

7. Philips manual: CDD3610 Command Specification, Version 1.2 (final),
APR 2007, Ref # AHR-66-MJS-0001.

8. Small Form Factor Committee Specification: ATA Packet Interface for

CD-ROMs (SFF-8020i), Rev. 2.6, JAN 1996.

Interim Project Report

Project Name: Efficient Implementation of SSB demodulation,
using multirate signal processing

Team Name: Tema Aliasing

Team Members: Martin Lindberg

Email Adress: mlch03@kom.aau.dk

Contact No: +45 24 45 17 19

Instructor: Peter Koch - pk@es.aau.dk

Innovative nordic

0.1 Introduction

The main goal for introducing Software Defined Radio (SDR) is the reduction of the analog hard-
ware in the system. Software radios define an emerging technology, thought to provide a flexible
radio system, reconfigurable and reprogrammable by software [1]. The advantages of SDR can be
stated as follows.

• Flexibility: Changing the functionallity in the receiver can easily be done by a software up-
dating, instead of replacing or modifing existing physical hardware like analog electronics.

• Cost: The total cost are together with power one of the biggest technical issues facing de-
velopers of SDR.

• Time-to-market: The prototype development of a SDR can be done with implementation of
FGPA’s, which makes the time-to-marked fast.

• Size: Analog components will be replaced by digital hardware, i.e. the physical size of the
receiver will be reduced.

• ADC: The ADC must have a high dynamic range and sampling rate, this are limiting factors
that determining the maximum achievable data rate of the receiver.

In software radio it is desirable to move the analog-to-digital conversion as close to the antenna
as possible, as in the ideal software radio [6]. This is shown in figure 1, but is unfortunately not
possible yet due to limitations in todays hardware technology [4].

ADC Programmable
Processor

RF

Figure 1: The ideal software radio architecture, where the digital processing starts at the RF
range [4].

A part digitalization of a radio receiver will cause incorporation of software in the system and
new hardware as well. The rapid development of high-speed analog to digital (ADC) converters

and large field programmable gate arrays (FPGA) allows designers to design compact solutions
that were unthinkable a few years ago. Digital signal processing (DSP) with affordable high
performance makes the possibility for mapping of the analogue part of the receiver in to the digital
domain reachable.

The basis application point in this report is to redesign the receiver part of a current transceiver,
which is depicted in the simplified block diagram in figure 1.2.

f1LO

f2LO

RF
AGC

45 MHz

DACAGC

AGC Detector

Voice

Channel
Selection

455 kHz

AM

SSB
f3LO(BFO)

FSK Dem.

fDSC

Data

AGC Detector

DSC

Figure 2: Simplification of a receiver system. The blocks inside the square are the parts of focus
in the thesis.

0.2 Problem description

In the preceding, the implementation of software radio into an existing system has outlined that
there is a need for investigation. Since the tasks of transforming a part of the receiver from the
analog domain into the digital hardware is not a trivial task, there is a need for analysing these
tasks. These are two coherent tasks, the first is the mapping of the analog circuitry into the digital
domain, and the second is the design of a system architecture where the algorithm can be imple-
mented.

Since this work is an existent system, the function basis is a priori information from the analog
domain. This implies that there is a need for functions to be synthesized into the digital domain.
Knowing about these existing approaches, considerations can be done in order to optimize the
algorithms instead of developing new ones.

The receiver should perform a real-time SSB demodulation using the traditional heterodyne
approach, and still be able to keep the specification within the limitations set by ETSI. A software
radio for a Super-Heterodyne receiver should be able to handle a large dynamic range, for which
reason an AGC is needed. Since the aim of this work is to consider a receiver design with the
ADC placed after the second mixer, the second IF must be chosen carefully. Before the final
demodulation re-produces the baseband output signal, the modulated signal is filtered to make the
last selection in the chain of the receivers. This is done in several steps through the chain to avoid
adjacent channel, and image response.

0.3 Design considerations

This section will state the design considerations as an intro to the algorithm chapter. We have the
possibility to lower the second intermediate frequency, from 455 kHz to a new wanted frequency.
There are mainly two things to be aware of when lowering this frequency, the bandwidth of the
spectrum which is assumed to be band limited (attenuated by 70 dB) to ±40 kHz with fc as
the center frequency of the spectrum. The other important consideration is the down-sampling
factor which is wanted, to be an integer multiplum of the samplings frequency. In the design
considerations, we consider the block diagram shown in figure 3.

HT M Re{x(n)}

e-jπ/2

Multirate solution

1 2 3 5

1

2 4

3 5

4

Figure 3: Block diagram showing the simulated scenario. The solution space is surrounded by the
(a)dotted box, indicating that there are several possibilities to decrease the computation require-
ments, within this box.

Hilbert Transform

The Hilbert transform is applied to the sampled incomming signal, by using a two path half-band
filter that we modulate to the quarter-sample rate, as shown in figure 4. When applying the Hilbert
transform we zero out all negative frequency. Since the half of coefficients in a half band filter are
zero, we can cost free utilize the inherent properties of down-sample by a factor of two by skipping
the zero multiplications. This results in a throughput of four times the intermediate frequency.

Z -N/2

H1(Z)

x(m)

Real{y(2m)}

j Imag{y(2m)}

Figure 4: Two-path Hilbert transform filter.

Figure 5 shows the impulse response of the two-path Hilbert transform filter, where the upper
figure is the real part of the filter. Since the upper part is a delay of N/2, where N is the length of
the filter, the real path impulse response is simply a delayed version of the impuls.
The impulse response in the lower part of figure 5, will shift all the negative frequency components
by +90o and the positive by −90o.

0 1 2 3 4 5 6 7 8 9 10 11
-0.4

-0.2

0

0.2

0.4

0.6
Impuls response h0 - real part

Sample number

0 1 2 3 4 5 6 7 8 9 10 11
-0.4

-0.2

0

0.2

0.4

0.6
Impuls response h1 - imag part

Sample number

Figure 5: Impulse response of the upper and lower path of the HT. We see that the lower impulse
response correspond to the properties of the HT.

Another recursive method to perform the Hilbert transform, is the a recursive method based
on the two-path all-pass filters [3]. This recursive structure can be performed with a side band
attenuation of 80 dB using only four coefficients.

Down-conversion

Moving the wanted channel to base-band with the effect of the quadrature is cost-free in a hardware
solution, and makes is less computational demanding . The output of the quadrature is shown in
equation 1 to 4, where n is the sample number.

I for n = 0, 4.... (1)

Q for n = 1, 5.... (2)

−I for n = 2, 6.... (3)

−Q for n = 3, 7.... (4)

In hardware this corresponds to only choose the right path and change sign this solution should
be compared to a CORDIC solution, which is computational expensive.

FIR Filter Design

The complex band-pass filter requirements to obtain the wanted selectivity are stated in table 1,
where the transition band (∆f) is the guard band that separates the channels.

Fs = 4 fc
∆ f = 600 Hz

Stopband Attenuation = 80 dB

Table 1: Filter requirements in order to obtain the wanted selectivity.

The required order of the filter is highly depended on the samplings frequency, and since we
have chosen to use the properties of quadrature sampling the sampling frequency is dependent of
the second intermediate frequency. Figure 6 shows an estimate of the filter order, when using the
window and the Parks-McClellan (PM) method for designing the filters.

50 100 150 200 250 300 350 400 450 500
0

2000

4000

6000

8000

10000

12000

14000

16000

Second Intermediate Frequency [kHz]

E
st

im
at

ed
 o

rd
er

 o
f f

ilt
er

Order of filter compared with the 2.IF

Window
PM

Figure 6: The estimated order of the filter, in order to obtain the wanted filter characteristic com-
pared to the intermediate frequency, where the red line is based on Parks-McClellan filter design,
and the blue line is base on the window method.

FIR Polyphase decomposition

We can take advantage of decomposition the FIR filter, when using down-sampling, by utilizing
the properties of the noble identity. Before decomposition the filter, we need to known the down-
sampling factor M, since the output rate need to be 12 kHZ, we use equation 5 to calculate M.

M =
4fc

12 k
(5)

Figure 7 shows how the down-sampling factor increases when increasing the second interme-
diate frequency. The required number of sub-filters in a poly-phase decomposition of a FIR filter
are equal to the down-sampling factor M.

50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

Second Intermediate Frequency [kHz]

D
ow

ns
am

pl
in

g
fa

ct
or

: M
-1

Down-sampling vs. Intermediate Frequency

Figure 7: The down-sampling factor is linear dependent of the second intermediate frequency,
which means that when lowering the frequency a lower down-sampling factor is required.

If we choose to lower the second intermediate frequency the down-sampling factor will de-
crease as well, like the sampling frequency and the order of the filter. Since we only need to
calculate each sub-filter at each incoming samples, we can calculate the required number of oper-
ations in each sub-filter independent of the sampling frequency.

50 100 150 200 250 300 350 400 450
60

70

80

90

100

110

120

Second Intermediate Frequency [kHz]

Le
ng

th
 o

f s
ub

-fi
lte

r a
fte

r d
ec

om
po

si
tio

n

Numbers of multiplication needed into computer one output

Figure 8: The red line is the window function that would require 102 operations in each sub-filter.
The blue line is the PM, which only requires 72 operations in each sub-filter.

In figure 8 we see that when using the window function we need 102 computations in each sub-
filter is needed, but only 72 when using the PM filter design method. It can be argued why this is
the case, and that PM has the disadvantage of having more pass-band ripple, but we will not look
into this now. Since the poly-phase filter still run at full-rate, we want to see if it is possible to make
several down-sampling filter that runs at a lower rate, and still obtaining the wanted selectivity.

Two-path recursive All-pass half-band filter

The two-path recursive all-pass filter is able to down-sample by a factor of two in each section [2].
This will cause the down-samplings factor to be a power of two. When down-sampling by a factor
of two in each section, the down-sampling factor need to be a power of two as shown in equation 6.
We know that the spectrum is band limited within ±40 kHz. The output at audio has as sample
frequency of 12 kHz, which corresponds to that the second intermediate frequency is not allowed
to be lower than 96 kHz, and five section of down-sampling.

4 · fc

2N
= Fsout (6)

4 · 96 kHz
2N

= 12 kHz (7)

However, we can not just cascade couple all five sections, this would cause aliasing in the
wanted spectrum. After two down-samplings sections the spectrum need to be band limited. This
is done by a recursive all-pass filter, which is a more efficient filter than the regular IIR filters [3].
The spectrum of the first half-band filter can be seen in figure 9, while the coefficients are shown
table 2.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10
Magnitude Response of Two Path Filter

Normalized Frequency (f/fs)

Lo
g

M
ag

ni
tu

de
 (d

B
)

Figure 9: The first and second half-band filter, when down-sampling the signal by a factor two.
The red line is the filter plotted as high pass filter, and is only a matter of sign changing [3]. This
is included in order to show the possibility in this filter types.

In table 2 we see that only three multiplications needed to calculated the filter, two multipliers
in the first path and one in the second path.

Path-0 Polynomial Coefficient
Filter-0 [1 0 0.07638269328882]
Filter-2 [1 0 0.69878248805530]

Path-1 Polynomial Coefficient
Filter-1 [1 0 0.30208200300176]

Table 2: Coefficients for the first half-band filter.

The last filter in the chain, need to be a complex filter, since the spectrum is complex and we
want to obtain the final selectivity. This is done by up-converting a FIR filter. To obtain the wanted
selectivity we need 201 taps.

The last recursive half-band filters are not plotted in this section, but will be pressent in the
simulation results. The required number of coefficients is shown in table 3. Notice that we use
five coefficient in block-3 instead of three, to shown how the number of coefficient change the
steepness of the filter. This is further elaborated in the next chapter.

Block-1 Block-2 Block-All Filter-3 Bllock-4 Block-5 Block-FIR Total
3 3 13 5 3 3 201 231
48 24 104 20 6 3 201 406

Table 3: The second row shows the number of coefficients used in each section. While the third
row shows the required number of multiplications needed in order to produce one output sample.

In table 3 the required number of coefficients is stated. To produce one output a total sum of
231 coefficients and 406 multiplications are required, as stated in table 3. This should be compared
to the poly-phase implementation, where the entire filter length N need to run in order to deliver
one output sample. Figure 6 indicates that the filter length is about 2000.

0.4 Simulation results

With the design consideration in mind we are able to design and simulate the system function to
see if the requirements stated can be fulfilled. The calculation of the filter coefficient needed in
the All-pass sections, is based on [7]. In this algorithm several different filter types has been used:

• Half-band Hilbert Transform

• Two-path Half-band filter

• Recursive All-pass filter

• Complex FIR filter

There are several possible constellations for combining the filters into this application, but in
this algorithm most of the multirate techniques are used, in order to see the advantage in each filter
design procedure, as well as the reduction in the computational complexity.

0.5 Simulation setup

To get a quick overview of the algorithm, figure 10 shows the different blocks, as designed in
section 0.3. Since we are working on a multirate system the sampling frequency is varying from
block to block. At the block diagram each incoming and outgoing frequency is stated to give an
overview of the systems computational load.

HT

e-jπ/2

Two-path
Halfband

filter

Two-path
Halfband

filter

2 2 2 All-pass
selectivity

2

Two-path
Halfband

filter

Two-path
Halfband

filter

2 Two-path
Halfband

filter

2

2

2
Complex FIR

2
Re{x[n]}

fs = 8fc fs = 4fc fs = 2fc fs = fc fs = fc

fs = fc/2 fs = fc/4 fs = fc/8 fs = fc/8 fs = 12kHz

Figure 10: Block diagram of the algorithm showing the different filter blocks use. The number
two on the arrow connections indicates that the signal is complex.

In order to fulfil the specification to the system specified by ETSI, we use the frequency com-
ponent located relative to the carrier as the specification stats. Another important property to be
aware of, when using multirate system is unwanted aliasing components that could rise in the
wanted spectrum. In order to take this problem into account when simulating the system, we lo-
cate two frequency components at fc±13 kHz. To see whether the wanted channel is maintained
and leaved unchanged though the system, we simulate the wanted channel with four modulated
frequencies from the boundary of 300 to 2700 Hz.

Fs in: 8 fc
Fs out: 12 kHZ
Test signal: fc(0.3,2.7) kHz
Test speech: BW: 300-2700 Hz
Upper adj. signal: fc(+4,+5,+8) kHz
Lower adj. signal: fc(-1,-2,-5) kHz
Aliasing signal: fc+13 kHz
Aliasing signal: fc-13 kHz

Table 4: Test signals used in the simulation.

0 50 100 150
-120

-100

-80

-60

-40

-20

0

Signal after first half-band filter

Frequency [kHz]

dB

Figure 11: The SSB spectrum where the wanted signal is modulated with a carrier of 96 kHz, the
other frequency components are unwanted

Hilbert transform

The Hilbert transform is designed by quadrature modulation of the low-pass coefficient, and then
implemented as a two-path half-band filter. The implementation of a two-path Hilbert transform
makes it possible to obtain a cost free down-conversion by 2-1, since half of the coefficient is zero.
The upper path of the Hilbert transform will be a delay of −N/2, and the lower path will be the
coefficients of the Hilbert transform, by multiplying the following by j we shift the signal by 90o,
doing so will present the signal analytic, given by xa = xupper + jxlower. This can be seen as
a one side spectrum, where the negative frequencies are zeroed out, as the right figure in 12. It
should be noticed that the spectrum now is complex and asymmetric.

0 50 100 150
-100

-80

-60

-40

-20

0

Hilbert Transform spectrum

Frequency [kHz]

dB

-100 0 100
-100

-80

-60

-40

-20

0

Signal after first half-band filter

Frequency [kHz]

dB

Figure 12: Left figure show the spectrum of the Hilbert transform, and the rigth the output since
the Hilbert transform, where the negative frequency are not completely zeroed out but attenuated
80 dB.

Down-conversion

To avoid an expensive solution, we take advantage of using the quadrature effect when doing the
down-conversion. This will move the wanted channel down to base-band, as shown in figure 13.

-100 0 100
-100

-80

-60

-40

-20

0

Signal at base-band

Frequency [kHz]

dB

Figure 13: The quadrature down-conversion locate the wanted channel at baseband

Down-sampling

From section 0.3 we use the property of the half-band filter by down-sampling by a factor of two
in each section. Since the incoming sample rate is four times the intermediate frequency, we need
to down-sample by a factor of 32 to obtain an output of 12 kHz. This can be obtained by using a
cascade of five half-band filters. When designing these half-band filters we need to pay attention
to the fact that aliasing can occur if the signal not are band limited when doing the down-sampling.
It is possible to down-sample by a factor of four before problem with aliasing occurs. A down-
sampling by a factor of four gives an output frequency of 96 kHz which will force a band limitation
before doing another 2-1 down-sampling, otherwise aliasing will occur. The recursive all-pass
filter is applied to band limit the signal, so the following half-band filters can down-sample by a
factor of 8.

First Half-band filter - (Fsin:384 kHz Fsout:192 kHz)

After the second IF the spectrum is band-limited from the analog domain, and since the sampling
frequency is equal to the quadrature, no aliasing problem occurs when doing a 2-1 down-sampling
with a half-band filter. The spikes seen in the positive frequency spectrum in the right figure 14
are aliasing from negative frequency spectrum that the Hilbert transform did not remove entirely.

0 50 100 150
-100

-80

-60

-40

-20

0

First recursive Half-band filter

Frequency [kHz]

dB

-40 -20 0 20 40
-120

-100

-80

-60

-40

-20

0

Signal after first half-band filter

Frequency [kHz]

dB

Figure 14: First half-band filter spectrum, and the output from the filter.

Second Half-band filter - (Fsin:192 kHz Fsout:96 kHz)

We can simply apply another half-band filter without care about aliasing since the half incoming
frequency is still higher that the spectrum. Figure 15 show the output spectrum from the filter as
well as the filter spectrum.

0 20 40 60 80
-100

-80

-60

-40

-20

0

Second recursive Half-band filter

Frequency [kHz]

dB

-20 -10 0 10 20
-120

-100

-80

-60

-40

-20

0

After second Half-band filter

Frequency [kHz]

dB

Figure 15: The left figure shows the spectrum of the half-band filter, and the right the output.

Recursive All-pass filter - (Fsin:96 kHz Fsout:96 kHz)

To lowering the sampling frequency by another factor of 2, we need to band-limit the spectrum
to avoid aliasing problems. This is done with the all-pass filter that has a low complexity and is
still able to have a high out of band attenuation. In figure 16, the spectrum shows the low pass-
band and large stop band attenuation for the recursive all-pass filter. We also see that the channels
located above the wanted is attenuated, and the only frequency components present are located at
fc-1 kHz and fc-2 kHz. The small spikes shown are our unwanted frequency components that are
attenuated below 80 dB.

0 10 20 30 40
-100

-80

-60

-40

-20

0

First recursive All-pass filter

Frequency [kHz]

dB

-20 -10 0 10 20
-120

-100

-80

-60

-40

-20

0

After First selectivity filter

Frequency [kHz]

dB

Figure 16: The left figure show the spectrum of the recursice All-pass selectivity filter, and the
right the output.

Third Half-band filter - (Fsin:96 kHz Fsout:48 kHz)

The spectrum is now band-limited, so the requirements to the half-band filters are less demanding.
The filter spectrum and output from the third half-band filter can be seen in figure 17.

0 10 20 30 40
-100

-80

-60

-40

-20

0

Third recursive Half-band filter

Frequency [kHz]

dB

-20 -10 0 10 20
-120

-100

-80

-60

-40

-20

0

After third Half-band filter

Frequency [kHz]

dB

Figure 17: The left figure show the spectrum of the recursice All-pass selectivity filter, and the
right the output.

Fourth Half-band filter - (Fsin:48 kHz Fsout:24 kHz)

Figure 18 shows the spectrum and the output of the filter. We see that the unwanted frequency
components are almost invisible at this point in the chain, but the two frequency components
below the wanted channel are still present.

0 5 10 15 20
-100

-80

-60

-40

-20

0

Fourth recursive Half-band filter

Frequency [kHz]

dB

-10 -5 0 5 10
-120

-100

-80

-60

-40

-20

0

After Fouth Half-band filter

Frequency [kHz]

dB

Figure 18: The left figure show the spectrum of the half-band filter, and the right the output.

Fifth Half-band filter - (Fsin:24 kHz Fsout:12 kHz)

The fifth filter is doing the last down-sampling, the output frequency is at this stage 12 kHz, which
was the desired. However looking at the spectrum in the right figure 19 we see that two unwanted
frequency component is still present, and need to be removed.

0 2 4 6 8 10 12
-100

-80

-60

-40

-20

0

Fifth recursive Half-band filter

Frequency [kHz]

dB

-6 -4 -2 0 2 4 6
-120

-100

-80

-60

-40

-20

0

After Fifth Half-band filter

Frequency [kHz]

dB

Figure 19: The left figure show the spectrum of the half-band filter, and the right the output.

Selectivity filter - (Fsin:12 kHz Fsout:12 kHz)

The last filter is applied to obtain the final selectivity in the chain, we have complex down-
converted the signal, follow by down-sampling. The complex down-conversion leaves us with
an asymmetric frequency spectrum, where the wanted channel is located from 300 to 2700 Hz,
all that is located below and above this band is unwanted and needs to be attenuated. We need to
design a filter that has an asymmetric frequency spectrum, the easiest way to do so is to design a
low-pass filter with the cut-off frequency at half the bandwidth of the wanted signal. The low-pass
filter is real, but we simply modulate the filter coefficients by a complex phase rotation so the
center is located (f1-f2)/2, this leaves us with a complex band-pass filter as shown in figure 20. It
can be argued that a complex IIR filter is more efficient. However, the sample rate is reduced to
only 12 kHz, we don’t consider time as a time constraint at this stage.

-6 -4 -2 0 2 4 6
-100

-80

-60

-40

-20

0

Complex FIR filter

Frequency [kHz]

dB

-6 -4 -2 0 2 4 6
-120

-100

-80

-60

-40

-20

0

After complex FIR filter

Frequency [kHz]

dB
Figure 20: The left show the asymmetric spectrum of the complex band-pass filter, at the right
only the wanted frequency component is present now.

0.6 Output result

The real output from the algorithm is shown in figure 21, where all the four frequency components
still are present and the out of band attenuation below 80 dB. The final performance test is done
by the company xxxx in order to verify the quality of the speech signal though the chain.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

-6 -4 -2 0 2 4 6
-120

-100

-80

-60

-40

-20

0

Real Output signal

Frequency [kHz]

dB

Figure 21: Real output spectrum.

Quality Test

A quality test on the system has been made at algorithm stage. The three SINAD measurement
was performed in order to verify the specification from ETSI. A 1 kHz sinus was modulated with
the carrier (fc) as the wanted channel, the adjacent channel was located as stated in table 5. The
adjacent channel was applied with an amplitude 50 dB above the wanted channel.

Test nr. Test signal SINAD Distortion
Test-1 ((fc-1)+(fc+4)) kHz 40 dB N/A
Test-2 fc-2 kHz 40.8 dB 0.9%
Test-3 fc+4 kHz 45.3 dB 0.54%

Table 5: Results from quality test performed by xxxx

The specification stated that the SINAD measurement should be above 20 dB, and with a dis-
tortion of maximum 1%. The performance test shows that the adjacent channel located above the
wanted in the frequency spectrum performed best with 45.3 dB SINAD. This was expected as
shown in figure 19 and 20. The test verified the algorithm, and we can now consider the imple-
mentations possibilities in the design space exploration.

0.7 Sub-conclusion

The simulation shows that the algorithm is able to demodulate a SSB signal and still fulfil the re-
quirements from ETSI. There are several solutions to demodulate the signal with multirate signal
processing, this solution has tried to combine different filter type and obtaining a low complexity
compare to the known legacy solution. In this solution the company is able to adapt the algorithm
to fulfill their requirements, if it turns out that the sampling frequency is to high it can be lowered
by a factor of two, without any lost performance since a factor 2 down-sampling is inherent in the
Hilbert transformation, if it turns out the Hilbert transform not is efficient enough and the down-
sampling is not needed, the company should look into the design of a recursive Hilbert transform
where an out of band attenuation of 80 dB, can be achieve canwith only 4 coefficients, which will
lower the complexity sufficiently. The quadrature solution for down-conversion was the obvious
choice for down-conversion, since this is a matter of shift between the I-channel and Q-channel,
and changing the sign of the channels. The recursive two-path half band filter makes it possible to
lower the complexity since half the coefficients is zero, however the filter should be able to obtain
a high out of band attenuation, and by utilizing the noble identity we split it into a poly-phase
decomposition that makes the 2-1 down-sampling cost free. If these recursive half band filter is
unwanted they can be replaced by a FIR filter decomposed into a poly-phase structure, this in-
crease the complexity but avoid the feed back loop inherent in the recursive structure. One of the
interesting filters in this algorithm is the recursive all-pass filter. This filter should be compared to
IIR filter like the Elliptic, Chebyshev e.g., the complexity in this filter is lower than in the tradi-
tional IIR filter which makes it suitable when we having a time constraint.
In the current algorithm we have purely chosen to do the down-sampling with half band filters,
which would require a final filtering to obtain the wanted selectivity, the filter needs to be complex
since the spectrum is asymmetric. We have done the complex filtering with at modulated low-pass
filter centred at half the band-width of the wanted spectrum.
The SINAD quality test of the algorithm was preformed and the result is stated in table 5. The
results showed that the overhead was above 20 dB SINAD, which indicate how effective the mul-
tirate rate filters can be.

0.8 Wordlength analysis

The disadvantage by using a DSP based implementation in a multirate base system is due to the
need for FIFO buffers within between each block. For this reason an FPGA will be an obvious
choice for prototyping development, as stated below.

• Variable clock rate

• Different word length

• No, control calculations

The specification were fulfilled, and we will start to optimize the algorithm to fit into a suitable
architecture. In this algorithm the selectivity and sensitivity are the two important parameters,
which have the highest priority when we compare it to the wanted performance, this mean that we
accept a larger area in cost of performance.
There are two parameters that influence the area: the number of functional units and the word-
length of the calculations used in each intermediate operation. Since the system is based on sev-
eral recursive blocks a low number of coefficient, it would be an interesting parameter to see the
performance of the blocks at different word length.
In an FPGA implementation, each variable can be customised to produce the best tradeoffs in
numerical accuracy, design size, speed and power consumption, which is useful in a multirate sys-
tem.
By using the word length analysis we will express the cost function purely dependent of the num-
ber of bits used in the total system. The new cost function can be seen in equation (8), and are the
sum of bits used to present each filter block.

Costbit =
M∑
i=1

bi (8)

To simulate a fixed point hardware environment with different word-length in each block we
need a high level league like SystemC.

0.9 SystemC

When simulating the algorithm in Matlab, the precision is approximate infinite. Unfortunately the
hardware cost follow the precision trend toward infinity. In order to minimize cost in a FPGA
based system, we want to see the performance of the algorithm, in a fixed point hardware envi-
roment. To model the behaviour of fixed point hardware, the tool SystemC[5] is used, which is
a hardware description language like VHDL and Verilog, but is more aptly described as a system
description language.

In SystemC it is possible to model the fixed point bit accurately for each intermediate variable
in the functions used within the algorithm. Furthermore, SystemC supports features like modelling
difference quantization mode, and overflow behaviour at a high level. This tool makes it possible
to simulate a hardware environment, that enable us to see the performance of the algorithm at
different word length.

Two data types are used to model the fixed point hardware architecture, one signed and one
unsigned. The presentation of the fixed point word length is defined as expressed in equation (9)
for signed and (10) for unsigned. These arguments are static and must be known at compile time.

wlsigned = [−2(iwl−1), 2(iwl−1) − 2−(wl−iwl)] (9)

wlunsigned = [0, 2(iwl) − 2−(wl−iwl)] (10)

There are four parameters associated with these data class types, these are listed below:

• wl - Total word length, used for fixed point representation. Equivalent to the total number
of bits used in the type.

• iwl - Integer word length - specifies the number of bits that are to the left of the binary
point(.) in a fixed point number.

• q_mode - quantization mode, this parameter determines the behavior of the fixed point type
when the result of an operation generates more precision in the least significant bits than is
available as specified by the word length and integer word length paramenters.

• o_mode - overflow mode, this parameter determines the behavior of the fixed point most
significant bits when an operation generates more precision thah the most significant bits
available.

0.10 System setup

In order to measure performance in the filter blocks, with different word length, we have to come
up with a performance estimate, where comparing the high level Matlab output with the word
length reduced output signal. Since we are working at a high block level, we choose to express
the performance as the error or total sum of squares as expressed in equation (11). We want to
minimize the error, but to set value on an acceptable error is difficult, but we would take a look
at the error influence of the filter characteristic, specially with focus on the slope of the filter and
attenuation in the stop band.

e =
n∑

i=0

(q(i)− h(i))2 (11)

The integer word length (iwl) is determined by applying a steep response to each block, and to
avoid overflow we set a watch flag in SystemC to observe if this occurs. The number of iwl bits
for each section can be seen in table 6. This parameter is fixed and we vary the wl from thirty-two
to ten bits, with a interval of two.

The hardware accumulator used in the simulation is set to infinity, but this can of cause be
simulated with a fixed point bit number if wanted.

0.11 Simulation results

The total sum of squared error depend on the different word length as shown in figure 22. As
expected the FIR filter blocks (HT & Complex filter) error are low compared to the recursive

Value HT Block1-2 ALL-pass Block3 Block4-5 Complex FIR
wl 32:-2:10 32:-2:10 32:-2:10 32:-2:10 32:-2:10 32:-2:10
iwl 2 2 3 2 2 2

Table 6: The parameter used for each block simulation in SystemC.

filters. The half-band filters 1 and 2 using only three coefficients, and have equal coefficient which
implies the same squared error, as well as 4 and 5. Comparing half-band filter 1,2 with 4,5 the
error is almost equal, even when the coefficient are different, but the number of coefficient used are
equal, which implies almost an equal error. The longest half band filter (3) have five coefficients,
here we seen and increased error compared three coefficient filters. The last filter tested is the
recursive all-pass filter, in this filter block the signal is band limited, and some of the selectivity
is obtain here. The filter has thirteen coefficients and the error variation is the biggest in the filter
chain.

10 20 30 40
0

0.5

1

1.5

2
x 10-5 HT - Transform

10 20 30 40
0

0.002

0.004

0.006

0.008

0.01

0.012
1 & 2 - HBF

10 20 30 40
0

0.5

1

1.5

2

2.5
Block All-pass

10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
3 - HBF

10 20 30 40
0

0.002

0.004

0.006

0.008

0.01

0.012
4 & 5 - HBF

10 20 30 40
0

0.5

1

1.5
x 10-4 Complex Filter

Figure 22: The graphs show the total sum off squared error, for each block. The x-axis represents
the number of bits and the y-axis the error. It should be noticed that the filter coefficient in block
1 and 2 are the same, as well as in block 4 and 5.

To see a correlation between the error and the filter characteristic, the response has been plotted
for each section. Figure 23 show that the transfer function is presented as wanted from 32 to 10
bit, which was expected since there is only ten coefficient, and the total sum of squared errors was
small.

0 10 20 30 40 50
-100

-50

0
32 - Bits presentation

0 10 20 30 40 50
-100

-50

0
30 - Bits presentation

0 10 20 30 40 50
-100
-50

0
28 - Bits presentation

0 10 20 30 40 50
-100
-50

0
26 - Bits presentation

0 10 20 30 40 50
-100
-50

0
24 - Bits presentation

0 10 20 30 40 50
-100
-50

0
22 - Bits presentation

0 10 20 30 40 50
-100
-50

0
20 - Bits presentation

0 10 20 30 40 50
-100
-50

0
18 - Bits presentation

0 10 20 30 40 50
-100
-50

0
16 - Bits presentation

0 10 20 30 40 50
-100
-50

0
14 - Bits presentation

0 10 20 30 40 50
-100
-50

0
12 - Bits presentation

0 10 20 30 40 50
-100
-50

0
10 - Bits presentation

Figure 23: Filter characteristic Hilbert Transform for varying bit representation. The y-axis is in
dB and the x-axis in kHz.

Figure 24 show the transfer characteristics for half-band blocks 1 and 2. The red line show the
80 dB criteria, and at least 20 bits is needed to maintain the stopband attenuation.

0 50 100 150
-100

-50

0
32 - Bits presentation

0 50 100 150
-100

-50

0
30 - Bits presentation

0 50 100 150
-100
-50

0
28 - Bits presentation

0 50 100 150
-100
-50

0
26 - Bits presentation

0 50 100 150
-100
-50

0
24 - Bits presentation

0 50 100 150
-100
-50

0
22 - Bits presentation

0 50 100 150
-100
-50

0
20 - Bits presentation

0 50 100 150
-100
-50

0
18 - Bits presentation

0 50 100 150
-100
-50

0
16 - Bits presentation

0 50 100 150
-100
-50

0
14 - Bits presentation

0 50 100 150
-100
-50

0
12 - Bits presentation

0 50 100 150
-100
-50

0
10 - Bits presentation

Figure 24: Filter characteristic for half pass filter block 1 and 2 for varying bit representation. The
y-axis is in dB and the x-axis in kHz.

The recursive all-pass filter is the first selectivity filter used in the filter chain, and from fig-
ure 25, we see that due to the length of the filter it is more sensitive to quantization noise, than the
short half-band filters. To maintain the 80 dB limit, at least 26 dB is needed.

0 10 20 30 40
-100

-50

0
32 - Bits presentation

0 10 20 30 40
-100

-50

0
30 - Bits presentation

0 10 20 30 40
-100
-50

0
28 - Bits presentation

0 10 20 30 40
-100
-50

0
26 - Bits presentation

0 10 20 30 40
-100
-50

0
24 - Bits presentation

0 10 20 30 40
-100
-50

0
22 - Bits presentation

0 10 20 30 40
-100
-50

0
20 - Bits presentation

0 10 20 30 40
-100
-50

0
18 - Bits presentation

0 10 20 30 40
-100
-50

0
16 - Bits presentation

0 10 20 30 40
-100
-50

0
14 - Bits presentation

0 10 20 30 40
-100
-50

0
12 - Bits presentation

0 10 20 30 40
-100
-50

0
10 - Bits presentation

Figure 25: Filter characteristic for the recursive all-pass filter for varying bit representation. The
y-axis is in dB and the x-axis in kHz.

The five coefficient half band filter need at least 20 bit to maintain the stop-band attenuation
as shown in figure 26. This is equal to the representation of three coefficient half-band filters, and
since the total sum of squared error only differed by a small factor, this was expected.

0 10 20 30 40
-100

-50

0
32 - Bits presentation

0 10 20 30 40
-100

-50

0
30 - Bits presentation

0 10 20 30 40
-100
-50

0
28 - Bits presentation

0 10 20 30 40
-100
-50

0
26 - Bits presentation

0 10 20 30 40
-100
-50

0
24 - Bits presentation

0 10 20 30 40
-100
-50

0
22 - Bits presentation

0 10 20 30 40
-100
-50

0
20 - Bits presentation

0 10 20 30 40
-100
-50

0
18 - Bits presentation

0 10 20 30 40
-100
-50

0
16 - Bits presentation

0 10 20 30 40
-100
-50

0
14 - Bits presentation

0 10 20 30 40
-100
-50

0
12 - Bits presentation

0 10 20 30 40
-100
-50

0
10 - Bits presentation

Figure 26: Filter characteristic for half pass filter block 3 for varying bit representation. The y-axis
is in dB and the x-axis in kHz.

The last filter in the chain is the complex FIR, here the last selectivity is obtained. The slope
on the filter has to maintain the steepness, in order to maintain the wanted selectivity. In figure 27,
the simulation of the complex FIR filter shown, a word length would require 20 bit to maintain the
slope of the filter, as well as the out of band attenuation.

-6 -4 -2 0 2 4 6
-100

-50

0
32 - Bits presentation

-6 -4 -2 0 2 4 6
-100

-50

0
30 - Bits presentation

-6 -4 -2 0 2 4 6
-100
-50

0
28 - Bits presentation

-6 -4 -2 0 2 4 6
-100
-50

0
26 - Bits presentation

-6 -4 -2 0 2 4 6
-100
-50

0
24 - Bits presentation

-6 -4 -2 0 2 4 6
-100
-50

0
22 - Bits presentation

-6 -4 -2 0 2 4 6
-100
-50

0
20 - Bits presentation

-6 -4 -2 0 2 4 6
-100
-50

0
18 - Bits presentation

-6 -4 -2 0 2 4 6
-100
-50

0
16 - Bits presentation

-6 -4 -2 0 2 4 6
-100
-50

0
14 - Bits presentation

-6 -4 -2 0 2 4 6
-100
-50

0
12 - Bits presentation

-6 -4 -2 0 2 4 6
-100
-50

0
10 - Bits presentation

Figure 27: Filter characteristic for complex FIR filter block for varying bit representation. The
y-axis is in dB and the x-axis in kHz.

0.12 Sub-conclusion

The simulation of the word length shows the performance of the filters at different bit representa-
tions. The recursive all-pass filter is most sensitive to quantization, which was expected since it
was the longest of the recursive filters. The complex FIR filter is the most critical filter in order
to obtain a high selectivity, as well as sensitivity due to the complex structure of the filter. It has
been show that the number of bits can be reduced in each block, and this will reduce the cost in
a hardware solution. However it should be notice that the simulation do not take care of scaling
within each block, and in a final implementation of this should be done to avoid overflow. A fi-
nal solution with reduced word length could be a Hilbert Transform presented with 10 bit, all the
half-band section presented with 20 bit, the all-pass section with 24 bit and the complex FIR filter
with 20 bit. With this combination the algorithm should still be able to fulfil the criteria specified,
but this should be tested and verified before a final implementation.

Implementation

The implementation in this work was done using the DSP Builder, which allows implementing
of the system modelled in simulink. The SignalCompiler block generates the VHDL files for
synthesis, hardware implementation, and simulation. To verify the fixed-point simulink simulation
the output is compared with the Matlab result.

0.13 Block implementation

The implemented blocks design by as listed below.

• Hilbert transform: Two-path half band filter

• Down-convert: NCO MegaCore Function

• Recursive HBF1: Two-path half band filter

• Recursive HBF2: Two-path half band filter

• Recursive All-Pass: Two-path filter

• Recursive HBF3: Two-path half band filter

• Recursive HBF4: Two-path half band filter

• Recursive HBF5: Two-path half band filter

• Complex Filter: FIR filter

Each block was designed as a sub-system in Simulink and Mask in order to generate the VHDL
code with the SignalCompiler. Each block was test independenly, as shown in figure 28.

First Recursive Half Band Filter

discrete_imp

To Workspace1

filter_output_tf

To Workspace

SignalCompiler
PLL

o[3].[32]
Output_work

i[3].[32]
Input_imp

data_in data_out

HBF1

Discrete
Impulse

Figure 28: Black box test of the first half band filter.

Figure 29, show the sub-system for the first half band filter, and within the sub-system three
All-pass sub-system is implemented. The output from each intermediate variable was save in
MatlabŠs workspace in order to verify the result.

Path-0

Path-1

Sub-system of the first recursive half band filter

1
data_out

+

+

+

Parallel
Adder Subtractor

o[3].[32]
Output

y12s

Intermediate variable 03

y02s

Intermediate variable 02

y01s

Intermediate variable 01

i[3].[32]
Input

alfa_coef

input_data[3].[32]

output_data[3].32

H10(z)

alfa_coef

input_data[2].[32]

data_out

H01(z)

alfa_coef

input_data[2].[32]

data_out

H00(Z)

0.5d

Gain

z-1

Delay

02082002861
Coef-10

98782488005
Coef-016382693136

Coef-00

1
data_in

Figure 29: The sub-system for the first half band filter, notice that the down-samplings part is
omitted in this test implementation.

The entire block system is implemented in simulink/DSPBuilder as shown in figure 10 at dif-
ferent word length, the result has then been compared with the SystemC simulation as shown in
section 0.11.

0.14 Sub-conclusion

The DSPBuilder has shown to be a quick development tools that in co-operation with simulink is
capable of developing fast prototypes for a communication. The interaction with Matlab makes
it easy to verify the result obtained from DSPBuilder and simulink with the simulated results in
Matlab.

The next step in this work is to test the system in a real-time communication system in co-
operation with the company xxxx, and give them an introduction to multirate filtering system
together with the implementing tools used within this project. The outcome from this should be,
to show the possibility to develop software defined radios in less time than earlier with the efficient
hardware component and software tools available today.

Bibliography

[1] M.W. Chamberlain.
A software defined hf radio.
In Military Communications Conference, 2005. MILCOM 2005. IEEE, pages 2448–

2453Vol.4, 17-20 Oct. 2005.

[2] fred harris.
An Efficient Constant-Q Spectral Analyzer Architecture Using All-pass Recursive Filters.
PhD thesis, Electrical and Computer Engineering Department San Diego State University,

2000.

[3] fredric j harris.
Multirate Signal Processing For Communication Systems.
Prentice Hall, 1st edition, 2004.

[4] Jung Ko, V.C. Gaudet, and R. Hang.
Tier 3 software defined am radio.
In System-on-Chip for Real-Time Applications, 2005. Proceedings. Fifth International Work-

shop on, pages 257–261, 20-24 July 2005.

[5] C++ open source language.
Systemc community.
www.systemc.org, 2007.

[6] Walter HW Tuttlebee.
Advances in software-defined radio.
Electronics Systems and Software, pages 26–31, 2003.

[7] R.A. Valenzuela and A.G. Constantinides.
Digital signal processing schemes for efficient interpolation and decimation.
IEE Proc. Part G, 130(6):225–235, Dec. 1983.

Final Project Report

Table of Contents

Project Name : SOPC-based Voiceprint Identification System
Team Name : Panda

Team ID : IN00000004

Tem Members : 1. Huan Fang

 2. Xin Liu

Email Address : 1. huanf@kth.se

 2. xinliu@kth.se

Contact No : 1. 0762321822

 2. 0707574312

Instructor : Prof. Ingo Sander

Design Introduction

As globalization, networking, information and digital era’s coming, the demand of

high reliability of our identity verification is growing.An efficient mean to this is by

authenticating users through biometric methods. Among the existing biometric

methods, voice biometrics can be an affordable and accurate authentication

technology that has been already successfully and widely employed. Voiceprint, as a

basic human physiological characteristics, possess a unique role which is difficult to

counterfeit, imitate and replace.As a non-contact identification technology, Voice

Recognition Technology is being accepted by the users.

Voice authentication refers to the process of accepting or rejecting the identity claim

of a speaker on the basis of individual information present in the speech waveform . It

has received increasing attention over the past two decades, as a convenient,

user-friendly way of replacing (or supplementing) standard password-type matching.

The authentication procedure requests from the user to pronounce a random sequence

of digits. After capturing speech and extracting voice features, individual voice

characteritics are generated by registration algorithm. The central process unit decides

whether the received features match the stored voiceprint of the customer who claims

to be, and accordingly grants authentication.

In this work, the architecture of an sopc-based voiceprint identification system is

presented.

1. Voice Recognition Technology Principle

Voice Recognition, also known as the Speaker Recognition, has two categories:

speaker identification and speaker verification. Speaker identification is used to

determine which one of the people speaks, i.e. "one out of more election" ; and

speaker verification is used to determine whether a person specified speaks, i.e.

"one-on-one recognition".

According to the voice of different materials, voice recognition can be divided into

the text-dependent, and text-independent technology. The text-dependent voice

recognition system requires speaker pronounce in accordance with the contents of the

text. Each person's individual sound profile model is established accurately. People

must also be identified by the contents of the text during recognition to achieve better

effect. Text-independent recognition system does not require fixed contents of words,

which is relatively difficult to model, but is convenient for user and can be applied to

a wide range.

Voiceprint recognition is an application based on physiological and behavioral

characteristics of the speaker’s voice and linguistic patterns. Different from speech

recognition, voiceprint recognition is regardless of contents of speech.Rather, the

unique features of voice are analyzed to identify the speaker. With voice samples, the

unique features will be extracted and converted to digital symbols, and then these

symbols are stored as that person's character template. This template is stored in a

computer database, a smart card or bar-coded cards. User authentication is processed

inside the recognition system to identify matching or not. The system architecture

block diagram is shown in Figure 1.

Figure 1 voiceprint recognition system architecture block diagram

2. Hardware Implementation

The Altera DE1 development board features a state-of-the-art Cyclone® II 2C20

FPGA in a 484-pin package. All important components on the board are connected to

pins of this chip, allowing the user to control all aspects of the board’s operation.

This design is implemented by a 32bit NiosII softcore processor.All IPs are connected

on the avalon bus in SOPC builder, including custom peripherals

Figure 2 hardware architecture

The system hardware architecture is shown in figure 2,including CPU,uart,tri-state

bridge,ram and I/O controls,which are all reusable.Such a design method not only

voice acquisition

transmission

decompression Feature extraction

compression

Quality control

Pattern matching

Template

database

classification

Recognition

result

A

V

A

L

O

N

B

U

S

CPU

FFT,DCT

accelerator

Loop

accelerator

Timer

UART

GPIO

Tri-state bridge

SDRAM

SRAM

2
I C

WM8731L

Digital speech signal interface

GPIO

FLASH

make it modulization,but also greatly reduce the design cycle of the system.FFT

module can not only access IP directly, but also use C2H accelerator tool to improve

system performance.In this design ,performance-critical sections such as FFT,DCT

and iterative computations will be implemented via C2H hardware accelerator.

Nios II softcore processor

Nios II is a high performance 32-bit sofcore processor. The processor is configured on

an Altera Cyclone II FPGA. Custom instructions are added to improve system

performance, furthermore, more on-chip rams can be added to improve data

processing capacity.

Voice acquisition and verification report

The DE1 board provides high-quality 24-bit audio via the Wolfson WM8731 audio

CODEC(enCOder/DECoder). This chip supports microphone-in, line-in, and line-out

ports, with a sample rate adjustable from 8 kHz to 96 kHz. The WM8731 is controlled

by a serial I2C bus interface, which is connected to pins on the Cyclone II FPGA. A

schematic diagram of the audio circuitry is shown in Figure 3.

Figure 3 audio schematic diagram

WM8731 contains A/D,D/A modules with a high sample rate and quantization

precision.We will use 8kHz sample rate and 16bit quantization precision in this

design.

In voice acquisition part, since A / D is the serial data output, a serial to parallel data

conversion and control of the SRAM Verilog module is needed.Voice report is

communicated with CPU via GPIO,different voice is played according to different

verification result.GPIO control is done in Nios IDE. Similarly, since the voice

broadcast from FLASH are read out in parallel, thus a parallel to serial data

conversion verilog module is needed.

C2H Hardware Acceleration

The Nios® II C-to-Hardware Acceleration (C2H) Compiler is a tool that allows you

to create custom hardware accelerators directly from ANSI C source code. A hardware

accelerator is a block of logic that implements a C function in hardware, which often

improves the execution performance by an order of magnitude. Using the C2H

Compiler, you can develop and debug an algorithm in C targeting an Altera® Nios II

processor, and then quickly convert the C code to a hardware accelerator implemented

in a field programmable gate array (FPGA).

The C2H Compiler improves the performance of Nios II programs by implementing

specific C functions as hardware accelerators. The C2H Compiler is not a tool for

creating arbitrary hardware systems using C as a design language. What the C2H

Compiler does do is to generate an accelerator which is functionally identical to the

original C function.

Based on these premises, the C2H Compiler's design methodology provides the

following features:

■ ANSI C compliance – The C2H Compiler operates on plain ANSI C code, and

supports most C constructs, including pointers, arrays, structures, global and local

variables, loops, and subfunction calls. The C2H Compiler does not require special

syntax or library functions to specify the structure of the hardware. Unsupported

ANSI C constructs are documented.

■ Straightforward C-to-hardware mapping – The C2H Compiler maps each

element of C syntax to a defined hardware structure, giving you control over the

structure of your hardware accelerator.

■ Integration with C language development environments for the Nios II processor,

including the Nios II integrated development environment (IDE), and the BSP

generator and related tools. You control the C2H Compiler with the Nios II C

development tools. You do not need to learn a new environment to use the C2H

Compiler.

■ Based on SOPC Builder and Avalon system interconnect fabric – The C2H

Compiler uses SOPC Builder as the infrastructure to connect hardware accelerators

into Nios II systems. A C2H accelerator becomes a component within an existing Nios

II system. SOPC Builder automatically generates system interconnect fabric to

connect the accelerator to the system, saving you the time of manually integrating the

hardware accelerator.

■ Reporting of generated results – The C2H Compiler produces a detailed report

of hardware structure, resource usage, and throughput.

3. Software Algorithm

MFCC is currently the most popular feature coefficient used in the speech recognition,

and it can obtain the more accurate results of speech recognition under a non-noise

condition. In the MFCC algorithm, we first use the FFT to calculate the signal

frequency spectrum , then we use DCT to further reduce the speech signal’s redundant

information, and reach the aim of regulating the speech signal into feature coefficients

with small dimensions. The FFT and DCT algorithm can be used for any speech

segment whose time-frequency resolution is fixed.

Feature extraction

MFCC feature coefficient extraction flow chart is shown as Fig. 1. The working

process is:

1. Pre-emphasis of the speech signal, frame, adding window, then make the FFT to

obtain the frequency information.

2. Pass the signal through the Mel frequency coordinate triangle filter groups to

mimic the human hearing mechanism and the human hearing sensibility to

different speech spectrum.

3. Calculate the logarithm value of the signal after the Mel filters to obtain the

logarithmic spectrum.

4. Make the discrete cosine transform to the signal and obtain the MFCC

coefficients.

4. Design Architecture

As seen in SOPC builder, we add an AUDIO_ADC_FIFO_0 module

to convert serial data to parallel audio samples(16 bit). On-chip rams (BufferRAM,

CosRAM, SinRAM) are used to store data needed by FFT module which is C2H

accelerated.

Figure 4 . SOPC builder system

Figure 5 . Final Compilation report

Speech Acquisition

Speech acquisition requires a microphone coupled with an amplified ADC to receive

the voice speech signal, sample it, and convert it into digital speech for input to the

FPGA. The DE1 development board has a WM8731 audio codec chip connected both

to the microphone input pins and the Altera Cyclone II FPGA pins through an I2C

serial controller interface. The WM8731 is a versatile audio codec that provides up to

24-bit encoding/decoding of audio signals in various sampling rates ranging from 8 to

96 KHz. The codec clock input is generated by dividing the system clock by four

using a custom hardware block. The block combines the clock divider logic and the

I2S digital audio interface logic as well as options for programming the control

registers. The DE1 board’s microphone input port connects the microphone and

headset for speech acquisition. The following table shows the codec’s control register

settings:

Codec Register Settings

Register Setting

ADCDAT 16 bit

USB/normal mode Normal mode

Master/slave mode Slave

Digital audio interface I2S interface

MCLK input 50 MHz divided by 4

ADC sampling rate 8 KHz

These settings are programmed by setting or resetting of various bits in the control

registers as shown in the following table:

Register Address Register Name Value

R0 0000000 Left line in 001A

R1 0000001 Right line in 021A

R2 0000010 Left headphone Out 047B

R3 0000011 Right headphone Out 067B

R4 0000100 Analog audio path control 0815

R6 0000110 Power down control 0C00

R7 0000111 Digital audio interface format 0A06

R8 0001000 Sampling control 100E

R9 0001001 Active control 1201

Original sound wave and frequency spectrum after FFT in MATLAB:

Figure 6: sound data in time domain and frequency domain

Mel Frequency Cepstral Coefficients (MFCCs)

MFCC are coefficients that represent audio. They are derived from a type of cepstral

representation of the audio clip (a "spectrum-of-a-spectrum"). The difference between

the cepstrum and the mel-frequency cepstrum is that in the MFC, the frequency bands

are positioned logarithmically (on the mel scale) which approximates the human

auditory system's response more closely than the linearly-spaced frequency bands

obtained directly from the FFT or DCT. This can allow for better processing of data,

for example, in audio compression. However, unlike the sonogram, MFCCs lack an

outer ear model and, hence, cannot represent perceived loudness accurately.

MFCCs are commonly derived as follows:

1. Take the Fourier transform of (a windowed excerpt of) a signal

2. Map the log amplitudes of the spectrum obtained above onto the mel scale, using triangular

overlapping windows.

3. Take the Discrete Cosine Transform of the list of mel log-amplitudes, as if it were a signal.

4. The MFCCs are the amplitudes of the resulting spectrum.

Dynamic Time Warping (DTW)

A distance measurement between time series is needed to determine similarity

between time series and for time series classification. Euclidean distance is an

efficient distance measurement that can be used. The Euclidian distance between two

time series is simply the sum of the squared distances from each nth point in one time

series to the nth point in the other. The main disadvantage of using Euclidean distance

for time series data is that its results are very unintuitive. If two time series are

identical, but one is shifted slightly along the time axis, then Euclidean distance may

consider them to be very different from each other. Dynamic time warping (DTW)

was introduced to overcome this limitation and give intuitive distance measurements

between time series by ignoring both global and local shifts in the time dimension.

Problem Formulation. The dynamic time warping problem is stated as follows:

Given two time series X, and Y, of lengths |X| and |Y|,

construct a warp path W

where K is the length of the warp path and the kth element of the warp path is

where i is an index from time series X, and j is an index from time series Y. The warp

path must start at the beginning of each time series at w1 = (1, 1) and finish at the end

of both time series at wK= (|X|, |Y|). This ensures that every index of both time series

is used in the warp path. There is also a constraint on the warp path that forces i and j

to be monotonically increasing in the warp path, which is why the lines representing

the warp path in Figure 1 do not overlap. Every index of each time series must be

used. Stated more formally:

The optimal warp path is the warp path is the minimum-distance warp path, where the

distance of a warp path W is

Dist(W) is the distance (typically Euclidean distance) of warp path W, and Dist(wki,

wkj) is the distance between the two data point indexes (one from X and one from Y)

in the kth element of the warp path.

5. Performance Parameters

Recognition Accuracy

We record the word “hello” of user1 for our test voice and store it in the database.

Test case1: user1 speaks “hello” recognition accuracy: 80%

Test case2: user1 speaks other words rejection accuracy: 92%

Recognition Speed

FFT calculation: 100 ms

MFCC feature extraction: 8~12s

DTW algorithm: 1~2s

Total recognition time: 9~14s

6. Conclusion

Our project implements a voiceprint identification system in which a Nios II

processor performs the recognition process. We implemented computationally

intensive tasks with C2H accelerator and the SOPC Builder helped us integrate these

blocks into the Nios II system. However, some tasks can not be C2H accelerated

because C2H does not support float and double data type. These processes consumes

a large amount of time. Recognition time can be reduced if a faster processor is used.

FINAL REPORT 22.8.2007
Team: SO-SIG

Forewords:

When I sent my interim report to Lena Engdahl only few days before the mid-summer
eve and my summer vacation, I mentioned that unfortunately the project is not going
any further during my vacation, which lasted until 1.8.2007. After returning to work I
have had about two weeks time until I received, somewhat surprisingly, a query
concerning this final report. During this two weeks time, there has been small
advances in the project, which are described in the end of this document (cf. Chapter:
Situation Today). Otherwise, this document is the same, which was sent to you as an
interim report.

Although the Innovate Nordic competition is over, the work described in this
document continues in the form of Licenciate’s Thesis. In addition, there is also one
student starting to work towards his Master’s Thesis (under my guidance) in the
middle of September. His work will be based mostly on the DE1 board and the results
described in this document.

Introduction:

The initial idea here, was to implement an FPGA design, which would estimate the
human posture by measuring the acceleration of his/her arm. The acceleration would
be measused with an accelerometer attached to his/her hand.

It was expected, that because the subsequent signal processing and analyzation differs
from an application to another, the FPGA should be used for implementation as this
allows the basic design to be flexible, which can be easily extended into several
application areas.

The Current Research Object:

During the course of time, the whole concept of the project has changed to a biosignal
measurement system. In practice this means, that in addition to the accelerometer, a
temperature sensor and a self-made pulse oximeter have been attached to the FPGA.

The system comprises of three sensors, namely accelerometer, temperature sensor and
pulse oximeter. The two former are located on the same circuit board, which is
connected via the pulse oximeter’s circuit board to the FPGA (DE1 board). As the
pulse oximeter and the temperature sensor are analog sensors, there is a need for an
external A/D-converters. The block diagram of the whole system is depicted in Figure
below

Figure 1. Block diagram of the measurement system

The Role of the FPGA:

Controllers

As the accelerometer is a digital device, communicating via 4-wire SPI bus, there is a
need for a controller (Acc_crtl), which uses a special protocol, depicted in Figure 2
(see VTI3000-E04 datasheet for more details). The controller reads all the three axes of the
accelerometer data from the specific addresses with a single command. In addition, as
the data is received in serial form, the controller converts the data into parallel form.
This data is sent to the NIOS II-processor.

Figure 2. 4-wire SPI protocol in VTI3000-E04 accelerometer

The ADCs require somewhat similar controllers. The controllers differ somewhat
from each other in detailed level, as the ADCs are different from each other.
However, common to both of the controllers is to initiate the AD-conversion, read the
obtained result and finally put the ADC to sleep mode, in order to conserve power.
The obtained results are converted into parallel form if necessary and then sent to the
NIOS II-processor.

The operation of the pulse oximeter is based on the different absorption spectra in red
light wavelength and in infrared wavelength (IR). Therefore, a LED controller is
needed here. The purpose of the controller is to alternatively light one of the two
LEDs (red or IR) and to keep a small pause between the light periods. This scheme is
depicted in Figure 3

Figure 3. LED controlling scheme

NIOS II – processor

The data sent to the NIOS II –processor from the controllers cause an interrupt event.
If an interrupt is detected, the measurement results from all the different channels
connected to the NIOS II- processor are saved into the memory. The different
channels are as follows: Acceleration (in x,-y- and z-directions), temperature,
received light from pulse oximeter (red light, IR-light and the light when both LEDs
are off).

When the installed SRAM (512kB) and SDRAM (8 MB) are full of measurement data
or alternatively the conducted test is over, the NIOS-II processor opens the serial port
and the data is sent to the PC via RS-232. Figures 4a and 4b show an example of
measured data.

Conclusion:

Initially the project was supposed to have an accelerometer and an algorithm, which
would compute the posture of a person. However, during the course of time, the
project focus was shifted towards a portable biosignal recorder, which includes
more sensors than just the mentioned accelerometer. Due to this reason, the required
algorithms were never implemented but the main focus has been in developing an the
hardware (electronics and VHDL code) for the biosignal recorder.

Figure 4a. Measurements from the
accelerometer (x-axis = red, y-axis = green,
z-axis = blue)

Figure 4b. Measurements from the pulse
oximeter (red LED = red, IR-LED = blue,
both LEDs off = green)

In the future, there is an intention to improve the system in many areas, including the
digital signal on FPGA and connecting the DE1 board to PC using a wireless ZigBee
technology. However, this won’t be ready due to the deadline of the competition in
August.

Situation Today:

In this two weeks time, there has been quite a lot misfortune in the development of
measurement electronics. The output from the temperature sensor oscillated for some
unknown reason, which caused the breaking of the operational amplifier, the A/D-
converter’s voltage reference and one of the A/D-converters. These parts were
changed. In addition, there was a second order filter added into the analog
temperature channel to filter out the 50 Hz power line hum.

In the NIOS-II development, it was discovered that the original idea, where the
incoming data from each sensor caused an interrupt to the processor, was unsuitable
for the data collection. This data collection scheme led to a situation, where the time
between subsequent interrupts (and thus samples from the sensors) was forever
changing instead of being constant. This of course causes problems in the further
development of the algorithms as the sample times were not absolute but relative to
each other. As an improvement, a controller keeps track of the time and after three
consecutive samples from the pulse oximeter, which has the highest sampling rate, are
received, the NIOS-II processor stores the data from all the sensors. In this way, we
know the absolute time interval between different samples.

There are many advances planned in the future. These include the following:

1) One additional sensor, namely a capacitive touch sensor, will be added to the
 biosignal recorder. The information from this sensor can be used to deduce,
 whether the biosignal recorder is being worn by the user and whether the
 positioning of the device is correct. The development begins as soon as the
 electronic components are received

2) The wireless link will be developed between the biosignal recorder and a PC.
 This link will be based on a wireless personal area network (WPAN)
 technique e..g Bluetooth or ZigBee. The development begins in the middle of
 September.

3) The algorithm development begins with collecting data. The aim is to develop
 such algorithms, that can extract important medical data from the raw data.
 This data can be used for e.g. alarming the nursing staff or it can be used for
 measuring physiologic feedback for some stimuli e.g. a stress in physiological
 experiments. The developed algorithms should utilize the parallel processing
 capability offered by the Cyclone II FPGA.

Final Project Report:
Cryptoprocessor for Elliptic Curve Digital

Signature Algorithm (ECDSA)

Team ID: IN00000026
Team member: Kimmo Järvinen

tel. +358-9-4512429, email. kimmo.jarvinen@tkk.fi
Instructor: Prof. Jorma Skyttä

tel. +358-9-4512450, email. jorma.skytta@tkk.fi

Helsinki University of Technology, Signal Processing Laboratory
Otakaari 5A, FIN-02150, Espoo, Finland

August 7, 2007

Abstract
Elliptic Curve Digital Signature Algorithm (ECDSA) is implemented on

an Altera Cyclone II EP2C20F484C7 FPGA using a DE1 development and
education board. Digital signatures are digital counterparts of handwritten
signatures. They provide proof of authorship and authenticity and they are
unforgeable. They also provide proof that the document has not been altered
after signing. The design includes a Nios II processor together with custom-
designed modules for elliptic curve cryptography, SHA-1 hash function and
modular arithmetic. A pseudo-random number generator is also included
for rapid and secure generation of pseudo-random numbers. A user inter-
face is designed with Nios II Integrated Development Environment (IDE)
for demonstrating the use of the design. The design requires approximately
85 % of the device resources. Signature generation is computed in 0.94 ms
and signature verification requires 1.61 ms.

1 Preliminaries

Research on hardware implementation of cryptographic algorithms has been in-
tensive during the recent years. Field-programmable gate arrays (FPGAs) are very
attractive platforms for implementing cryptographic algorithms for various reasons
including performance, flexibility and cost efficiency [15]. This report presents an
efficient implementation of Elliptic Curve Digital Signature Algorithm (ECDSA)
by using a standardized curve B-163 which is listed in [11].

Digital signatures play a central role in modern cryptosystems. They can be
viewed as digital counterparts for handwritten signatures and they are authentic,

1

unforgeable and non-reusable. A signed document is also unalterable and the sig-
nature cannot be repudiated meaning that the signer cannot afterwards claim that
(s)he did not sign the document. [13]

Digital signature algorithms are public-key cryptographic algorithms and thus
they involve two keys; one which is private and one which is public. A document is
signed with the private key and the signature is verified with the public key. Only
the private key needs to be kept in secret in order to prevent other people from
forging one’s signature.

Public-key cryptographic algorithms are based on mathematics (or number the-
ory to be more precise) and it is impossible to discuss these algorithms without any
math. The focus of this report is in implementing ECDSA on an FPGA and details
of the algorithms are consider only to the point which is necessary for understand-
ing the implementation. If more detailed descriptions of algorithms are wanted,
then the reader should consult references which are listed in the end of the docu-
ment.

The implementation is optimized especially for Altera FPGAs and it is de-
signed to take advantage of embedded memory blocks inside Cyclone II. Most of
the design efforts have been dedicated to elliptic curve operations which are the
most time consuming operations in ECDSA, by far. The results show that even a
low-cost FPGA such as Cyclone II can be efficiently used for implementing com-
plex high-security public-key cryptographic algorithms.

Sec. 1.1 presents the basics of elliptic curve cryptography and Sec. 1.2 de-
scribes ECDSA. Hardware architecture is presented in Sec. 2 and a user interface
implemented by using Nios II IDE is considered in Sec. 3. Results are presented
in Sec. 4 together with discussion on them. Finally, the report ends with a list of
possible improvements.

1.1 Elliptic Curve Cryptography

The theory of elliptic curves is deep and an enormous amount of research has been
done on elliptic curve cryptography during the past twenty years or so. Therefore,
it is impossible to present an extensive review of the field here and only subjects
which are the most relevant are discussed in the following. Interested readers are
referred to [3], for example, for further information.

All elliptic curve cryptosystems are based on an operation called elliptic curve
point multiplication which is defined as

Q = kP (1)

where k is an integer and Q and P are points on an elliptic curve. A point is
represented with two coordinates as (x, y).

The reason why elliptic curve point multiplication is used in cryptosystem is
that it is relatively easy to compute but its inverse operation called elliptic curve
discrete logarithm problem, that is finding k if P and Q are known, is considered

2

impossible to solve with present computational resources if parameters are cho-
sen correctly. Thus, elliptic curve discrete logarithm problem can be compared,
for example, to integer factorization problem which is used in the popular RSA
cryptosystems. There is, however, a notable difference because sub-exponential
algorithms for solving elliptic curve discrete logarithm problem are not known
and, therefore, key lengths can be shorter than in RSA.

Elliptic curve point multiplication is computed by using two principal opera-
tions; namely, point addition and point doubling. Point addition is the operation
P3 = P1 + P2 where Pi are points on an elliptic curve. Point doubling is the oper-
ation P3 = 2P1. In this design, point multiplication is computed with the so-called
Montgomery’s ladder [10] which operates as shown in Alg. 1 of the Appendix.

Elliptic curves used in cryptosystems are defined over finite fields denoted by
GF (q) where q is the number of elements in the field. It is commonly preferred
especially in hardware implementations to use binary fields GF (2m) where an
element of the field is presented with m bits. In this design, the field GF (2163)
is used and it is constructed by using normal basis. Arithmetic operations are
computed as follows:

• Addition a + b is computed with a bitwise exclusive-or (XOR).

• Multiplication a × b is computed as presented by Wang et al. in [14]. This
multiplier structure is referred to as Massey-Omura multiplier and it is dis-
cussed in Sec. 2.1.1.

• Squaring a2 is simply a cyclical rotation of the bit vector representing a.

• Finding an inverse element a−1 such that a−1 × a = 1 is performed as sug-
gested by Itoh and Tsujii in [4] and it is called henceforth Itoh-Tsujii inver-
sion. One Itoh-Tsujii inversion requires 9 multiplications and 162 squarings
if m = 163 [4].

Point representation with two coordinates as (x, y) is referred to as the affine
coordinate representation. When points are represented in affine coordinates, both
point addition and point doubling require inversion in GF (2m). Inversion is by
far the most expensive operation and, thus, it is advantageous to trade inversions
for multiplications. This can be done by representing points with projective coor-
dinates as (X, Y, Z); that is, with three coordinates. Mappings between these two
representations are performed as (x, y, 1) and (X/Z, Y/Z). As can be seen, the
mapping from affine to projective coordinates does not require any operations but
the mapping from projective to affine coordinates requires two multiplications and
one inversion. Using projective coordinates is very advantageous because point
additions and point doublings can be performed without inversions and the total
number of inversions in elliptic curve point multiplication is therefore one.

A very efficient algorithm for computing (1) on elliptic curves over GF (2m)
was presented by Julio López and Ricardo Dahab in [9]. They showed that, when
Alg. 1 is used, it suffices to consider only the x-coordinate and the y-coordinate can

3

be recovered in the end [9]. This leads to a very efficient algorithm with projective
coordinates. Point addition (X3, Z3) = (X1, Z1) + (X2, Z2) can be computed as
follows: [9]

Z3 = (X1Z2 + X2Z1)2, X3 = xZ3 + X1Z2X2Z1 (2)

where x is the x-coordinate of the base point P in Alg. 1. The cost of point addition
is four multiplications, two additions and one squaring. Point doubling (X3, Z3) =
2(X1, Z1) is even simpler [9]

X3 = X4
1 + a6Z

4
1 , Z3 = X2

1Z2
1 (3)

where a6 is a fixed curve parameter. Thus, point doubling costs two multiplica-
tions, four squarings and one addition. The y-coordinate is recovered in the end by
computing x1 = X1/Z1 and x2 = X2/Z2 and then by using the formula [9]:

y1 =
(x1 + x)

(
(x1 + x) (x2 + x) + x2 + y

)
x

+ y (4)

where (x, y) is the base point P . This can be computed with one inversion, ten
multiplications, six additions and one squaring.

1.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA is a standard of ANSI, IEEE, and NIST, among others. The following
description is based on Johnson and others’ presentation in [5].

The algorithm operates so that first the user, who is commonly called Alice
or A for short, generates two keys, private and public, by performing a key pair
generation procedure. Then, she publishes her public key. Alice signs a message
by performing a signature generation procedure after which she sends both the
message and the attached signature to the receiver who is called Bob, or B for
short. Bob can verify the signature on the message by first getting Alice’s public
key and then by performing the signature verification procedure.

Key pair generation, signature generation and signature verification are con-
sider in the following sections.

1.2.1 Key Pair Generation

Private and public key for an identity A is generated as follows:

d ∈R [1, n− 1]
Q = dG

(5)

where d ∈R [1, n − 1] means that d is an integer selected at random from the
interval [1, n − 1]. The integer d is A’s private key and Q is A’s public key. The
computation of (5) requires generation of one random integer and computation of
one elliptic curve point multiplication.

4

1.2.2 Signature Generation

In order to generate a signature for a messageM the identity A computes

k ∈R [1, n− 1]
r = [kG]x (mod n)
e = SHA-1(M)

s = k−1(e + dr) (mod n) .

(6)

A’s signature onM is (r, s). The notation [kG]x denotes the x-coordinate of the
result point of kG. Notice that A uses his/her private key d in the signature genera-
tion. Thus, other identities cannot produce the same signature without knowing d.
Signing a message requires generation of one random integer, computation of one
elliptic curve point multiplication and one hashing. In addition, modular inversion,
addition and multiplication are required.

1.2.3 Signature Verification

Identity B verifies A’s signature (r, s) on the messageM by computing

e = SHA-1(M)

w = s−1 (mod n)
u1 = ew (mod n)
u2 = rw (mod n)
v = [u1G + u2Q]x (mod n)

(7)

where Q is A’s public key and thus known by B. If v = r, B accepts the signa-
ture, otherwise (s)he rejects it. Verification requires one hashing and two elliptic
curve point multiplications which are combined with a single elliptic curve point
addition. Modular inversion and two multiplications are needed, as well.

2 Hardware Architecture

Based on the description of ECDSA given in Sec. 1.2, it is clear that the implemen-
tation of ECDSA must be capable of performing the following operations:

• Elliptic curve point multiplication

• SHA-1 hash function

• Modular addition, multiplication and inversion

• (Pseudo-)random number generation

5

Figure 1: Block diagram of the system

The implementation includes custom-build blocks for each of the above operations
in order to ensure fast performance. The most time and resource consuming oper-
ation is elliptic curve point multiplication and thus most of the effort was devoted
in optimizing it.

Fig. 1 shows the block diagram of the ECDSA system. The Nios II processor
is used for user interface and control. Four peripheral components are attached
to Nios II and the actual ECDSA computations are performed with them. The
peripheral components are elliptic curve module (ECC in Fig. 1), hash module
(SHA-1), modular arithmetic module (MOD arithm), and pseudo-random number
generator (PRNG) and they are considered in the following sections. The user
interface was realized on Nios II by using Nios II IDE 6.0, and it is considered in
Sec. 3.

In order to enhance performance a phase-locked loop (PLL) is used for gen-
erating different clocks for different parts of the design. Nios II runs at 50 MHz,

6

Storage

RAM

dual-port

RAM

decoder

DATA IN

DATA OUT

Adder Multiplier(s) Squarer

m

mm

m

m

ADDRA

W ×m-bit

Instruction

ADDRB

INSTR

SQUARE

Figure 2: Block diagram of the FAP

ECC, PRNG and SHA-1 blocks at 75 MHz and modular arithmetic blocks at 20
MHz.

2.1 Elliptic Curve Module

The elliptic curve module consists of a field arithmetic processor (FAP) and logic
controlling it. That is, the FAP performs operations in GF (2163) and the control
logic implements elliptic curve operations by using the FAP for field operations.
The architecture is based on an elliptic curve processor which has been used in [2,
7, 8] which are scientific publications (co-)authored by the author. The author is
alone responsible for the development of the architecture and all VHDL coding.

2.1.1 Field Arithmetic Processor

The FAP consists of adder, squarer, multiplier, storage RAM and instruction de-
coder. Block diagram of the FAP is presented in Fig. 2.

Adder and Squarer The adder computes a bitwise XOR of two m-bit operands,
and it has a latency of one clock cycle. The squarer supports computation of mul-
tiple successive squarings, i.e. x2d

where x is an element of GF (2163) and d is
an integer in the interval [0, dmax] with dmax = 25 − 1. In normal basis squaring
is a rotation of the bit vector as mentioned in Sec. 1.1, and the squarer is a shifter
which computes x2d

in one clock cycle.

Multiplier Field multiplication is critical for the overall performance. Multipli-
cation in normal basis is performed with a multiplier which is a digit-serial im-
plementation of the Massey-Omura multiplier [14]. In a bit-serial Massey-Omura

7

multiplier, one bit of the output is calculated in one clock cycle and, hence, m
cycles are required in total. One bit zi of the result z = x × y, where x, y, z are
elements of GF (2163), is computed from x and y by using an F -function. The
F -function is field specific, and the same F is used for all output bits zi as follows:
zi = F (x≪i, y≪i), where ≪ i denotes cyclical left shift by i bits. Hence, a bit-
serial implementation of the Massey-Omura multiplier requires three m-bit shift
registers and one F -function block. A bit-parallel implementation, where all bits
zi are computed in parallel in one clock cycle, requires m F -function blocks and
an m-bit register for storing the result. [11, 14]

In practice, the bit-serial implementation requiring at least m + 1 clock cycles
is too slow and the bit-parallel implementation requires too much area. A good
tradeoff is a digit-serial multiplier, where p bits are computed in parallel with p
F -function blocks. The F -function blocks can be pipelined in order to increase the
maximum clock frequency. As one clock cycle is required in loading the operands
into the shift registers and each pipeline stage increases latency by one clock cycle,
the latency becomes ⌈

m

p

⌉
+ c + 1 (8)

where d·e denotes rounding up to the nearest larger integer and c is the number
of pipeline stages inside the F -function blocks, i.e. c ≥ 0. In this design, the
parameters were selected to be c = 1 and p = 12.

Others The storage RAM is used for storing elements of GF (2163) and it is
implemented as a dual-port RAM by using embedded memory blocks in the FPGA,
i.e. M4K blocks. The storage RAM is capable of storing W elements. When the
architecture is implemented in a Cyclone II FPGA, a logical choice is W = 256
because, while in true dual-port mode, the widest mode that an M4K block can be
configured to is 256 × 18-bits. Thus, the storage RAM requires d163/18e = 10
M4Ks resulting in a storage capacity of 256 × 163-bits. This much storage space
is rarely needed, but it can be used for example for storing pre-computed points,
and selecting a smaller depth than 256 would not reduce the number of required
M4Ks. Both writing and reading to and from the storage RAM require one clock
cycle. However, the dual-port RAM can be configured into the read-during-write
mode [1] which saves certain clock cycles; see Sec. 2.1.2.

The instruction decoder decodes instructions to signals controlling the FAP
blocks.

2.1.2 Control Logic

The logic controlling the FAP consists of finite state machine (FSM) and ROM
containing instruction sequences.

The instruction sequences are carefully hand-optimized, and certain tricks are
used in order to minimize latencies of point operations. As mentioned in Sec 2.1.1,

8

the read-during-write mode can be used for reducing latencies. In order to max-
imize the advantages in this case, operations are ordered so that the result of the
previous operation is used as the operand of the next operation whenever possible.
This saves one clock cycle because the operands of the next operation can be read
simultaneously while the result of the previous operation is being written.

Inversions in GF (2163) are computed with successive multiplications and squar-
ings as suggested by Itoh and Tsujii in [4]. An Itoh-Tsujii inversion has the con-
stant cost of 9 multiplications and 162 squarings when m = 163 [4]. Although
the number of squarings is high, the successive squaring feature of the squarer (see
Sec. 2.1.1) ensures that the computational cost of the squarings remains reasonable.

The elliptic curve module computes point addition and point doubling (one
step in Alg. 1) in 125 clock cycles. Interfacing and mapping back to affine coor-
dinates requires 404 clock cycles. In total 162 point additions and point doublings
are needed because ` = 163 in Alg. 1. Thus, one elliptic curve point multiplication
requires 20,654 clock cycles. Signature verification requires computation of two
elliptic curve point multiplications whose results are added with a point addition.
This point addition is performed in affine coordinates and it requires 247 clock cy-
cles and the elliptic curve operations computed in verification thus require 41,555
clock cycles.

2.2 Hash Module

The hash module implements SHA-1 hash algorithm according to the standard [12].
The architecture is described in detail in [6] but a short review is given here.

First of all, SHA-1 handles messages in blocks of 512 bits each of which re-
quires computation of 80 steps. One step handles five 32-bit variables by com-
puting four 32-bit modular additions (a + b mod 232) and certain 32-bit logical
functions which depend on the step index. When all blocks have been processed,
the hash of the message is in the five variables and thus SHA-1 outputs a 160-bit
hash. [12]

The hash module implements SHA-1 in a straightforward manner and the de-
sign utilizes only logic resources. The VHDL describing the design is portable and
device independent1.

The implementation consists of four main components; namely, step function,
message schedule, constants block and control logic. The step function block de-
termines the maximum clock cycle of the implementation and it was carefully op-
timized. The four 32-bit additions form the critical path and all other operations
(logic operations and rotations) are computed in parallel with these additions. The
message schedule stores 512-bits message bits and derives a 32-bit word for each
step from these 512 bits by using three 32-bit bitwise XORs and a rotation. The
constants block includes step constants. The word from the message schedule and

1Actually, the code was originally written for Xilinx Virtex-II FPGA but it synthesized for Cy-
clone II without any modifications.

9

the constants are then used in the step function. The control logic is used for con-
trolling the computation and it consists of a counter, multiplexors and coders. [6]

2.3 Modular Arithmetic Modules

Modular arithmetic modules implement the following operations:

• c = a + b (mod n)

• c = a× b (mod n)

• Computation of a−1 such that a−1 × a = 1 (mod n)

where a, b, c are integers in the interval [0, n − 1] and n is a fixed prime number
which is hardwired into the design. The length of all integers is 163 bits.

Addition and multiplication are implemented in the same block. Modular addi-
tion is trivial. Addition is first carried out as a traditional 163-bit integer addition.
If the result is larger or equal to n, then n is subtracted from the result. An addition
is computed in two clock cycles.

Modular multiplication is more involved. In this design, it is carried out as
shown in Alg. 2 of the Appendix. Computation of 2ib is a shift to the left. The
register holding a is shifted to the right so that it suffices to observe only the lsb of
the register. One step in the for-loop in Alg. 2 requires three clock cycles and thus
multiplication requires 489 clock cycles.

Inversion is the most complex operation of the three. It is performed with a
binary algorithm as presented in [3], for example. The algorithm is presented in
Alg. 3 of the Appendix. The binary algorithm was chosen because it does not re-
quire any integer divisions and is therefore efficient to implement. The latency
of inversion is not constant but on average it is about the same as the latency
of multiplication. Inversion, however, requires significantly more resources than
multiplication.

2.4 Pseudo-Random Number Generator

A pseudo-random number generator (PRNG) is used in generating random inte-
gers in key pair generation and signing. The PRNG was implemented as a Linear
Feedback Shift Register (LFSR). The length of the shift register was chosen to be
128 bits, and an irreducible polynomial [13]

p(x) = x128 + x7 + x2 + x + 1 (9)

was used as a feedback function. Thus, the LFSR has a period of 2128−1 bits [13].
The output bits from the LFSR are stored in a 32-bit shift register whose value is
shown as the output of the PRNG every 32nd clock cycle. At the beginning, the
PRNG is set to an initial state (all ones) with the reset signal.

10

Figure 3: Main menu of the user interface

3 User Interface in Nios II IDE

A user interface was created in order to be able to demonstrate the operation of
the ECDSA blocks. It should be noticed that the user interface was designed for
demonstration purpose only, and it was not optimized for performance. In order to
use the blocks in an application requiring fast performance, the user interface (and
probably the Nios II processor altogether) should be replaced with custom-written
logic.

The user interface was written in C language and it is used with the Nios II
IDE. It supports four operations:

• Generation of new identities

• Signing of messages

• Verification of signatures

• Performance evaluation

The above list also forms the main menu of the user interface which is shown
in Fig. 3. Three first ones are ECDSA operations and they implement equations
given in Sec. 1.2. The last operation is used for measuring the performance of the
implementation. A performance counter was attached to the Nios II processor and
it can be used for measuring different parts of the code.

The user interface uses host file system supported by the IDE and it stores and
handles identities, messages and signatures which are located on the harddisk of
the host computer. This slows down the performance of the user interface but this
approach was chosen because of the ease of implementation and use.

The C code is structured so that ecdsa interface.c describes the user
interface and ECDSA functions are given in ecdsa.h/c. The ECDSA functions
directly control the peripheral components attached to Nios II. The functions in-
clude both top level functions for performing high-level tasks such as signature
generation and verification and low-level handles for controlling each component

11

Table 1: Area consumption

Component LEs Regs. M4Ks
Nios II 2,879 1,715 14
ECC 6,441 3,696 22
SHA-1 1,855 1,228 0
MOD addmul 1,547 542 0
MOD inv 2,871 1,026 0
PRNG 199 197 0
Total 15,879 8,472 36

individually. There are also handles for starting and stoping operations so that com-
putations can be easily parallelized. For example, one can first begin computation
of elliptic curve point multiplication which is the most time consuming operation,
then begin hash function, compute some modular arithmetic operations after which
different handles can be used for collecting the results of hashing and point multi-
plication. Considerable performance increases can be achieved with this approach
compared to computing all operations sequentially.

The ECDSA functions are fast enough to be used also in real applications.
However, custom-written control logic is probably needed for applications requir-
ing very fast performance because Nios II will become the bottleneck as it already
slows down the performance considerably as will be shown in Sec. 4.

4 Results and Discussion

The architecture described in Sec. 2 was written in VHDL and synthesized for Cy-
clone II EP2C20F484C7 with Quartus II 6.0 SP1. ModelSim SE 6.1b was used
for simulating the code. Table 1 presents the area consumption of the design com-
ponents. The design occupies 85 % of the logic elements (LEs) available on the
device. Memory block (M4K) usage is 69 %.

Timing evaluations can be computed based on theoretical values and by mea-
suring them with the performance counter. The theoretical values represent the
time that the hardware module computes an operation whereas values given by the
performance counter always include some overhead caused by Nios II. Thus, both
of these values are provided in Table 2. Measured timings in Table 2 are averages
from five runs. End-to-end time includes printings to the console and communica-
tion with the host computer using host file system. Computation time is the time
consumed for computation of the ECDSA operations. ECC only time denotes the
time that is taken by elliptic curve operations. Theoretical computation time as-
sumes that parallel computation is used for all operations whenever possible. The
time required in interfacing is neglected in theoretical times but included in mea-
sured times, and theoretical times equal with the actual computation times without

12

Table 2: Timings in milliseconds

Operation Theoretical Measured
Key pair generation
End-to-end n/a 1143.32
Computation 0.28 0.60
ECC only 0.28 0.50
Signature generation
End-to-end n/a 2073.84
Computation 0.35 0.94
ECC only 0.28 0.54
Signature verification
End-to-end n/a 2296.73
Computation 0.67 1.61
ECC only 0.55 1.00

time spent in interfacing. Notice that the bolded values in Table 2 should be used
for comparisons to other designs because the user interface was designed only for
demonstration purposes.

Key pair generation is expectedly the fastest operation because it requires only
one point multiplication and generation of a random integer. Verification which
requires computation of two point multiplications is, again, expectedly the slowest
operation. Elliptic curve point multiplication dominates in computation of all three
operations.

5 List of Possible Improvements

• Modular arithmetic components are currently straightforward implementa-
tions of simple algorithms and considerable increases in performance and
reductions in area would probably apply if more efficient algorithms were
implemented.

• The two elliptic curve point multiplications in verification could be acceler-
ated by using multiple point multiplication techniques. In these techniques,
both point multiplications are computed simultaneously resulting in consid-
erable increase in speed.

• Koblitz curves could be used instead of general elliptic curves. This would
speed up elliptic curve operations by approximately 50 % as shown in [8].

13

References
[1] Altera Corporation. Cyclone II device handbook, February 2007.

[2] V.S. Dimitrov, K.U. Järvinen, M.J. Jacobson, W.F. Chan, and Z. Huang. FPGA imple-
mentation of point multiplication on Koblitz curves using Kleinian integers. In Pro-
ceedings of Workshop on Cryptographic Hardware and Embedded Systems, CHES
2006, volume 4249 of Lecture Notes in Computer Science, pages 445–459, Yoko-
hama, Japan, October 10–13, 2006.

[3] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.
Springer, 2004.

[4] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses
in GF (2m) using normal bases. Information and Computation, 78(3):171–177,
September 1988.

[5] D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signature algo-
rithm (ECDSA). International Journal of Information Security, 1(1):36–63, August
2001.

[6] K. Järvinen. Design and implementation of a SHA-1 hash module on FPGAs. Techni-
cal report, Helsinki University of Technology, Signal Processing Laboratory, Novem-
ber 2004. http://wooster.hut.fi/˜kjarvine/documents/sha.pdf.

[7] K. Järvinen, J. Forsten, and J. Skyttä. FPGA design of self-certified signature verifica-
tion on Koblitz curves. In Proceedings of the Workshop on Cryptographic Hardware
and Embedded Systems, CHES 2007, Vienna, Austria, September 10-13, 2007. To
appear.

[8] K. Järvinen and J. Skyttä. On parallelization of high-speed processors for elliptic
curve cryptography. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 2007. Submitted.

[9] J. López and R. Dahab. Fast multiplication on elliptic curves over GF (2m) without
precomputation. In Proceedings of the Workshop on Cryptographic Hardware and
Embedded Systems, CHES 1999, volume 1717 of Lecture Notes in Computer Science,
pages 316–317, Worcester, Massachusetts, USA, August 12–13, 1999.

[10] P. L. Montgomery. Speeding the pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48(177):243–264, January 1987.

[11] National Institute of Standards and Technology (NIST). Digital signature standard
(DSS). Federal Information Processing Standard, FIPS PUB 186-2, January 27,
2000.

[12] National Institute of Standards and Technology (NIST). Secure hash standard (SHS).
Federal Information Processing Standard, FIPS PUB 180-2, August 1, 2002.

[13] B. Schneier. Applied Cryptography. John Wiley & Sons, Inc., 2nd edition, 1996.

[14] C. C. Wang, T. K. Troung, H. M. Shao, L. J. Deutsch, J. K. Omura, and I. S. Reed.
VLSI architectures for computing multiplications and inverses in GF (2m). IEEE
Transactions on Computers, 34(8):709–717, August 1985.

[15] T. Wollinger, J. Guajardo, and C. Paar. Security on FPGAs: State-of-the-art im-
plementations and attacks. ACM Transactions on Embedded Computing Systems,
3(3):534–574, August 2004.

14

Appendix: Algorithms

Algorithm 1 Point multiplication using Montgomery’s ladder

Require: Point P , integer k =
∑`−1

i=0 ki2i where ki ∈ {0, 1} and k`−1 = 1
Ensure: Point Q = kP

P1 ← P and P2 ← 2P
for `− 2 downto 0 do

if ki = 0 then
P1 ← 2P1 and P2 ← P1 + P2

else
P1 ← P1 + P2 and P2 ← 2P2

end if
end for
Q← P1

Algorithm 2 Modular addition, c = a× b mod n

Require: Two `-bit integers a and b in the interval [0, n− 1] and a prime n
Ensure: c = a× b (mod n)

c← 0
for i = 0 to `− 1 do

if a is odd then
c← c + b

end if
a← ba/2c {a ≫ 1}
b← 2b {b ≪ 1}
if b ≥ n then

b← b− n
end if
if c ≥ n then

c← c− n
end if

end for

15

Algorithm 3 Modular inversion, c = a−1 mod n

Require: An integer a in the interval [1, n− 1] and a prime n
Ensure: c = a−1 (mod n)

u← a, v ← n
x1 ← 1, x2 ← 0
while u 6= 1 and v 6= 1 do

while u is even do
u← u/2
if x1 is even then

x1 ← x1/2
else

x1 ← (x1 + n)/2
end if

end while
while v is even do

v ← v/2
if x2 is even then

x2 ← x2/2
else

x2 ← (x2 + n)/2
end if

end while
if u ≥ v then

u← u− v, x1 ← x1 − x2

else
v ← v − u, x2 ← x2 − x1

end if
end while
if u = 1 then

if x1 ≥ 0 then
c← x1

else
c← x1 + n

end if
else

if x2 ≥ 0 then
c← x2

else
c← x2 + n

end if
end if

16

Team MinMyra

Introduction
The MinMyra project has been developed by 4 students as a final project during the spring
before doing their master thesis. The project is at the division of Fluid and Mechanical
Engineering Systems (FluMeS) at Linköpings University, Linköping Sweden.

The MinMyra is a prototype platform that focuses on mechanical stability to ensure the safety
of the platform and its cargo. The platform is made as a welded frame, powered by step
engines and controlled by a FPGA (Field Programmable Gate Array). The parts are
manufactured from standard parts, easy obtainable and low in cost. The platform shall in
future studies carry sensor systems to learn to navigate and detect the surrounding
environment.

The purpose of the robot is to build a stable autonomic platform that can safely travel from A
to B. It shall be stable enough to carry expensive sensors and electronics. The usage of this
sort of robot is in environments where it’s dangerous for humans to be, i.e. minefields, mines
and contaminated environments as accidents and nuclear facilities. With the right sensors it’s
a cheap way to solve problems in those areas.

Mechanical design
A mechanical model was developed to describe the movement of the robot. From this model
was a robot built. Al the mechanics was drawn in pro/ENGINEER wildfire and produced
locally at the university. The mechanics is described in teknisk_dokumentation.pdf. Much
care was focused on getting a stable and durable platform.

Electronic and software design
The FPGA have a number of support systems, i.e. amplifying the motor control signals or
transforming the signals from the wheel encoders. The circuit boards were designed by us.

The FPGA had multiple responsibilities.

• Sending and receiving information with a computer according to player standard
interface.

• Calculate wheel velocities according to the received information.
• Transform the velocities to control signals for the stepper motors. This is made by a

VHDL block.
• Calculating the distance travelled by each wheel according to encoder data. This is

also made by a VHDL block.
• Calculating the position of the robot depending on how long the wheels have travelled

and sends it to the player computer.

A schematic picture of the system is shown below.

LASER
A LASER sensor was mounted on top of the robot which gave the robot a possibility to detect
and avoid the environment. The LASER was connected to the player computer and the host
program sent information to the FPGA to control the robot.

Result
The robot was made and it works very well, it is able to detect and avoid obstacles in a non
static environment. Today the robot can not detect mines but with right added sensors it can
help with the detection of those. The robot shows that it’s possible to build a platform with
limited budget, small means and an ordinary workshop.

The robot is 1000x600x300 mm and weighs approximately 25 kg. The travelling speed of the
robot is 4 km per hour. The work was presented and a demonstration was made of the robot at
“hydraulikdagarna”, a conference at the university held by FluMeS.

 LiTH

 MinMyra 2007-05-07

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se
File: teknisk_dokumentation.doc 1

Technical Documentation
Johan Vestman

Version 1.0

Status

Granskad

Godkänd

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se
File: teknisk_dokumentation.doc 2

PROJEKTIDENTITET
MinMyra 07

Linköpings tekniska högskola, IEI

Namn Ansvar Telefon E-post
Patrik Stener Projektanansvarig 0702-268039 patst577@student.liu.se
Johan Vestman dokumentansvarig 0707-518125 Johve944@student.liu.se
Patrik Sjöberg designansvarig 0733-263676 patsj733@student.liu.se

Erik Moqvist testansvarig 0702-775832 erimo144@student.liu.se

E-postlista för hela gruppen tmms06_minmyra@listserv.ikp.liu.se

Kund: FOI, Linköping
Kontaktperson hos kund: Jonas Nygårds

Kursansvarig: Karl-Erik Rydberg, 013-281187, karry@ikp.liu.se
Handledare: : Magnus Sethson, 013-282733, magnus.sethson@liu.se

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

3

Contents

1. SYSTEM OVERVIEW ... 5

1.1. MECHANICS.. 5
1.2. MECHANICAL MODEL ... 5
1.3. ELECTRONICS... 7
1.4. FIELD PROGRAMMABLE GATE ARRAY.. 9
1.5. MOTORS... 9
1.6. BATTERIES.. 9
1.7. ENCODER.. 10
1.8. PROGRAMMING... 10
1.9. PLAYER DRIVER .. 11

2. SYSTEM MODULES.. 12

2.1. FRAMEWORK .. 12
2.2. ALUMINUM PLATE .. 13
2.3. MOTOR BLOCK.. 14
2.4. M ID JOINT... 15
2.5. WHEEL AXIS ... 16
2.6. WHEELS.. 17
2.7. IO-BOARD... 18
2.8. STEP MOTOR BOARD... 18
2.9. SENSOR BOARD... 18
2.10. OPTOCOUPLER BOARD.. 18
2.11. 9V DC SUPPLY.. 19
2.12. CABLE SPECIFICATION.. 20
2.13. STEPPER MOTOR CONTROL... 23
2.14. QUADATURE ENCODER... 24

3. SUPLIERS ...25

REFERENCES.. 27

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se
File: teknisk_dokumentation.doc 4

Document history

version date Changes made by reviewed
1.0 2004-05-07 First version JV

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se
File: teknisk_dokumentation.doc 5

1. System overview

1.1. Mechanics
In figure 1 below you can se an overview of the underside of the robot. It shows the cargo bay
for the batteries, the wheel axis, the motor block and the mid joint. You can also se the
aluminium surface that will be used to attach electronics and our high precision wheels.

Figur 1, overview of the robot

1.2. Mechanical model
We have assumed that the robot is moving on a non slippery surface. The control parameters
are V1 and ω1 and they will be set by the main program. With this we calculate the speed of
the front wheels, v11 and v12, see figure 2. The mid joint centre of rotation D will decide what
speed the rear wheels, v21 and v22, have to be. The v21 and v22 is a slave system to v11 and v12.

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

6

Figur 2, Geometric description

In figure 2 above:
Name Description SI-Unit
V1, V2 Speed of the axis centers. m/s
ω1, ω2 Angle velocity of the axis mid points. rad/s
b11, b12, b21, b22 Distance from the wheels to the centre of the axis. m
a1, a2 Distance from the mid joint centre of rotation to the front and

rear axis.
m

v11, v12, v21, v22 Speeds on the wheels. m/s
θ Angle of the mid joint. rad

The mean speed and the angular velocity at point A (Figure 2) is calculated as:

1211

11121211
1 bb

bvbv
v

+
+

=
1211

1211
1 bb

vv

+
−

=ω










−







=








⇒

















−+
=









12

11

1

1

12

11

12

111112

11121

1

1

1)

11

1
b

bv

v

v

v

vbb

bb

v

ωω

The velocity of the midpoint D must be the same for both the front part and the rear.


















−
=

1

1

1
1 0

01
)(

ω
θ

v

a
RVD 
















=

2

2

2
2 0

01

ω
v

a
VD








 −
=









−−
−

=
)cos()sin(

)sin()cos(

)cos()90cos(

)90cos()cos(
)(

θθ
θθ

θθ
θθ

θR

12 DD VV =


















−






 −
=

















1

1

12

2

2 0

01

)cos()sin(

)sin()cos(

0

01

ωθθ
θθ

ω
v

a

v

a

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

7


















−






 −








=









1

1

1

2

22

2

0

01

)cos()sin(

)sin()cos(

10

01
ωθθ

θθ
ω

v

a

a

a

v

In this case 11v and 12v is the measured velocities on the front wheel axis, that gives a master
slave system.

2221

21222221
2 bb

bvbv
v

+
+

= ,
2221

2221
2 bb

vv

+
−

=ω ,
1211

11121211
1 bb

bvbv
v

+
+

= ,
1211

1211
1 bb

vv

+
−

=ω


















−+








−






 −








=

















−+ 12

111112

12111

2

222

212122

2221 11

1
0

01

)cos()sin(

)sin()cos(

10

01

11

1
v

vbb

bba

a

av

vbb

bb θθ
θθ


















−








−














 −

















−
−−

−−+
+

=








12

111112

1

2

22

21

212212112

2221

22

21

110

01

)cos()sin(

)sin()cos(

10

0

1

1

))((v

vbb

a

a

b

b

bbbba

bb

v

v

θθ
θθ


















−














 −









−+
=









12

11

11

1112

222

212

1211222

21

)cos()sin(

)sin()cos(

)(

1
v

v

aa

bb

ba

ba

bbav

v

θθ
θθ

Summary:


















−
=









1

1

12

11

12

11

1

1

ω
v

b

b

v

v


















−














 −









−+
=









12

11

11

1112

222

212

1211222

21

)cos()sin(

)sin()cos(

)(

1
v

v

aa

bb

ba

ba

bbav

v

θθ
θθ

1.3. Electronics
All the circuit boards are designed in a freeware called Eagle. The robot has three basic circuit
boards. All circuit diagrams can be found in the Board map in the document files.

The IO board is for the signal routing between the FPGA and the motors and the sensors.

Figur 3, IO board

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

8

The stepper motor board is based on a LMD 18200 circuit. It’s a circuit that can be used for
direct control and power drive for a stepper motor. The circuit can deliver 3 Ampere at
continues drive and 6 ampere at peak power and that’s enough for our motors. The voltage
span is +12 to + 55 volt and we have chosen to run at 36 volt to the motors.

Figur 4, Stepper motor board

The sensor board is based on a DS26LS32. The DS26LS32 is a quad differential line receiver
for data transmission. This circuit was recommended by Avago for the encoders. It transforms
a differential signal to an absolute signal.

Figur 5, Sensor board circuit

Figur 6, sensor connection

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

9

Optocoupler is may be needed between the FPGA and the motor board. This is to ensure that
the signals get a correct ground. We have used the Optocoupler bought from ELFA. The
circuit board is handmade.

A 9 voltage DC supply is made to power the optocouplers and the wireless RS232.

1.4. Field Programmable Gate Array
A Field Programmable Gate Array or FPGA is a board with programmable connections and
logic components. We have an Altera DE2 development and education board that includes:

• Altera Cyclone II (2C35).
• 16Mbit Serial configuration device for AS mode.
• Built-in USB blaster with enhanced API link IP
• TV decoder for NTSC/PAL
• 24-bit CD-quality audio codec
• VGA DAC
• USB host and device
• Ethernet 100/10Mbps
• SRAM, SDRAM Flash SD card connector.
• RS232, IrDA, PS/2

1.5. Motors
The motors that are used are stepper motors called KH56QM-961, sold by Aratron. It’s a two
phase stepper motor, bipolar with a double axis. The motor uses 200 steps per round. The
motors are magnetic balanced and a stepper motor is a good choice if you want to have good
position accuracy. The stepper motor also has high torque at low speed. The double axis is
needed to attach the sensor. The main issue with these motors is vibrations and noise at low
speed. The solution to this is to use micro steps but we have used half steps in our control of
the motor so we get vibrations. We also had to make a sensor holder and used epoxy glue to
attach it to the motor because there was no drilled holed on the back of the motor, see Figure
11, number 7.

1.6. Batteries
The batteries are a 12 voltage 2,9Ampere lead-accumulator bought at Biltema. We use six
batteries to create two 36 voltage batteries for the motors and a single battery for the FPGA.
There are a total of eight batteries on the robot, but only seven is used so there is one extra
battery for future use. The batteries are mounted under the robot in a cargo bay.
The battery holder is handmade, a basic sketch is found in the solid models in pro engineer.

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

10

Figur 7, single battery.

1.7. Encoder
The encoder AEDA-3300-TAQ from Avago is a miniature high resolution encoder. The
resolution is spanning from 600 to 20000 CPR depending on the model. It’s one of the
smallest high performance encoders on the market. The one we choose have 4000 CPR. We
have a total of 10 encoders possible to use on the robot.

1.8. Programming
The processor on the FPGA that we have defined does the calculations for the speed for the
different wheels. The programming language is C. All the calculations about the position is
made on the FPGA. All the related files are found on the presentation CD.

We use VHDL for programming the motor control and to translate information from the
encoders.

We use serial transmission of data that we transfer with a wireless connection

A limitation is the minimum turning radius gives the constraints for the velocity V and ω. If
we assume that the distance between the mid joint and the both wheel axis is the same and the
max angle is 60 degrees then:

12

180
tan

a

r=






 −θ

61.0
352.0

60

2

180
tan

1
1 =

=
=

=






 −=
a

ar
θθ

 Meter.

We round that number upwards so the limitation in turning radius gives that the

quote 65.0≥
ω
V

, where V and ω are the control parameters.

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

11

1.9. Player driver
The control on the PC side is implemented as a player driver. Player is an interface to
communicate with other robots and it’s easy to build more modules to the robot such as a
laser module.

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

12

2. System modules

2.1. Framework
The robot two frames are made of welded square pipes. The framework ensures a stiff and
lightweight construction. An overview of one of them is shown in figure 8.
The drawings for the pipes are found in drawing_23, drawing_24, drawing_25, drawing_26,
drawing_28, drawing_29 and drawing_30.

In figure 9 the mid joint welding is shown, and in figure 10 a cover plate is welded instead of
the vertical bearing holder. The plate in figure 10 is found in drawing_20.

The L-brackets for the encoders and the belt drive is found in drawing_14 and drawing_15
and welded to the frame.

All the drilling is made when the frame is manufactured to ensure that all the holes have the
correct distances between each other. The drilling and the placement of the L-brackets are
found in drawing_31. To mount the motor block and the bearing housings we use flat head
rivet nut in the 11.1mm and 7mm drilled holes. These shall be mounted on the opposite side
of the bearings and motor block.

Figur 8, A welded frame

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

13

Figur 9, Midjoint welding

Figur 10, Mid joint welding

2.2. Aluminum plate
The top of the robot is a 3 mm plate that is screwed to the frame with slotted countersunk
screw M4-6. On its surface the FPGA and the IO-board are mounted and under the plate the
stepper motor boards are mounted. The plate is found in drawing_1. The two parts of the
robot shall be connected with a grounding cable between the plates. This plate is used as a
grounding plane for the electronics.

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

14

2.3. Motor block
The motor block is welded together as bent steel plates. The individual parts are found in
drawing_17, drawing_32 and drawing_18/drawing_19 and the screw dimensions and other
parts are listed below. There is a difference between the left and the right motor block see
drawing_18 and drawing_19.

Figur 11, the motor block and numbering of the included parts

Listings of the parts in figure 11 above.

Number Name and description Quantity
1 Hex cap pan head screw M4-30, 3 washers 3
2 Slotted pan head screw M3-14, 8 washers 4
3 Hex cap pan head screw M4-12, 8 washers and 4 locknuts 4
4 Oldham coupling, 5mm/6.35mm 1
5 Axis 5mm, drawing_7 1
6 Pulley 12mm 1
7 Aluminium encoder holder, drawing_8 1
8 Encoder 1
9 Flanged bearing housing 1
10 Locking mechanism for the bearings, drawing _16 1

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

15

2.4. Mid joint
The mid joint is made by two welded parts that holds together with two bearing housings.
One part is welded with parts from drawing_21 drawing_22 and drawing_27 on to the frame.
The other half is welded with parts from drawing_5 and drawing_6.

Figur 12, A solid model that shows the mid joint

Figur 13, the mid joint and numbering of the included parts.

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

16

Listings of the parts in figure 13 above.

Number Name and description Quantity
1 Bearing house 4
2 Hex cap pan head screw M8-30, 12 washers 4 nuts 8
3 Encoder holder, drawing_9 1
4 Future location of the roll encoder.
5 Washer, drawing _13 1
6 Bolt M4-20,2 washers 2
7 Encoder 1
8 Welded mid joint, drawing_5 and drawing_6 1
9 Encoder axis, drawing_2 1
10 Sloted pan head screw M3-10, 2 washers and 2 nuts 2

2.5. Wheel axis
The wheel axis is based on a 20 mm axis. The end of the axis is lathed to fit the wheels, see
drawing_4.

Figur 14, wheel axis

Listings of the parts in figure 14 above.

Number Name and description Quantity
1 Encoder 1
2 Encoder holder, drawing_9 1
3 Slotted pan head screw M3-10, 2 washers and 2 nuts 2
4 Hex cap pan head screw M8-30, 4 washers 4
5 Bearing house 2
6 Pulley 12mm 1
7 Wheel axis, 20 mm. see drawing_4 1

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

17

2.6. Wheels
Two types of wheels are manufactured, a high precision wheel for testing and indoor driving,
and an outdoor terrain wheel with lower precision.

Figur 15, Low precision terrain wheel

The low precision wheel above in figure 10 is an aluminum rim manufactured by our
workshop. The drawing for the rim is found in drawing_12. The tire we bought is a 12 inch
tire for a bicycle at Biltema.

Figur 16, High precision indoor wheel

The high precision wheel above in figure 11 is an aluminium rim made by our workshop. The
rim is assembled by two parts. The centre hub is found in drawing_33, and the aluminium
pate is found in drawing_34. The two parts is held together by four M5 bolts.

The rubber is made from an o-ring that is glued to the right diameter.

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

18

2.7. IO-board
One board is needed. The Circuit diagram is found in Interface_Board1_1.

Description Supplier and art. Nr. Quantity
10 pin low profile connector ELFA 43-155-03 15
26 pin low profile connector ELFA 43-151-56 1
40 pin low profile connector ELFA 43-155-60 2

2.8. Step motor board
One board is needed for each motor. The circuit diagram is found in Motor_Board1_1.

Description Supplier and art. Nr. Quantity
10 pin low profile connector ELFA 43-155-03 1
8 pin connector ELFA 48-452-28 1
Capacitor ELFA 67-544-93 1
Control circuit for step motors ELFA 73-288-34 2
Capacitor 47 µF 50V ELFA 67-013-87 4

2.9. Sensor board
One board is needed for each sensor. The circuit diagram is found in Enchoder_Board1_1.
Description Supplier and art. Nr. Quantity
10 pin low profile connector ELFA 43-155-03 1
IC Holder ELFA 48-135-80 1
10 pin dual row vertical socket Farnell 102-2299 1
IC DS 26LS32 quad differential
Line Receiver.

ELFA 73-143-62 1

Capacitor 47pF ELFA 65-778-52 1

2.10. Optocoupler board
One Optocoupler is needed for each signal to the step motor board. A basic drawing is found
in figure 17. The R1=383Ω and the R2=560Ω. Six optocouplers is needed for each motor
board.

Figur 17. Basic drawing for one optocoupler.

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

19

The table below is the components for six optocouplers for the signals to one motor board.
Description Supplier and art. Nr. Quantity
Resistance 383Ω ELFA 60-717-99 6
IC Holder ELFA 48-135-80 1
IC Holder ELFA 48-135-49 1
Resistance 560Ω ELFA 60-719-97 6
Optocoupler ELFA 75-362-46 1
Optocoupler ELFA 75-362-20 1

2.11. 9V DC supply
One is needed for each optocoupler board and one is needed for the wireless RS232, the
material for one is found in the table below.

Description Supplier and art. Nr. Quantity
L7809 9V 1,5A ELFA 73-091-23 1
Capacitor 0,1µF ELFA 65-183-69 1
Capacitor 0,33µF ELFA 65-184-27 1

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

20

2.12. Cable specification
The cables connected from the IO-board and the sensors and motors are listed below.

 Header and pin Header and pin Description
IO_Board J_1-1 Encoder Board J_2-1 Output A
 J_1-2 J_2-2 Output B
 J_1-3 J_2-3 Out I
 J_1-4 J_2-4 Vcc
 J_1-5 J_2-5 GND

 Header and pin Header and pin Description
IO_Board J_2-1 Encoder Board J_2-1 Output A
 J_2-2 J_2-2 Output B
 J_2-3 J_2-3 Out I
 J_2-4 J_2-4 Vcc
 J_2-5 J_2-5 GND
 J_3-1 J_2-1 Output A
 J_3-2 J_2-2 Output B
 J_3-3 J_2-3 Out I
 J_3-4 J_2-4 Vcc
 J_3-5 J_2-5 GND

 Header and pin Header and pin Description
IO_Board J_4-1 Motor board J_1-1 GND
 J_4-2 J_1-2 GND
 J_4-3 J_1-3 PWM-B
 J_4-4 J_1-4 PWM-A
 J_4-5 J_1-5 BREAK-B
 J_4-6 J_1-6 BREAK-A
 J_4-7 J_1-7 DIR-B
 J_4-8 J_1-8 DIR-A
 J_4-9 J_1-9 I-SENSE-B
 J_4-10 J_1-10 I-SENSE-A

 Header and pin Header and pin Description
IO_Board J_5-1 Motor board J_1-1 GND
 J_5-2 J_1-2 GND
 J_5-3 J_1-3 PWM-B
 J_5-4 J_1-4 PWM-A
 J_5-5 J_1-5 BREAK-B
 J_5-6 J_1-6 BREAK-A
 J_5-7 J_1-7 DIR-B
 J_5-8 J_1-8 DIR-A
 J_5-9 J_1-9 I-SENSE-B
 J_5-10 J_1-10 I-SENSE-A

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

21

 Header and pin Header and pin Description
IO_Board J_6-1 Encoder Board J_2-1 Output A
 J_6-2 J_2-2 Output B
 J_6-3 J_2-3 Out I
 J_6-4 J_2-4 Vcc
 J_6-5 J_2-5 GND

 Header and pin Header and pin Description
IO_Board J_7-1 Encoder Board J_2-1 Output A
 J_7-2 J_2-2 Output B
 J_7-3 J_2-3 Out I
 J_7-4 J_2-4 Vcc
 J_7-5 J_2-5 GND

 Header and pin Header and pin Description
IO_Board J_8-1 Encoder Board J_2-1 Output A
 J_8-2 J_2-2 Output B
 J_8-3 J_2-3 Out I
 J_8-4 J_2-4 Vcc
 J_8-5 J_2-5 GND

 Header and pin Header and pin Description
IO_Board J_9-1 Encoder Board J_2-1 Output A
 J_9-2 J_2-2 Output B
 J_9-3 J_2-3 Out I
 J_9-4 J_2-4 Vcc
 J_9-5 J_2-5 GND

 Header and pin Header and pin Description
IO_Board J_10-1 Encoder Board J_2-1 Output A
 J_10-2 J_2-2 Output B
 J_10-3 J_2-3 Out I
 J_10-4 J_2-4 Vcc
 J_10-5 J_2-5 GND

 Header and pin Header and pin Description
IO_Board J_11-1 Encoder Board J_2-1 Output A
 J_11-2 J_2-2 Output B
 J_11-3 J_2-3 Out I
 J_11-4 J_2-4 Vcc
 J_11-5 J_2-5 GND

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

22

 Header and pin Header and pin Description
IO_Board J_12-1 Motorboard J_1-1 GND
 J_12-2 J_1-2 GND
 J_12-3 J_1-3 PWM-B
 J_12-4 J_1-4 PWM-A
 J_12-5 J_1-5 BREAK-B
 J_12-6 J_1-6 BREAK-A
 J_12-7 J_1-7 DIR-B
 J_12-8 J_1-8 DIR-A
 J_12-9 J_1-9 I-SENSE-B
 J_12-10 J_1-10 I-SENSE-A

 Header and pin Header and pin Description
IO_Board J_13-1 Encoder Board J_2-1 Output A
 J_13-2 J_2-2 Output B
 J_13-3 J_2-3 Out I
 J_13-4 J_2-4 Vcc
 J_13-5 J_2-5 GND

 Header and pin Header and pin Description
IO_Board J_14-1 Motor board J_1-1 GND
 J_14-2 J_1-2 GND
 J_14-3 J_1-3 PWM-B
 J_14-4 J_1-4 PWM-A
 J_14-5 J_1-5 BREAK-B
 J_14-6 J_1-6 BREAK-A
 J_14-7 J_1-7 DIR-B
 J_14-8 J_1-8 DIR-A
 J_14-9 J_1-9 I-SENSE-B
 J_14-10 J_1-10 I-SENSE-A

The connections between the motor board and the motor are listed below.
 header and pin Description
Motor Board X1-1 Input GND
 X1-2 Input +36V
 X1-3 Output 1 winding A
 X1-4 Output 2 winding A
 X1-5 Output 1 winding B
 X1-6 Output 2 winding B

The connection between the encoder board and the encoder is listed below.

 Header and pin
Encoder board J_1-1 Encoder Pin 1

 J_1-2 Pin 2
 J_1-3 Pin 3
 J_1-4 Pin 4
 J_1-5 Pin 5
 J_1-6 Pin 6
 J_1-7 Pin 7
 J_1-8 Pin 8
 J_1-9 Pin 9
 J_1-10 Pin 10

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

23

2.13. Stepper Motor control
Related files are stepper_motor_ctrl.VHDL
A counter counts up on a clock signal, and then it’s compared with period. If it’s equal the
current state is updated to next state and the counter is set to zero.

Figur 18, Bit description for the motor control

The figure 18 above shows the output to turn the motor axis.
The table below is listing all the signals connected to the stepper motor control.

Signal in Clock Clock frequency
 Dir Rotation direction
 Free Must be equal to 1 if the motor axis is

going to turn free.
 Brk If Brk equals to 1 then the motor will

break.
 Period[31..0] The number of clock pulses between

each step

Signal out Dir1 Direction for winding 1
 Dir2 Direction for winding 2
 PWM1 PWM signal for winding 1
 PWM2 PWM signal for winding 2
 Brk1 Break signal for winding 2
 Brk2 Break signal for winding 2
 Pulse_in Control variable

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

24

2.14. Quadature encoder
Related files are quadature_encoder.VHDL
Takes in a and b then returns position and period. Index and velocity is not implemented or
used yet. The table below is listing all the signals connected to the Quadature encoder.

Signal in a Input a from the encoder
 b Input b from the encoder
 index Input index from the encoder
 timeclock Clock pulse that is equal to 1 every

222 main clock pulse.

Signal out position The position of the encoder
 period The difference in position between

two timeclock
 velocity Not implemented, gives the same

value as period.

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

25

3. Supliers

 Supplier Quantity
Oldham coupling ELFA Hub 6.35mm art.nr: 54-651-17

ELFA Hub 8mm art.nr: 54-651-25
ELFA Disk 25mm art.nr:54-653-15

4
4
4

 Supplier Quantity
Battery Biltema Lead accumulator 2.9A. art.nr:80-407

Biltema Lead accumulator charger art.nr:37-711
ELFA, Power switch C1550ATBB, art.nr:35-016-08

16
4
2

 Supplier Quantity
Motor Aratron step motor. art.nr: 1007737 4

 Supplier Quantity
Belt drive Kedjeteknik Pulley 12mm, art.nr: 12XL 037F

Kedjeteknik Pulley 30mm, art.nr: 30XL 037F
Kedjeteknik Belt 355mm, art.nr: 140XL 037

4
4
4

 Manufacturer Quantity
Encoder Avago, high resolution encoder AEDA-3300_TAQ 10

 Supplier Quantity
Bearings Nomo, Flanged bearing housing art.nr: UFL 08

Clas Ohlsson, bearing house, art.nr: 30.4684
8
12

 Supplier Quantity
Wheels Momentum, 8mm o-ring.

Biltema, 12 inch tire
Biltema , 12 inch inner tire

4 meters
4
4

 Supplier Quantity
FPGA Altera Cyclone II (2C35) 1

 Supplier Quantity
Electronics

ELFA, 10 pin low profile header, art.nr: 43-155-03
ELFA, 26 pin low profile header, art.nr: 43-155-45
ELFA, 40 pin low profile header, art.nr: 43-155-60

29
1
2

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

26

ELFA, 8 pin header, art.nr: 48-452-28
ELFA IC-holder, art.nr: 48-135-80
ELFA IC-holder, art.nr: 48-135-49
Farnell 10 pin dual row vertical socket, art.nr:102-
2299
ELFA, DS 26LS32 quad differential Line Receiver,
art.nr: 73-143-62
ELFA, Control circuit for step motors art.nr: 73-288-
34
ELFA, Capacitor 1000µF 100V, art.nr: 67-544-93
ELFA, Capacitor 0,1 µF 63V art.nr: 65-183-69
ELFA, Capacitor 0,33 µF 50V art.nr: 65-184-27
ELFA, Capacitor 47 µF 50V art.nr: 67-013-87
ELFA, insulation, art.nr: 75-646-85
ELFA, insulation, art.nr: 75-646-77
ELFA TLP620-4 quad optocoupler, art.nr: 75-362-46
ELFA TLP620-2 dual optocoupler, art.nr: 75-362-20
ELFA Resistance 383Ω art.nr: 60-717-99
ELFA Resistance 560Ω art.nr: 60-719-97
ELFA Experiment board art.nr: 48-326-48
ELFA L7809CV 9V 1,5A art.nr: 73-091-23

4
10
3
10

10

8

4
3
3
16
10
10
2
2
12
12
3
3

 Supplier Quantity
Cables ELFA, Female connector 10 pos. art.nr: 43-150-16

ELFA, Female connector 40 pos. art.nr: 43-150-73
ELFA, Female connector 8 pos. art.nr: 48-451-45
ELFA, D-sub 9 pos. art.nr: 44-117-08
ELFA, Flat cable 10 pos. art.nr: 55-660-13
ELFA, Flat cable 26 pos. art.nr: 55-660-96
ELFA, Flat cable 40 pos. art.nr: 55-661-38

29
4
4
4
15 meter
2 meter
2 meter

 Supplier Quantity
Screws Järnia, locking nut M4

Järnia, nut M4
Järnia, nut M8
Järnia, nut M14
Järnia, washer M4
Järnia, washer M5
Järnia, washer M8
Järnia, hex cap pan head screw M2-4
Järnia, hex cap pan head screw M4-8
Järnia, hex cap pan head screw M4-10
Järnia, hex cap pan head screw M4-20
Järnia, hex cap pan head screw M5-30
Järnia, hex cap pan head screw M8-30
Järnia, slotted, countersunk screw M4-6
Järnia, flat head rivet nut M8
Järnia, flat head rivet nut M5

16
40
16
4
88
12
28
20
24
16
2
28
24
14
20
12

 MinMyra LiTH

Mekaniksystem - projektkurs MinMyra LIPs
Johan Vestman tmms06_minmyra@listserv.ikp.liu.se

27

References

Ulf Larsson, Caj Zell, Kalevi Hyyppä and Åke Wernersson. Navigating an articulated vehicle
and reversing with a trailer. Computer science and electrical engineering, University of Luleå.

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 1

Altera Innovate Nordic 2007

Final Project Report

8/28/2007

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 2

Project name: Leon3 MP on Altera FPGA

Team name: Team Hervanta

Team ID: IN00000033

Team members: Hannu Penttinen

 Tapio Koskinen

Email Addresses: hannu.penttinen@tut.fi

 tapio.koskinen@tut.fi

Contact No: 00358503708348

Instructor: Marko Hännikäinen

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 3

Introduction .. 4

Symmetric multiprocessor system ... 5

eCos .. 7

Installation ... 7

Configuring and compiling eCos .. 8

Test software ... 8

Other information .. 8

AMBA-to-HIBI interface .. 9

Dma_ctrl .. 10

Dma_tx... 11

Dma_rx .. 13

Timetable .. 15

Distribution of work ... 15

Conclusions ... 15

References .. 16

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 4

INTRODUCTION

Growing need for increasing computational power while keeping power consumption low in handheld

devices, such as mobile phones and PDAs, has lead to increased usage of multiprocessor systems-on-chip.

By using multi-processor systems the required performance can be achieved at lower power consumption

than in single-processor systems. The most power efficient solution would be to use application-specific

hardware, but it takes a lot of effort to design them. Multiprocessor systems provide a reusable and

versatile yet energy efficient solution with much less design effort.

The goal of our project was to implement a configurable SparcLeon3 based multiprocessor system on

Altera Cyclone FPGA with arbitrary number of SparLeon3-processors. Ecos was chosen as the operating

system since it’s been ported to SparcLeon3 by Gaisler research and it’s royalty-free. Another goal was to

implement an AMBA-to-HIBI-interface to provide a DMA access from AMBA to HIBI-bus [1]. The HIBI-bus

could be used for inter-processor communication and therefore the AMBA-bus could be used as

processor’s internal bus. Our system can be used for prototyping various multi-processor systems with

arbitrary number of processors on FPGA. This enables concurrent software and hardware development

which in turn decreases the development time.

The starting point for our work was a project we carried out at Tampere University of Technology’s

Project course last spring. In the course we implemented a similar system on Nios Development Board,

Stratix Professional Edition.

In this project, we achieved the following results:

- Easily configurable symmetric multiprocessor system of 2 SparcLeon3-processors with eCos RTOS

- Implemented AMBA-to-HIBI DMA interface

- Implemented AMBA-to-HIBI DMA driver for eCos

Each of the results is discussed in more detail in the following chapters.

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 5

SYMMETRIC MULTIPROCESSOR SYSTEM

Our goal was to implement a similar system to a system described in [3]. Our planned system is also

depicted in figure 1. The idea was that both processors had their own instruction and data memories and

that they both were totally independent of each other. This way the software would be easy to compile

and link, since there would be no issues with linking addresses etc. as it would be with shared memories.

However, due to the memory requirements of eCos, we noticed that there was not enough on-chip

memory for implementing the system.

Figure 1. Planned multiprocessor system

Our next proposal was to use external SRAM as shared program memory for the processors. Data

memories would still be non-shared. In order to do this we planned to connect the slave processor’s

AMBA bus to master’s AMBA bus with uni-directional AMBA-bridge to provide slave access to external

SRAM program memory. This attempt failed, since the AMBA-bridge was available only in the commercial

version of Gaisler Reasearch’s GRLIB.

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 6

Figure 2. Realized multiprocessor system

Finally we decided to implement a symmetric multiprocessor system depicted in figure 2. The number of

Leon3’s can be selected by changing one VHDL-generic. Due to limited resources of Cyclone FPGA, only

two processors were implemented in our system. The system has two AMBA-to-HIBI DMA units for testing

the AMBA-to-HIBI interface. In a real system only one DMA would be used.

The originally planned system could be derived from this system with small effort if an AMBA-bridge was

available: first implementing one instance with one Leon3, AMBA-to-HIBI DMA, external SRAM and an

AMBA-bridge and then implementing second instance with one Leon3, AMBA-to-HIBI DMA and an AMBA-

bridge. Finally these two instances could be connected with AMBA-bridge to provide program memory

access to slave processor. This system would be the same kind of architecture that is used in [3] and it’s

depicted in figure 3.

Figure 3. Proposed system

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 7

ECOS

INSTALLATION

Five things are needed to get eCos running on FPGA:

1. Cygwin

2. eCos configuration tool

3. eCos repository

4. Cross-compiler for Sparc architecture

5. Grmon for downloading software to FPGA.

These can be found in following addresses: http://www.cygwin.com/setup.exe,

http://www.ecoscentric.com/snapshots/configtool-060710.exe.bz2

ftp://gaisler.com/gaisler.com/ecos/src/ecos-rep-1.0.7.tar.gz,

ftp://gaisler.com/gaisler.com/bcc/bin/windows/sparc-elf-3.4.4-1.0.29d-cygwin.tar.bz2,

ftp://gaisler.com/gaisler.com/grmon/GrmonRCP-eval-0.8.zip.

It is also possible to configure eCos on Linux, in which case other versions of these programs are needed

from Gaisler's website (and naturally Cygwin is not needed at all).

Installation is pretty straightforward. Cygwin is fine with default settings. Others can be unpacked

basically anywhere ("tar xvf <package name>", configtool: "bunzip2 <file>"). eCos configuration tools

needs the location of eCos repository (packages-directory) and the location of cross-compiler (sparc-elf-

3.4.4/bin). Repository location can also be specified with ECOS_REPOSITORY environment variable.

GrmonRCP needs Java, but if that is a problem there is also a command line tool for downloading

software to FPGA (ftp://gaisler.com/gaisler.com/grmon/grmon-eval-1.1.21.tar.gz).

Before starting with the configuration tool, we install our own modifications to eCos repository. There is

Dmahibi-package/driver, which should be unpacked to ecos-repository/packages/io/dmahibi. Then there

is a modified ecos.db, which has definitions for dmahibi-package and should be copied to ecos-

repository/packages-directory. Now we are ready to start the eCos configuration tool.

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 8

CONFIGURING AND COMPILING ECOS

For a quick start there is leon3.ecc file enclosed, which has ready-made configuration. These are the steps

to create it: Open configuration tool and choose Build-> Templates. Choose Leon3 processor. Then choose

Build->Packages, Dma for Hibi, Add, OK. Now let's enable SMP support. Go to eCos HAL / Sparc

architecture and check SMP support. Then go to eCos kernel and check SMP support. Now save the

configuration with File->Save as.

To compile eCos choose Build->Generate Build Tree and Build-> Library. In the directory where

configuration was saved (ecc-file) there will be created directories xyz_build and xyz_install. Xyz_build

contains object files which are not necessarily needed anymore (naturally if left alone they speed up the

following compiling processes). In the install directory there are many header files (include-directory) and

in the lib directory there is a library libtarget.a which is linked into applications and target.ld, a linker

script.

Applications can be compiled and linked with eCos on Cygwin command line with the following command:

sparc-elf-gcc -g -Ixyz_install/include -Lxyz_install/lib -Ttarget.ld -nostdlib hello.c -o hello

-I tells where headers are located. -L tells where library is. -Ttarget.ld specifies the linker script which tells

the memory addresses to linker. -nostdlib tells the compiler not to use standard libraries (everything

should be in libtarget.a). -g just tells to add debugging information. Hello.c is the code file and -o hello

tells linker to name binary file as "hello".

TEST SOFTWARE

Test software starts three threads which sleep somewhat random (but short) time. First thread sends

every now and then data over HIBI to thread number three. Second thread does basically nothing. eCos

schedules these threads automatically on all CPUs. Source code and binaries are attached.

Downloading compiled software to FPGA is done with Grmon. After the FPGA board is programmed,

reseted (key0) and debugger enabled (key1), GrmonRCP can be started. Choose Initialize target, Serial,

com1 (this can vary) and 115200. Also enable UART loopback. Load program file and click Run.

OTHER INFORMATION

There are good eCos manuals Sourceware's website. There is a user guide, a reference manual and a

component writer's guide. These can be found at http://ecos.sourceware.org/docs-2.0/. Then there is

also a mailing list for questions: http://ecos.sourceware.org/ml/ecos-discuss/.

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 9

AMBA-TO-HIBI INTERFACE

This block provides a DMA connection from AMBA-bus to HIBI-bus. It is divided into three sub-blocks:

dma_ctrl, which functions as a configuration unit, dma_tx, which implements one transmit (tx) channel

and dma_rx, which implements an arbitrary number of receive (rx) channels.

Figure 4. Block diagram of AMBA-to-HIBI interface

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 10

DMA_CTRL

This block is connected to AMBA AHB-bus with slave interface. Its interface ports are described in table 1.

Dma_ctrl functions as a configuration unit and the processor can read and write the tx- and rx-channels’

configuration registers through this block. Dma_ctrl includes one state-machine which is depicted in figure

5.

Table 1. Dma_ctrl interface

The function of the block is following. The block waits for read/write requests from AMBA and propagates

them to either dma_tx or dma_rx depending on the request address. If request was a read request,

dma_tx/dma_rx block returns the value of requested register to dma_ctrl which in turn sends it to

requester.

Figure 5. Dma_ctrl state-transitions

Port Direction Function

clk in clock

rst_n in reset

amba_slv_in in AMBA slave interface inputs

amba_slv_out out AMBA slave inteface outputs

rx_data_in in Data from dma_rx

tx_done_in in Tx-done from dma_tx

rx_re_out out Read enable to dma_rx

rx_we_out out Write enable to dma_rx

tx_we_out out Write enable to dma_tx

rx_addr_out out Channel- and register address to dma_tx

tx_addr_out out Register address to dma_tx

chan_data_out out Write data to both dma_rx and dma_tx

tx_start_out out TX-start for dma_tx

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 11

DMA_TX

Dma_tx implements one transmit channel. The interface of this block is described in table 2. The block

contains tx-configuration registers (table 3) and two state-machines. One state machine handles the

AMBA interface and the other the HIBI interface. The state-transitions of state machines are depicted in

figures 6 and 7. The configuration registers are set according to write commands from dma_ctrl.

Port Direction Function

clk in clock

rst_n in reset

amba_mst_in in AMBA master interface inputs

amba_mst_out out AMBA master interface outputs

ctrl_data_in in write data from dma_ctrl

ctrl_addr_in in register address from dma_ctrl

ctrl_we_in in write enable from dma_ctrl

tx_done_out out tx-done to dma_ctrl

tx_start_in in tx-start from dma_ctrl

hibi_we_out out HIBI write enable

hibi_comm_out out HIBI command

hibi_full_in in HIBI full

hibi_data_out out write data to HIBI

hibi_av_out out HIBI address valid

Table 2. Dma_tx interface

The transmission begins when dma_ctrl sets tx_start_in signal high. Next the AMBA-state machine starts

requesting tx-data from address stored in mem_addr-register. When data is available from AMBA, HIBI-

state machine sends data to HIBI and mem_addr is incremented. When the configured amount of data is

successfully sent to HIBI, transmission ends and tx-start signal goes to value ‘1’. The value of tx-start can

be read from status register bit 16.

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 12

Figure 6. Dma_tx AMBA state machine

Figure 7. Dma_tx HIBI state machine

Address Register Purpose

0x20 mem_addr Source address of data

0x24 amount Amount to send

0x28 comm HIBI command

0x2C HIBI_addr HIBI destination address

Table 2. Dma_tx registers

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 13

DMA_RX

This block implements the receive channels of AMBA-to-HIBI interface. The interface of this block is

depicted in table 4. The block contains an arbitrary number of rx-channels (number is chosen by VHDL-

generic) and their configuration registers (table 5). The block also contains one state-machine which

handles the AMBA interface. State machine is depicted in figure 8.

Table 4. Dma_rx interface

The configuration registers function the same way as in dma_tx except the request address includes the

channel number in addition to register address. The bits 4..0 contain the register address and bits [4 +

n_chan_bits_g .. 4] contain the channel number. N_chan_bits_g is a VHDL-generic, which tells the number

of bits used to index rx-channels. It’s value should be set to ceil(log2(number_of_channels)).

Port Direction Function

clk in clock

rst_n in reset

amba_mst_in in AMBA master interface inputs

amba_mst_out out AMBA master interface outputs

ctrl_data_in in write data in from dma_ctrl to register

ctrl_addr_in in channel and register address from dma_ctrl

ctrl_we_in in write enable from dma_ctrl

ctrl_re_in in read enable from dma_ctrl

ctrl_data_out out register value output to dma_ctrl

hibi_re_out out HIBI read enable

hibi_empty_in in HIBI write enable

hibi_data_in in HIBI data input

hibi_av_in in HIBI address valid input

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 14

Figure 8. Dma_rx state machine

Receive channel is activated by writing ‘1’ to a bit corresponding channel number in init_chan-register.

After this, the activated channel waits until an address matching to receive_addr-register arrives from

HIBI. When the address arrives, state-machine requests AMBA-bus and, after getting grant from AMBA,

starts sending data from HIBI to AMBA. The destination address is in mem_addr-register. If AMBA is not

ready to receive data, HIBI read is stalled until AMBA is ready. Data receiving continues until a new

address comes from HIBI, HIBI gets empty or all expected data is received.

When receive finishes, the bit corresponding to channel number goes to ‘1’ in IRQ source-register. If

interrupts are allowed in config-register(table 6), an interrupt is given to AMBA. The interrupt is

acknowledged by writing ‘1’ to bit corresponding the channel number in IRQ source-register

Address Register Purpose

0x00 mem_addr Destination start address for received data

0x04 receive_addr HIBI-address where to receive data

0x08 amount Amount of data to be received

0x0C curr_addr Current destination address for received data

0x10 config/status Lower 16-bits are status register, upper configuration register(table 6)

0x14 init_chan Initialize RX-channel (one-hot encoded, common for all RX-channels)

0x18 (RESERVED) -

0x1C IRQ source RX-channel IRQ register(one-hot encoded, common for all RX-channels)

Table 5. Dma_rx registers

Bit 31..18 17 16 15..2 1 0

Purpose (RESERVED) RX-busy TX-done (RESERVED) RX IRQ enable TX-start

Table 6. Status/Config register

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 15

TIMETABLE

What has been done for this competition relates to a course done at the TUT. The work for that project

was started at the end of 2006, and some 600 hours have been used in total for that TUT-project and this

competition. Naturally these projects differed and not all work used on TUT-project was useful on this

competition, and also some extra work was needed for the competition. Implementing AMBA-to-HIBI

interface took roughly 200 hours, eCos 100 hours and multiprocessor system 100 hours.

DISTRIBUTION OF WORK

Hannu Penttinen worked on implementing the Leon3 Sparc processor and other hardware elements on

the FPGA. Tapio Koskinen worked on eCos and test software. Aarno Tenhunen didn’t participate in the

project after all.

CONCLUSIONS

The goal of the project was to create an asymmetric multiprocessor system using SparcLeon3-processors

and Altera Cyclone FPGA. However, due to the problems encountered, a symmetric multiprocessor (SMP)

system was implemented. SMPs have also many applications and they are used in growing numbers

nowadays. Our final system is an excellent platform for prototyping such systems on FPGA and it enables

concurrent software and hardware designing on SMPs which can reduce design time considerably. Our

system is also a good starting point for implementing a prototyping platform for asymmetric processor

systems.

Altera Innovate Nordic 2007: Leon3 MP on Altera FPGA, Final Report

 16

REFERENCES

[1] Erno Salminen, Vesa Lahtinen, Tero Kangas, Jouni Riihimäki, Kimmo Kuusilinna, Timo D. Hämäläinen,

"HIBI v.2 Communication Network for System-on-Chip", Embedded Computer Systems: Architectures,

Modeling, and Simulation (SAMOS IV), Samos, Greece, July 18-20, 2004, Vol.LNCS 3133 Computer

Systems: Architectures, Modeling, and Simulation, A.D. Pimentel, S. Vassiliadis, (eds.), pp. 412-422,

Springer-Verlag, Berlin, Germany.

[2] Ari Kulmala, "Multiprocessor System with General-Purpose Interconnection Architecture on FPGA",

Tampere, Finland, 2005, 73 pages, Tampere University of Technology

[3] Olli Lehtoranta, Erno Salminen, Ari Kulmala, Marko Hännikäinen, Timo D. Hämäläinen, "A Parallel

MPEG-4 Encoder for FPGA Based Multiprocessor SoC", 15th International Conference on Field

Programmable Logic and Applications (FPL 2005), Tampere, Finland, August 24-26, 2005, pp. 380--385,

Springer LNCS.

