
Police Vehicle Support System with Wireless Auto-Tracking Camera
First Prize

Police Vehicle Support System with
Wireless Auto-Tracking Camera

Institution: Inha University, Korea Aerospace University, Hongik University

Participants: Sung Woong Joo, Ho Seong Suh, Young Je Moon

Instructor: Professor Tak Don Han

Design Introduction
Our project, a police vehicle support system with a wireless auto-tracking camera, has three main goals:

■ To improve police vehicles’ ability to collect and interpret data.

■ To provide real-time image transfers and an information sharing system between police vehicles
and the command center.

■ To create a high-performance, affordable solution using system-on-a-programmable-chip (SOPC)
design concepts.

Existing police vehicle tracking systems can lose a suspected vehicle on screen because the vehicle’s
camera is fixed. Our project provides an auto-tracking solution that continuously shows the suspected
vehicle’s position on screen. To achieve this goal, we use an automated threshold calculation method
that reduces the effect of light.

The pan-tilt camera uses a step motor. The camera moves right, left, up, and down. We designed the
FPGA step motor controller to react quickly. In fact, the FPGA step motor controller’s reaction time is
faster than the software controller; therefore, the motor controller also helps the camera focus on the
suspected vehicle continuously, even when the vehicle moves fast.

We designed an automatic voice alert system, which operates with the pursuit camera. We implemented
hardware acceleration using Nios® II custom instructions for MPEG audio playback, eliminating the
107

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
need for an extra chip to perform MPEG audio decoding. We developed a μClinux audio driver for the
WM8731DAC device on the Development and Education (DE2) development board.

We developed an FPGA-based on-board diagnostic system (OBD-II) interface to obtain vehicle
information such as velocity and fault state from the engine control unit (ECU), which is a vehicle
control system. The OBD-II interface measures the relative velocity and monitors the vehicle’s state,
replacing a high-cost laser measuring instrument. We designed the JPEG compression module using the
libjpeg library, which is commonly used in Linux systems, and Altera’s C-to-Hardware Acceleration
(C2H) Compiler. The compression module provides image storage and wireless transfers. Our design
improves the compression performance without requiring us to modify the code.

Another main feature of this project is a global, wireless, high-speed downlink packet access (HSDPA)
function. The collected real-time data and image information is transferred wirelessly from the police
vehicle to the command control center.

Suitability of In-Vehicle FPGAs
The police vehicle support system is a complex field that demands image, voice, communication, and
sensor data processing. The vehicle systems increase in complexity as the amount of loaded equipment
increases. For the OBD-II interface, different vehicles have different systems because their protocols
are different. FPGAs are suitable for this field because they are easy to reorganize and re-synthesize.

We developed our SOPC system using the Quartus® II software and Nios II Integrated Development
Environment (IDE) version 7.0. We implemented the operating system (OS) and applications using
GNU tools. SOPC Builder made it easy to configure the system, and μClinux and the GNU tools offer
familiar development environments.

Police Vehicle Needs
According to police pursuit policy, the officer must activate warning and recording equipment and
report to the command control center upon engaging in a pursuit. It is difficult to perform all of these
actions at the same time, so our project provides an automated, integrated solution. Figure 1 shows the
design concept.

Figure 1. Design Concept

Function Description
This section describes the functionality of our design.

Auto Tracking Pan & Tilt Camera
HSDPA Modem
Global Wireless Network

Wireless Internet

Command Control Center

Video Information

Vehicle Information

Automated Pursuit Report

Altera Cyclone II FPGA on DE2

Suspected Vehicle

Automated Voice Alert

OBD-II Interface
Vehicle Diagnostic Information
108

Police Vehicle Support System with Wireless Auto-Tracking Camera
Auto-Tracking Camera
We made a camera module that moves horizontally and vertically so that the target vehicle’s position is
at the center of the screen at all times. A critical part of the pan-tilt camera module is the reaction time.
A faster reaction time reduces the chance of losing the target vehicle. Figure 2 shows the pan-tilt camera
module.

Figure 2. Pan-Tilt Camera Module

We chose a hardware-controlled method instead of a software-controlled method. We designed the
stepper motor controller using Verilog HDL. The pan-tilt motion commands from the image processing
module are transferred directly to the stepper motor controller on the FPGA. Then, the stepper motor
controller receives the commands and generates operating signal pulses. Finally, the controller sends
signals to each motor.

To enter tracking mode, the user aligns the camera to the target vehicle and presses a button on the DE2
board. The image processing module extracts the average color feature from the target vehicle and
estimates the target vehicle’s location. The pan-tilt camera tracks the vehicle as soon as the vehicle
moves.

The captured 640 x 400 images are saved in USB storage and transferred to the control command center
simultaneously. We tested the auto-tracking camera on the road (see Figure 3) and it works well in most
cases. Our tracking mechanism does not operate at night and has a weakness with some colors because
the tracking algorithm is based on color differences. Figure 4 shows the embedded systems in the
vehicle.

Light Sensor

Stepper Motor for Tilt
Movement

CCD Sensor

IR LED

Stepper Motor for Part
Movement

Stepper Motor Driver

ADV7181B

DE2 GPIO

Image
Capture
Module

Cyclone II
FPGA

Stepper Motor
Controller
109

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 3. Road Tracking Test

Figure 4. In-Vehicle Embedded System Configuration

Automated Voice Alert
For the convenience of the officer in the vehicle, the automated voice alert system begins operating as
soon as the auto-tracking camera enters tracking mode. MPEG audio data is played using a Nios II
custom instruction without any extra processors. The Nios II processor operates at 100 MHz on the DE2
board.

The development board can play 128-Kbps, 44.1-KHz MPEG1 layer-3 mono-channel audio without
acceleration, although the processor does need to reduce its load for multi-tasking. Therefore, we added
a 64-bit multiplier, which improves the playing capacity approximately 2.5 times.

Image Capture Module
Figure 5 shows the image capture, processing, and transfer block diagram.
110

Police Vehicle Support System with Wireless Auto-Tracking Camera
Figure 5. Image Capture, Processing, and Transfer Block Diagram

The camera’s analog image information is converted into an ITU656 standard digital stream on the DE2
development board. This stream is used in three ways:

■ It controls the auto-tracking camera’s left, right, up, and down operation.

■ It provides a vision sharing system and JPEG compression of the wireless transfers.

■ It provides the in-vehicle display.

This image capture module preprocesses the image by modifying the image size, removing interlacing
mode, and calculating the frame buffer memory address.

Image Processing Module
The camera’s auto-tracking function requires a motion tracking algorithm. We used an adapted color
tracking algorithm, which is easily supported on an FPGA. This algorithm calculates the average value
of the changing vehicle color depending on the direction, and accordingly creates a new binary
threshold value.

This algorithm processes by line unit, which is synchronized with the display input module in the FPGA
without software processing. The design does not need outer frame buffer memory. The main benefit
of this method is performance. The system transfers control commands to the motor controller every 1/
30th of a second. Figure 6 shows the tracking algorithm being tested in the lab.

Figure 6. Tracking Algorithm Lab Test

SRAM

PreprocessorADV7181B

VGA Controller
In-Vehicle

Display

Pan-Tilt
Camera Motor

Motor
Controller

Network
Manager

HSDPA
Modem

μClinux on
Nios II Processor

Image
Processor

YUV 4:2:2 640 x 400 One Frame JPEG

Step PulseRGB
640 x 480

ITU656

Synchronized Logic Circuit

D-SUBOverlayed Frame

Degree
111

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
C2H Accelerated JPEG Compression on μClinux
The images are 640 x 400 pixels and are compressed using JPEG. We replaced the libjpeg forward
discrete cosine transform (DCT) function with an accelerator that we developed using the C2H
Compiler. The accelerator can be accessed in the μClinux environment. Combining the C2H accelerator
and μClinux is a very important feature because the acceleration operates concurrently with other tasks.
By accelerating libjpeg, a standard library, we improved compression performance without using an
extra digital signal processing (DSP) chip or other typical software. Applications using libjpeg have
improved compression performance through recompiling without modifying any code. Figure 7 shows
the JPEG compression diagram with C2H acceleration.

Figure 7. JPEG Compression Diagram

Custom OBD-II Interface
Vehicles, including police vehicles, have ECUs for system management. The ECU is a very important
component in recently manufactured vehicles because it unifies the engine and various electronic
controls. OBD-II is an interface that provides communication between devices and connects a computer
or diagnostic tools to the ECU for vehicle maintenance.

There are many OBD-II standards depending on the vehicle manufacturer. Our project adopts the
ISO9141-2 international standard. Using OBD-II, we can determine the driving speed, fuel state, and
vehicle fault state. OBD-II has a 5-baud initialization procedure and a 10.4-k baud communication
speed. Received information bytes have to be complemented and sent back to the ECU for
communication. We used the SOPC Builder UART component because it is similar to serial
communication. Figure 8 shows the DE2 board and extension equipment for the OBD-II interface.
Figure 9 shows the captured image and OBD-II information display.

YCbCr
640 x 400

Raw Image

(SRAM)

YCbCr
640 x 400

JPEG Image

(USB Storage)

C2H Accelerated JPEG Compressor
uClinux-dist/lib/libjpeg

(Nios II Processor)

Signed
Conversion

DCT Operation Quantize and
Descale

(FPGA) (FPGA) (FPGA)

Network Manager

Hardware
Accelerator Using
C2H Compiler
112

Police Vehicle Support System with Wireless Auto-Tracking Camera
Figure 8. DE2 Board Extension Equipment and OBD-II Interface

Figure 9. Captured Image and OBD-II Information Display

Performance Parameters
This section describes the performance parameters of our design. Table 1 shows the time interval
between when the image processing module sends control signals and the stepmotors receive the initial
operation signal. We measured the time interval using an oscilloscope. In the software program

DE2 Development Board

Two Additional Audio DAC

Power Module

USB Type
HSDPA Modem

2 Gbyte USB Storage

RS232C Connector for
Relay Interface Board

OBD-II Level Converter

OBD-II Connector

ISO9141-2
Vehicle Engine

Control Unit
113

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
controller, the Nios II processor receives interrupt signals and generates an operation signal, after which
the stepmotor starts through the general-purpose I/O (GPIO) interface.

The velocity of the auto-tracking camera is mostly determined by the image processing performance.
Table 2 shows the tested frame rate of each tracking algorithm for different platforms. The DE2 board’s
frame rate is almost 60 frames per second (fps) because the image processing module operates in
interlace mode; however, we show 29 fps, which is the number of effective frames.

Table 3 shows the compression performance of the libjpeg DCT function accelerated using the C2H
Compiler. The 640 x 400 x 24-bit bitmaps are compressed 20 times for accurate measurement.
Compiling with the C2H Compiler shows worse performance than the design that has no accelerator.
To solve this problem, we changed the buffer management method, resulting in a 4x performance
improvement after modifying the DCT function.

Table 4 shows the modem performance test. When we designed the system, we were concerned about
low performance when using a USB modem with the μClinux system. According to our test, it showed
almost the same network performance as the PC environment.

Design Architecture
Figure 10 shows the system architecture.

Table 1. Stepper Motor Pulse Generation Method Comparison

Latency Using Interrupt Routine and Timer Full FPGA Controlled Method
Average latency (μs) 60 35

Table 2. Tracking Algorithm Performance Comparison

PC ARM DE2 Board
Clock 2.4 GHz 520 MHz 100 MHz

Implementation Software Software Full FPGA

Frame rate (fps) 29 10 29

Table 3. JPEG Compression Performance Comparison

libjpeg libjpeg mod-libjpeg
Compiler gcc gcc, C2H gcc, C2H

Accelerated function N/A forward_dct() forward_dct()

Compression time (seconds) 210 281 52

Table 4. USB HSDPA Modem Performance Test on μClinux

Expected (PC) DE2 Board
OS Linux 2.6.22 μClinux 2.6.19

Download (Kbytes/second) 32 30

Upload (Kbytes/second) 28 25
114

Police Vehicle Support System with Wireless Auto-Tracking Camera
Figure 10. System Architecture

μClinux controls the software systems. The FPGA contains the camera control system and sub-systems,
including the image processing modules. Grey boxes in Figure 10 indicate custom-designed SOPC
components. Figure 11 shows the system in SOPC Builder.

Network
Subsystem

Audio Decoding
Subsystem

Network Manager
(PPP)

OBD-II
Manager

Software-Hardware
Codesigned

MPS Decoder

CDC-ACM

USB Driver

μClinux Kernel 2.6.19

ISP1362
USB-Host

OBD-II
Custom Logic

& Level Convertor
Audio
DAC

f_mul
Custom

Instruction

Nios II Fast Core
8-Kbyte Instruction Cache
4-Kbyte Data Cache

Forward DCT
C2H Accelerator

Compression
Buffer

on SDRAM

Software-Hardware
Codesigned

JPEG Compressor

On Board Diagnostic
Subsystem JPEG Compression

Subsystem

Preprocessor Image Processor

ITU656 Decoder Crossbar Generator Pulse Generator

Stepper Motor Controller

720 to 640 Converter Average Color Extractor Degree to Step
Converter

Line Selector Adapted
Binary Filter

YUV to RGB Converter Position Estimator
VGA Controller
Path-Through

Frame Buffer
on SRAM

Camera Control Subsystem

Resized & Filtered Frame

H
ardw

are
S

oftw
are
115

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 11. SOPC Builder Configuration

We moved the libjpeg DCT function into the C2H accelerator. We combined the image processing
module, VGA controller, and stepmotor controller into a unique SOPC component. The design uses
31,000 logic elements (LEs). Figure 12 shows the Quartus II compilation report.
116

Police Vehicle Support System with Wireless Auto-Tracking Camera
Figure 12. Quartus II Compilation Report

Figure 13 shows the top-level entity.
117

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 13. System Top-Level Entity

Figure 14 shows the on-chip and in-vehicle block diagram.
118

Police Vehicle Support System with Wireless Auto-Tracking Camera
Figure 14. On-Chip and In-Vehicle Configuration

HSDPA
Modem

2-Gbyte USB
Storage Terminal

Relay
Input

Module

Onboard
SRAM

512 Kbytes

Onboard
SDRAM

8,192 Kbytes

Onboard
Flash

4,096 Kbytes

ISP1362
USB Host

Onboard
MAX232

Additional
MAX232

Onboard
LED &

Software

SRAM
Controller

SDRAM
Controller

Flash
Controller

ISP1362
Interface

RS-232
Interface

RS-232
Interface

LED &
Software
Interface

Avalon Bus

Audio
FIFO

Audio
FIFO

Audio
FIFO

Nios II/f
Fast

Processor
8 Kbytes/
4 Kbytes

Custom Instruction

Image
Capture
Module

Image
Processing

Module

Step
Motor

Controller

Path-through
VGA Controller

OBD-II
Interface

Onboard
WM8731

DAC

Additional
WM8731

DAC

Additional
WM8731

DAC

ADV7123
DAC

ADV7181

Amp &
Speaker

In-Vehicle
Aux

Amp &
Speaker

In-Vehicle
Display

Camera
Analog
NTSC

Motor
Driver

ECU
OBD-II

Step
Motor

Additional
MAX232

FPG
A

D
E2 D

evelopm
ent B

oard
119

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Design Description
This section describes our implementation method and the steps we used to build our design.

Combining μClinux and C2H
Using an operating system offers development flexibility for complex multi-device systems. The
μClinux kernel is appropriate for non-memory management unit (MMU) processors. Because μClinux
does not have an MMU, the Nios II processor application that accesses the custom hardware accelerator
is simpler. We compiled the code we wrote in the Nios II IDE to operate in a multi-tasking environment
under μClinux with few or no changes because there is no limit writing to memory-mapped addresses
in μClinux. We used the C2H accelerator on μClinux with typical techniques. The following discussion
describes the steps required to move the C2H accelerator from the Nios IDE into μClinux (see
Figure 15).

First we made a temporary project. Then, we compiled and generated the accelerator in the Nios II IDE.
After generation, the accelerator’s wrapping function is saved in the debug directory. We copied the
header files and wrapper to the μClinux development directory and programmed the FPGA.

Next, we compiled the accelerated application using Nios II gcc tools with the elf2flt option, we first
made sure that the required header files such as system.h and io.h existed. We then copied the generated
execution file to the development board. This implementation is faster than a software-only system in
most cases. Unfortunately, we faced a performance problem when converting the libjpeg DCT
function to the accelerator. “Optimizing the JPEG Library for the C2H Compiler” on page 120
describes how we solved the performance problem.

Figure 15. Moving the C2H Accelerator Wrapper into μClinux from the Nios II IDE

Optimizing the JPEG Library for the C2H Compiler
Generally, developers use a digital signal processor for JPEG compression, but a processor requires
software to support it. Using the C2H Compiler to accelerate libjpeg is an interesting solution
because many existing applications use libjpeg, which is a standard JPEG library.

When converting an original DCT function with the C2H Compiler, however, the function had lower
performance than the software-only design. Flushing the data cache, which occurs every 64 bytes of
data processing work, caused the performance problem. Therefore, we designed an optimized buffer
120

Police Vehicle Support System with Wireless Auto-Tracking Camera
management system that was suitable for the C2H Compiler. This solution improved the performance
4 times. Figure 16 shows the optimized DCT function block diagram.

Figure 16. Optimized DCT Function Block Diagram

Creating the Custom SOPC Component
We combined the image processing module, VGA controller, and stepmotor controller as a unique
component because these functions need to work together closely. We designed each block separately
in Verilog HDL and added them to SOPC Builder as components. The components write image data in
the SRAM as an Avalon® master. Figure 17 shows the custom component in SOPC Builder and
Figure 18 shows the multiplier custom instruction.

Figure 17. Custom SOPC Builder Component

Prepare a Buffer

Unsigned to Signed
Conversion

Quantize/Descale
the Coefficients

C2H Compiled

Call DCT Function
jpeg_idct

Repeated
Cache Flush

Cache
Flush
Once

Modified Forward DCT

C2H Compiled

Prepare a Buffer
(Modified)

Unsigned to Signed
Conversion

jpeg_idct
(Merged)

Quantize/Descale
the Coefficients

Foreward DCT

Lo
op

Lo
op
121

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 18. 64-Bit Multiplier Custom Instruction

MPEG Audio Decoding Custom Instruction
There are three main issues to consider when playing MPEG audio in a Nios II processor/μClinux
environment

■ Processor performance

■ FIFO buffer size

■ μClinux device driver output

The design had poor performance when the 100-MHz Nios II processor in the Cyclone® II device
decoded the stereo 128-Kbps, 44.1-KHz MPEG1 layer 3 audio. With a big enough FIFO buffer, the
system could play mono-channel audio but the CPU allocated all of its time to playing audio.

To solve this problem, we added a 64-bit multiplier custom instruction to the Nios II processor to
implement a 64-bit multiply calculation that is frequently used by the libmad library. With this change,
we increased the audio playback performance about 2.5 times and decreased the number of clock cycles
required for the calculation.

Other issues can also cause audio playback problems, such as a bad sampling rate, a lack of buffer
space, and a multi-tasking environment. Figure 19 shows a configuration that solves this problem with
a 17-MHz audio reference clock.
122

Police Vehicle Support System with Wireless Auto-Tracking Camera
Figure 19. DAC FIFO Setting for 44.1-KHz MPEG Audio

Design Features
The most fascinating part of this system is its integrity. One FPGA performs the whole function,
including image processing, compression, transferring, MPEG audio decoding, step motor control, and
OBD communication. Each block is an SOPC Builder component, so it is very easy to recycle
components for different projects.

We designed the device driver so that all systems can operate in the μClinux environment. The access
method connects the μClinux application, custom instruction accelerator, and C2H technology. We
unified the software as well as the hardware.

The main image processing feature minimizes memory access. We only used the frame buffer memory
for JPEG compression because the image processing is implemented by a line unit. Eventually, we
could dramatically save Avalon bus bandwidth. Table 5 shows the design’s key features.

Conclusion
We developed and tested a police vehicle support system representing an application in the telematics
field. The auto tracking camera tracks a typical vehicle and positions it at the center of the screen at all
times. The OBD interface is based on FPGA technology and captures information about the vehicle’s
state. A remote system distantly verifies the vehicle’s image and state information and communicates
using a global wireless HSDPA module.

Table 5. Key Features and Related Modules

Feature Related Module Implementation
Auto-Tracking Camera Stepper Motor Controller Custom SOPC Builder Component

Image Capture Module

Image Processing Module

Automated Voice Alert MPEG Decoder Nios II Custom Instruction

WM8731 DAC Driver for μClinux Character Device Driver

Command Control Center (Remote
Dashboard)

OBD-II Interface Module Custom SOPC Builder Component

JPEG Compressor C2H Compiler
123

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
We started the project with a fixed hardware platform and limited resources. FPGAs offer amazing
technology that can easily adapt to design configuration changes. Our simple, effective design method
involved modifying the hardware design when there were performance problems or problems that could
not be solved in software. We noted that FPGAs are particularly valuable in the field of image
processing.

We used the Altera® C2H Compiler for JPEG compression. We started out with the libjpeg DCT
function, which is commonly used. We achieve high performance in our design by accelerating the
libjpeg DCT function with C2H technology. We believe that the C2H Compiler, which translates C
programs into HDL, is driving a changing software paradigm. The C2H Compiler has challenges, but
we expect it will contribute to the development of software-to-hardware translation technology.
124

	Police Vehicle Support System with Wireless Auto-Tracking Camera
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Description
	Design Features
	Conclusion

