
Auto Audio Equalizer Using Digital Signal Analysis
Third Prize

Auto Audio Equalizer Using Digital 
Signal Analysis

Institution: Hanyang University

Participants: Sung-Wook Kim, Eun-Chan Kim, Bum-Su Jeong

Instructor: Professor Jae-Myoung Jeong

Design Introduction
Our project, an auto audio equalizer using digital signal analysis, is an equalizer that enables low-end 
speakers to deliver high-quality audio like that found in expensive speakers. Consumers can copy the 
characteristics of speakers with the desired audio quality and apply those characteristics to their own 
low-cost, low-audio-quality speakers. The structure and application of our project is simple, and it 
allows users of low-cost speakers to enjoy better sound quality.

Our project is an economical device that can also be applied to high-end monitoring equipment to 
achieve a flatter response without upgrading the existing system.

Function Description
The equalizer has three major functions:

■ Measure and save the response of the speaker system.

■ Analyze and compare the saved speaker’s response with that of the current speaker system, 
process the input signal, and adjust the current speaker system’s response characteristics to mimic 
those of the selected speaker system.

■ Measure the applied system’s response and evaluate the performance.
3



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
To execute these functions, we implemented the design in four parts:

■ We implemented the fast Fourier transform (FFT)/inverse FFT (IFFT) block’s input signals using 
functions from the MegaCore® library.

■ We configured the FFT/IFFT hardware as an equalizer by connecting the coefficients of each 
frequency ranges to the registers of a Nios® II processor.

■ We included an SDRAM controller, flash controller, user logic FIFO buffer, and audio CODEC 
interface logic using SOPC Builder. We ported μClinux for the system that uses the Nios II 
processor.

■ We included PC monitoring software that has a graphical user interface (GUI) that displays and 
saves the stored speaker’s response and the measured response. The response can also be 
downloaded to the Cyclone® device on the development and education (DE1) 
board.Communication between the device and the PC uses the DE1 board’s RS-232 interface.

We chose μClinux as the system’s operating system because many programmers are familiar with the 
Linux environment, which helps shorten the development period, and there are plenty of available 
development resources. Additionally, μClinux dramatically reduces the need for low-level coding such 
as interrupt handling without overloading the CPU.

Performance Parameters
The equalizer applies the response of an already measured separate speaker to the current speaker 
system and then measures the current system’s response a second time. The system numerically 
displays the correlation between the desired response and the improved response. Users can monitor 
how close the responses are using a PC-based GUI.

Design Architecture
Because the contest required us to use the DE1 development board, the system has an abbreviated 
structure that only implements the core functions. Figure 1 shows the system’s block diagram. The 
digital signal processing (DSP) block performs most of the signal processing. The Nios II processor 
implements the module control and monitoring. We could expand the tasks performed by the Nios II 
processor later using the C-to-Hardware Acceleration (C2H) Compiler or user-defined custom 
instructions.

Figure 1. System Block Diagram

Speaker
Audio

CODEC Buffer Buffer
Register

(Equalizer
Coefficients)

DSP
Block

(Multiplier)

Microphone

FFT/IFFT

Nios II
Processor
4



Auto Audio Equalizer Using Digital Signal Analysis
We inserted a digital signal analyzer (DSA) to measure the speaker’s response. The microphone is not 
speaker dependent; therefore, once the frequency characteristics are met, other response characteristics 
are not critical.

Figure 2 shows the software flow chart.

Figure 2. Software Flow Chart

The system performs three key functions as instructed by the user:

■ Speaker analysis—The system measures the response of a speaker that is currently connected to 
the system. After measurement, it graphically display the result so that the user can decide 
whether to save it.

■ Save speaker response—The system can store the measured speaker response in flash memory; 
later, the system can change a speaker’s response based on this information.

■ Adjust speaker response—If the user selects the response of the speaker currently connected to 
the system and the desired speaker response, the system can change the current speaker’s response 
through DSP.

Equalizers currently available in the marketplace can perform similar functions, but the user must 
manually adjust each variable. In the future, we would like to add a feature that imports calculated 
variable values (like those used in commercial equalizers) to the PC. This feature would allow users to 
use Winamp or Windows Media Player without a commercial system.

Speaker
Analysis

Change
Speaker

Response

Save
Speaker

Response

Wait for
User Command

Initializing

User
Command

Start
5



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Design Description
The most difficult part of designing the hardware is debugging and verifying the system operation at 
every step. We only added an unverified block after the rest of the system had been fully verified. We 
also verified the intellectual property (IP) features using simulation. This process helped us avoid 
rechecking existing parts of the system while debugging and increased our development efficiency. 

Fortunately, the Altera® Quartus® II software, SOPC Builder, and Nios II Integrated Development 
Environment (IDE) allowed us to use already verified IP functions and design methodologies, 
significantly reducing the debugging burden. For example:

■ Because we used the FFT-IFFT block without modifications, we only needed to perform a simple 
data format check and timing simulation.

■ We implemented the Nios II processor, memory controller, FIFO interface, and audio CODEC 
interface using SOPC Builder. These blocks are basic features of SOPC Builder; therefore, we 
easily designed and tested the firmware using the Nios II IDE. Test programs are readily available 
at communities such as the Nios II forum, speeding up the entire process.

■ The JotSpot Wiki (nioswiki) provides a good explanation of how to port μClinux. We just needed 
to follow the instructions to implement all of the IP blocks with SOPC Builder.

■ We used Windows-based programming to design the PC monitoring program. After we developed 
the monitoring program, we simulated the monitored signals using the MATLAB software and 
other tools that manipulate data easily. Then, we ported the compiled code to the DE1 board and 
tested the hardware.

Design Features
Our design has the following features:

■ Creative—Using DSP, the design makes a low-end speaker produce high-end speaker sound. 

■ Inexpensive—All functions except the audio CODEC and microphone are implemented in an 
Altera FPGA, reducing the bill of materials (BOM). Also, the system performance is not affected 
by using a cheap microphone, further reducing the total system cost.

■ Easy and prompt development—The Nios II processor and user-defined logic (buffer, FFT/IFFT 
block, register, and audio CODEC) connect directly to the Avalon® bus, which controls them. 
Therefore, we did not need to provide controls using a general-purpose I/O (GPIO). In the future, 
we will not need to design the DSP block separately; instead we can implement it with the Nios II 
processor using user-defined custom instructions.

Conclusion
The Cyclone FPGA on the DE1 board was sufficient to implement a 2,048-sample FFT/IFFT with a 
16-bit, 44.1-kHz sampling rate, the Nios II processor, and other IP functions. However, our design only 
measured and processed the magnitude as a speaker’s response, ignoring phase delay and other 
distortions, which limits the system performance. In the future, improving the signal processing will 
provide better performance.

We often perform projects using the DE2 board, mainly for fast prototyping, because Altera’s FPGA 
solution provides proven tools and IP blocks, enabling us to implement systems quickly. Additionally, 
active Internet communities provide quicker, higher quality feedback than local distributors. We ask 
Altera to continue events like the Nios II design contest to support and encourage these communities.
6


	Auto Audio Equalizer Using Digital Signal Analysis
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Description
	Design Features
	Conclusion


