
Nios II Embedded Processor
Design Contest

Outstanding Designs 2007

Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks
and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the
property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and
pending applications, mask work rights, and copyrights.

Introduction
Introduction

One thing hasn’t changed since Altera created the world’s first reprogrammable logic device more than
20 years ago: a commitment to innovation: ours and yours. We help you take your design ideas from
concept to reality with a portfolio of products that includes the Nios® and Nios II soft-core embedded
processors. Since they were introduced in June 2000, academic and professional designers worldwide
have innovated using Altera’s Nios and Nios II processors, integrating them in a wide range of
commercial applications using high-performance Stratix® series FPGAs, low-cost Cyclone® series
FPGAs, and HardCopy® series ASICs. Today, more than 20,000 development kits have been shipped,
and over 5,000 companies—including the world’s top 20 original equipment manufacturers (OEMs)—
are licensed and implementing Nios processors in their designs.

The versatility of the Nios processor supports creativity and innovation. You can tailor Nios systems
with the exact peripherals, memory, and interfaces required, and add your own proprietary functions—
your own differentiation—to create a unique competitive advantage. Altera solves the IP integration
problem with the SOPC Builder productivity tool that allows you to drag and drop the exact mix of
functions required, so you can focus on higher, system-level requirements instead of mundane, error-
prone, manual tasks. Plus, Altera® tools work seamlessly with other third-party industry-standard tools,
minimizing training time and improving time to market. The soft-core processor implementation
enables easy software and design upgrades, effectively making your design obsolescence-proof. With
the added advantages of FPGA flexibility, fast time-to-market, and system integration, you have a risk-
free path to a custom embedded solution. Your possibilities are unlimited.

Altera continually cultivates designers and supports innovation in Asia and around the world through
our University Program. As part of that program, the Nios II Embedded Processor Design Contest aims
to increase student interest in embedded processors, improve their design and creative abilities, and
ultimately motivate the continued development of FPGA-based embedded processor designs. The
significant growth of the program is yet more proof of how rapidly the Nios design community is
expanding.

The winning entries presented in this book showcase not only the breadth of possibilities that can be
addressed using Altera’s embedded solutions—including everything from police vehicle support
systems, medical equipment and telemedicine, robots, fingerprint identification, and a solar tracking
control system to video processing and a cordless phone—but also technology trends in the industry.
When you have the tools and flexibility you need, your potential for great design is unlimited.

Congratulations to all the Nios II Design Contest winners and their professors. Keep the fires of
innovation burning!
iii

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
iv

Contents

Introduction ... iii
Contents...v

Automotive Applications... 1
Auto Audio Equalizer Using Digital Signal Analysis, Third Prize...3

Institution: Hanyang University
Participants: Sung-Wook Kim, Eun-Chan Kim, Bum-Su Jeong
Instructor: Professor Jae-Myoung Jeong

Consumer Applications... 7
H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA, Second Prize .9

Institution: Ching Yun University/ Department of Electronic Engineering
Participants: Wenxian Qian, Songzhi Gu
Instructor: Ou Qianmin

An Internet-Based Smart Terminal, Third Prize ...21
Institution: Shanghai Jiao Tong University
Participants: Shanwen Zhang, Jie Zhang, Faheng Zang
Instructor: Zhigang Zhang

Multi-Functional Digital Albums Based on the Nios II Processor, Third Prize37
Institution: Information Science Institute, Beijing Jiaotong University
Participants: Cheng Hong, Rui Deng, Yongxin Ye
Instructor: Xiaoming Ding

Communications Applications.. 57
SOPC-Based Cordless Phone, First Prize...59

Institution: National Institute of Technology, Tiruchy
Participants: Dhirendrakumar Tripathi, P. D. S. Prasad Reddy, Rashmi HM
Instructor: Dr. B. Venkataramani

Nios II-Based Intellectual Property Camera Design, Third Prize ...87
Institution: Xidian University
Participants: Jinbao Yuan, Mingsong Chen, Yingzhao Shao
Instructor: Ren Aifeng
v

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Industrial Applications... 105
Police Vehicle Support System with Wireless Auto-Tracking Camera, First Prize.................107

Institution: Inha University, Korea Aerospace University, Hongik University
Participants: Sung Woong Joo, Ho Seong Suh, Young Je Moon
Instructor: Professor Tak Don Han

Smart Self-Controlled Vehicle for Motion Image Tracking, First Prize125
Institution: Department of Information Engineering, I-Shou University
Participants: Chang-Che Wu, Shih-Hsin Chou, Chia-Hung Chao, Chia-Wei Hsu
Instructor: Dr. Ming-Haw Jing

RTOS Acceleration Using Instruction Set Customization, Star Award....................................143
Institution: Centre for High Performance Embedded System (CHiPES), Nanyang Technologi-
cal University (NTU)
Participants: Muhamed Fauzi Bin Abbas, Ku Wei Chiet
Instructor: Professor Thambipillai Srikanthan

Aerial Photographic System Using an Unmanned Aerial Vehicle, Second Prize.....................157
Institution: Chungbuk National University
Participants: Hyuk Joong Kwon, Woo Joong Kim, Jang Geun Kim, Sang Bae Park
Instructor: Professor Jung-Kwan Seo

Laser Direct Writing Digital Servo Controller Based on SOPC Technology, Second Prize173
Institution: Ultra-Precision Photoelectric Instrument Engineering Research Institute, Harbin
Institute of Technology
Participants: Lei Yan, Tao Cheng, Ya Gao
Instructor: Wang Lei

Smart Bus Station Sign, Third Prize ...195
Institution: Oriental Institute of Technology
Participants: Jian Jinrong, Zhan Yilin, Lin Taida
Instructor: Xiao Ruxuan

FPGA-Based Smart Induction Motor Controller Design, Third Prize......................................205
Institution: Electrical Engineering Department, Yuan Ze University
Participants: Zhong Zhaoming, Lin Minghong, Chen Yilong
Instructor: Lin Zhimin

Intelligent Solar Tracking Control System Implemented on an FPGA, Third Prize217
Institution: Institute of Electrical Engineering, Yuan Ze University
Participants: Zhang Xinhong, Wu Zongxian, Yu Zhengda
Instructor: Professor Huang Yingzhe

Nios II Processor-Based Fingerprint Identification System, Third Prize..................................247
Institution: College of Communication Engineering, Chongqing University
Participants: Ji Wang, Liang Wu, Yong Liu
Instructor: He Wei

Fingerprint Identification System Based on the Nios II Processor, Third Prize281
Institution: Huazhong University of Science and Technology
Participants: Linchuan Li, Yao Zhang, Chengdong Ge
Instructor: Xiao Kan
vi

Medical Applications.. 297
MRI Spinal Segmentation Based on the Nios II Processor, First Prize....................................299

Institution: Information Science Institute, College of Computer and Information Technology,
Beijing Jiaotong University
Participants: Weiming Li, Ruiqiong Shi, Bo Li
Instructor: Xiaoming Ding

Nios II Processor-Based Self-Adaptive QRS Detection System, Second Prize........................319
Institution: Indian Institute of Technology, Kharagpur
Participants: Sai Prashanth, Prashant Agrawal
Instructor: Professor Agit Pal

Portable Telemedicine Monitoring Equipment, Second Prize ...333
Institution: HuaQiao University
Participants: Huafeng Hong, Qianjiang, Yongjie Li
Instructor: Ling Chaodong

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Soft-Core
Processor, Third Prize ...373

Institution: Jadavpur University, Calcutta
Participants: Shubhajit Roy Chowdhury
Instructor: Professor Hiranmay Saha

Appendix: Nios II Embedded Processor Family................................ 391
Appendix: Nios II Embedded Processor Design Contest Winners . 405
vii

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
viii

Automotive Applications
Automotive Applications

This section includes projects that can be used as automotive applications, including:

Auto Audio Equalizer Using Digital Signal Analysis... 3
1

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
2

Auto Audio Equalizer Using Digital Signal Analysis
Third Prize

Auto Audio Equalizer Using Digital
Signal Analysis

Institution: Hanyang University

Participants: Sung-Wook Kim, Eun-Chan Kim, Bum-Su Jeong

Instructor: Professor Jae-Myoung Jeong

Design Introduction
Our project, an auto audio equalizer using digital signal analysis, is an equalizer that enables low-end
speakers to deliver high-quality audio like that found in expensive speakers. Consumers can copy the
characteristics of speakers with the desired audio quality and apply those characteristics to their own
low-cost, low-audio-quality speakers. The structure and application of our project is simple, and it
allows users of low-cost speakers to enjoy better sound quality.

Our project is an economical device that can also be applied to high-end monitoring equipment to
achieve a flatter response without upgrading the existing system.

Function Description
The equalizer has three major functions:

■ Measure and save the response of the speaker system.

■ Analyze and compare the saved speaker’s response with that of the current speaker system,
process the input signal, and adjust the current speaker system’s response characteristics to mimic
those of the selected speaker system.

■ Measure the applied system’s response and evaluate the performance.
3

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
To execute these functions, we implemented the design in four parts:

■ We implemented the fast Fourier transform (FFT)/inverse FFT (IFFT) block’s input signals using
functions from the MegaCore® library.

■ We configured the FFT/IFFT hardware as an equalizer by connecting the coefficients of each
frequency ranges to the registers of a Nios® II processor.

■ We included an SDRAM controller, flash controller, user logic FIFO buffer, and audio CODEC
interface logic using SOPC Builder. We ported μClinux for the system that uses the Nios II
processor.

■ We included PC monitoring software that has a graphical user interface (GUI) that displays and
saves the stored speaker’s response and the measured response. The response can also be
downloaded to the Cyclone® device on the development and education (DE1)
board.Communication between the device and the PC uses the DE1 board’s RS-232 interface.

We chose μClinux as the system’s operating system because many programmers are familiar with the
Linux environment, which helps shorten the development period, and there are plenty of available
development resources. Additionally, μClinux dramatically reduces the need for low-level coding such
as interrupt handling without overloading the CPU.

Performance Parameters
The equalizer applies the response of an already measured separate speaker to the current speaker
system and then measures the current system’s response a second time. The system numerically
displays the correlation between the desired response and the improved response. Users can monitor
how close the responses are using a PC-based GUI.

Design Architecture
Because the contest required us to use the DE1 development board, the system has an abbreviated
structure that only implements the core functions. Figure 1 shows the system’s block diagram. The
digital signal processing (DSP) block performs most of the signal processing. The Nios II processor
implements the module control and monitoring. We could expand the tasks performed by the Nios II
processor later using the C-to-Hardware Acceleration (C2H) Compiler or user-defined custom
instructions.

Figure 1. System Block Diagram

Speaker
Audio

CODEC Buffer Buffer
Register

(Equalizer
Coefficients)

DSP
Block

(Multiplier)

Microphone

FFT/IFFT

Nios II
Processor
4

Auto Audio Equalizer Using Digital Signal Analysis
We inserted a digital signal analyzer (DSA) to measure the speaker’s response. The microphone is not
speaker dependent; therefore, once the frequency characteristics are met, other response characteristics
are not critical.

Figure 2 shows the software flow chart.

Figure 2. Software Flow Chart

The system performs three key functions as instructed by the user:

■ Speaker analysis—The system measures the response of a speaker that is currently connected to
the system. After measurement, it graphically display the result so that the user can decide
whether to save it.

■ Save speaker response—The system can store the measured speaker response in flash memory;
later, the system can change a speaker’s response based on this information.

■ Adjust speaker response—If the user selects the response of the speaker currently connected to
the system and the desired speaker response, the system can change the current speaker’s response
through DSP.

Equalizers currently available in the marketplace can perform similar functions, but the user must
manually adjust each variable. In the future, we would like to add a feature that imports calculated
variable values (like those used in commercial equalizers) to the PC. This feature would allow users to
use Winamp or Windows Media Player without a commercial system.

Speaker
Analysis

Change
Speaker

Response

Save
Speaker

Response

Wait for
User Command

Initializing

User
Command

Start
5

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Design Description
The most difficult part of designing the hardware is debugging and verifying the system operation at
every step. We only added an unverified block after the rest of the system had been fully verified. We
also verified the intellectual property (IP) features using simulation. This process helped us avoid
rechecking existing parts of the system while debugging and increased our development efficiency.

Fortunately, the Altera® Quartus® II software, SOPC Builder, and Nios II Integrated Development
Environment (IDE) allowed us to use already verified IP functions and design methodologies,
significantly reducing the debugging burden. For example:

■ Because we used the FFT-IFFT block without modifications, we only needed to perform a simple
data format check and timing simulation.

■ We implemented the Nios II processor, memory controller, FIFO interface, and audio CODEC
interface using SOPC Builder. These blocks are basic features of SOPC Builder; therefore, we
easily designed and tested the firmware using the Nios II IDE. Test programs are readily available
at communities such as the Nios II forum, speeding up the entire process.

■ The JotSpot Wiki (nioswiki) provides a good explanation of how to port μClinux. We just needed
to follow the instructions to implement all of the IP blocks with SOPC Builder.

■ We used Windows-based programming to design the PC monitoring program. After we developed
the monitoring program, we simulated the monitored signals using the MATLAB software and
other tools that manipulate data easily. Then, we ported the compiled code to the DE1 board and
tested the hardware.

Design Features
Our design has the following features:

■ Creative—Using DSP, the design makes a low-end speaker produce high-end speaker sound.

■ Inexpensive—All functions except the audio CODEC and microphone are implemented in an
Altera FPGA, reducing the bill of materials (BOM). Also, the system performance is not affected
by using a cheap microphone, further reducing the total system cost.

■ Easy and prompt development—The Nios II processor and user-defined logic (buffer, FFT/IFFT
block, register, and audio CODEC) connect directly to the Avalon® bus, which controls them.
Therefore, we did not need to provide controls using a general-purpose I/O (GPIO). In the future,
we will not need to design the DSP block separately; instead we can implement it with the Nios II
processor using user-defined custom instructions.

Conclusion
The Cyclone FPGA on the DE1 board was sufficient to implement a 2,048-sample FFT/IFFT with a
16-bit, 44.1-kHz sampling rate, the Nios II processor, and other IP functions. However, our design only
measured and processed the magnitude as a speaker’s response, ignoring phase delay and other
distortions, which limits the system performance. In the future, improving the signal processing will
provide better performance.

We often perform projects using the DE2 board, mainly for fast prototyping, because Altera’s FPGA
solution provides proven tools and IP blocks, enabling us to implement systems quickly. Additionally,
active Internet communities provide quicker, higher quality feedback than local distributors. We ask
Altera to continue events like the Nios II design contest to support and encourage these communities.
6

Consumer Applications
Consumer Applications

This section includes projects that can be used as consumer applications, including:

H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA................................ 9

An Internet-Based Smart Terminal.. 21

Multi-Functional Digital Albums Based on the Nios II Processor ... 37
7

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
8

H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA
Second Prize

H.264 VBS-BMA-Based Hardware
Infrastructure Implementation on an
FPGA

Institution: Ching Yun University/ Department of Electronic Engineering

Participants: Wenxian Qian, Songzhi Gu

Instructor: Ou Qianmin

Design Introduction
The block matching method, which is used for motion estimation, plays a key role in motion picture
coding systems. Replacing the fixed-block-size block matching algorithm (FBS-BMA) with the H.264
variable-block-size block matching algorithm (VBS-BMA) addresses the issue that video object
changes cannot be processed effectively, further improving video compression efficiency. Our design
reduces the complex H.264 VBS-BMA calculation and features low latency, low power, and high
throughput, delivering better coding performance.

H.264 VBS-BMA supports 4 x 4, 4 x 8, 8 x 4, 8 x 8, 8 x 16, 16 x 8, and 16 x 16 blocks. When serial
frame data is transmitted via a network, the user can choose the most appropriate block for matching
according to the current bandwidth, thereby obtaining the best transmission speed and frame quality.
However, the H.264 VBS-BMA calculation is more complex. Therefore, we designed an efficient very-
large-scale integration (VLSI) hardware structure that features high computing throughput to cut the
complex calculation time required by H.264 video coding, reduce the calculation frequency, and
improve coding performance. Our design uses the following elements:

■ Hardware—Because the design has numerous complicated calculations for compression, we
needed an effective system to process video frames in real time. To process serial frame data of a
specific size and frequency effectively, we used Altera’s Nios® II development kit. The Nios II
processor is a soft-core processor based on the RISC architecture. It synthesizes a processor
circuit (but not a hard core) on FPGA fabric, permitting scalable development. The Nios II
processor can serve as the hierarchy setting for memory, and add processor instructions
9

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
independently to perform special calculations. While using Altera’s development board and
FPGA to develop hardware, we used the Quartus® II software and SOPC Builder, which is
integrated in the Quartus II software, to develop the test platform. Besides adding our block
matching circuit to the test platform via SOPC Builder, we also used Ethernet chip-embedded
control hardware and components, and then transmitted them to the development board for rapid
prototyping.

■ Software—We used the Nios II Integrated Development Environment (IDE) to write and compile
test software, implement network transmission between PCs, and migrate µC/OS-II into the
hardware structure of the Nios II processor system.

■ PC—We designed a graphical interface program that can be executed in the Microsoft Windows
operating system (OS). The PC is connected to the test platform through the network, transmitting
motion frames and vectors, and accomplishing calculation, estimation, compensation, and
decoding. It displays real-time estimation frames on the PC screen to facilitate users’ viewing.

Function Description
Users load serial frame data through the graphical user interface (GUI) as shown in Figure 1. Next, the
test platform is connected as the the connection status shows (see Figure 2). After the frame is sent to
the test platform via the network, the system performs the motion vector calculation, motion estimation,
and motion compensation. Then, the estimation frame is sent back to the PC via the network and
displayed on the monitor (see Figure 3).
10

H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA
Figure 1. User Loads Serial Frame Data on PC

Load Frame for Estimation
11

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 2. PC Connects to the Test Platform

When the Connection Succeeds, the
Connection Status Shows it.
12

H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA
Figure 3. Test Platform Returns Estimation Frames after Processing

Performance Parameters
Our design has the following performance parameters.

■ The design targets the Cyclone® EP1C20F400C7 device, which has 20,060 logic elements (LEs),
294,912 memory bits, and 301 pins. The design uses 8,881 (44%) LEs, 110,352 (34%) memory
bits, and 176 (58%) pins.

■ The system adds some necessary interface modules in the Nios II processor to improve system
integration. Because most of the peripherals have related intellectual property (IP) cores that are
well designed and tested, they can be used to accelerate hardware validation and software

The Status is Displayed
During the Test
13

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
development. We used many Altera IP cores, including SDRAM, Ethernet PHY chip, UART,
SRAM, and flash memory. Additionally, the Nios II processor’s 32-bit processing significantly
enhanced the image processing efficiency and networking, and improved serviceability.

■ The Nios II processor serves the design’s control and algorithm cores. Because many IP cores and
user IP cores can be added as peripherals, the system is more flexible.

■ We enabled the motion estimation test function. After testing, we could estimate the frame result
in real time.

■ Currently, the device implements 4 x 4 block matching. In the future we can add other blocks
using the same principles.

Design Architecture
Figure 4 shows the design concept of the H.264 VBS-BMA FPGA hardware structure. Users can load
serial frame data through the GUI, transfer it to the test platform using Ethernet, test the H.264 block
matching circuit, send the data back via the network, and (after test platform computation) display the
frames on the PC interface for real-time viewing.

Figure 4. H.264 VBS-BMA System Design Concept

Figure 5 shows the PC operation. The current frame of the loaded serial frame data is transmitted to the
Ethernet with a TCP socket. The PC receives motion vectors that are sent back from the test platform
and decodes them to obtain the new estimation frame.

Figure 5. PC Operation

Figure 6 shows the test platform operation. First, the TCP socket receives the frame data package that
the PC transmits from the Ethernet and caches it in the Receive Data Buffer. The first frame received is
stored in the Previous Frame Memory as the previous frame, and the last frame is stored in the Current
Frame Memory as the current frame. After the current frame is received, the current and previous
frames are transferred to the block matching circuit for motion estimation and motion vector
calculation. The DMA device accelerates data transmission from the memory to the block matching

Ethernet

Current Motion Frame

Motion Frame Estimation

Packet
Transmission

Packet
Receiving

TCP Socket
(Client Socket)

Process

Motion
Vector
Buffer

Decoder
14

H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA
circuit. Motion vectors obtained from the calculation are stored in the Send Data Buffer and are sent
back to the PC via a TCP socket. During transmission to the PC, motion vectors are decoded to rebuild
the estimation frame using the original previous frame. The new estimation frame is then put into the
Previous Frame Memory to replace the original previous frame and become the previous frame for the
next calculation.

Figure 6. Test Platform Operation

As shown in Figure 7, after the test platform is connected to the PC, it receives frame data (Cx) over the
network from the PC. The first frame (C0) is transmitted directly to the Previous Frame Buffer for
initialization; all other frames are transmitted to the Current Frame Buffer. After the current frame is
received, the current and previous frames are transmitted to the motion estimation device for motion
vector calculation. After the test platform conducts the motion compensation on the motion vector and
previous frame, the generated estimation frame (Px) is transmitted to the Previous Frame Buffer to serve
as data for the next motion estimation. Simultaneously, motion vectors are sent back to the PC via the
network. Px and Px-1 (the previous frame) are stored in the PC. The system then determines whether
data transmission is finished; if it is not, it continues to transmit Cx and repeats the whole process until
it finishes.

Ethernet

Current Frame MemoryReceive
Packet

Send
Packet

TCP Socket
(Client Socket)

Process

Receive
Data
Buffer

Motion Vector
Decoding Function

Send
Data
Buffer

Previous Frame Memory

DMA Function
(DMA Sending)

Motion Estimation
Device
15

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 7. System Flow Chart

Figure 8 shows the test platform’s hardware structure. The Nios II processor creates the hardware
structure of the matching circuit. We used the Avalon® bus to connect peripherals like traditional
peripheral models; for example, an LCD shows the test platform’s IP address, an Ethernet MAC/PHY
transmits and receives data packets, and SDRAM stores the previous and current frames. We used a
direct memory access (DMA) model for effective data transmission between the peripherals and
memory.

Store in Current
Buffer

Initialize Previous
Buffer

End

Cx

Motion Estimation

Store in Previous
Buffer

Transmit to PC
and Estimate
Px-1 and Px

Determine Whether
It Finishes

X 1

Estimate Px with
Previous Buffer and Replace

Previous Buffer

Initialization

No

Yes

MV

(Motion Vector)

Test Platform
16

H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA
Figure 8. Test Platform Hardware Structure
Adapted from the Nios II Processor Reference Handbook

Figure 9 shows the test platform’s software structure. It provides support from the inside to the outside.
The first internal layer is the matching circuit’s hardware structure, which supports the whole software
structure implementation. The second layer is the hardware driver, which is generated automatically
during the creation of the hardware structure and allows components in the outside layer to use
hardware in the first layer. The third layer is Altera’s hardware abstraction layer (HAL) library that
enables components in the outside layer to use hardware. The other two layers are for the embedded
operating system (OS) and protocol stack. The final layer is our application.

Figure 9. Test Platform Software Structure
Adapted from Using Lightweight IP with the Nios II Processor Tutorial

LCD Screen

Buttons, LEDs, etc.

Nios II
Processor

Altera FPGA

Ethernet MAC

General-Purpose I/O

DMA Controller

LCD Display

Timer 1

Timer 2

SDRAM Controller

Motion Estimation
Logic

Avalon Tri-State
Bridge

Avalon
Switch
Fabric

(Avalon
Bus)

SDRAM Memory

SDRAM Memory

SDRAM Memory

Ethernet MAC/PHY

Clock Reset

Nios II Processor
System Hardware

Software Device
Drivers

HAL API

μC/OS-II

LwIP Software
Components

TCP Socket Server Process
and Application
17

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 10 shows the system structure of the motion estimation device. The Avalon bus sends frames to
the matching circuit. After the calculation, the Avalon bus reads motion vectors from the circuit’s
motion vector register and sends them to the PC.

Figure 10. Motion Estimation Device System Structure

Our motion estimation architecture contains 16 sum of absolute differences (SAD) modules, a VBSME
processor, an address generation unit (AGU), and a control unit. These modules operate as described
below:

■ Each of the 16 SAD modules handles a different SAD calculation based on the sub-block and its
search area.

■ The VBSME processor sums the SAD calculation from 16 basic blocks generated by the 16 SAD
modules, while composing a SAD of different-sized sub-blocks and primary blocks and searching
for the best motion vector.

■ The AGU controls memory data reading and writing.

■ The control unit controls coordination between the other modules.

Design Methodology
Figure 11 shows the hardware and software design flow charts.

Nios II
Processor

Avalon
Bus

clk

reset

address

chip select

write

write data

read

read data

Avalon Slave
Interface

H.264 VBS Motion
Estimation Design

Motion
Estimation Device

SAD MV

MV_min

Motion Vector Register

Control UnitVBSME
Process

Address
Generation

Unit

Current Block Data

Search Area Data

16 SAD Modules
18

H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA
Figure 11. Hardware and Software Design Flow Charts

Hardware Design
As shown in Figure 11, we used a standard project based on Nios II examples and wrote the hardware
program using the concept of layered modules. After compilation, we opened SOPC Builder, integrated
custom user IP, and added a DMA device to enhance the system performance. After we built the
hardware structure, SOPC Builder automatically organized the hardware devices and generated the
related drivers and files needed for software development. We transmitted the compiled test platform to
the development board using the Quartus II software, using the FPGA combined with other hardware
required by the test platform to perform rapid prototyping.

Next, we used the Nios II IDE to test the software code and compile the test software in the test
platform. The Nios II IDE contains µC/OS-II (a real-time OS) and a protocol stack (light-weight IP),
and a small TCP/IP protocol used in the embedded system, which helped us implement network
communication between the TCP server socket and the PC. µC/OS-II provides quick responses, we
migrated it to the hardware structure of the Nios II processor.

Software Design
As part of the software design, we modified the Altera-provided simple socket server IP. We set the IP
address, subnet mask and port name, modified the read, receive, write, and transmit program, set the
system library’s send and receive buffer sizes, and downloaded the compiled project to the test platform.

To allow users to test the platform, we wrote a graphical interface program executed in Microsoft
Windows using the Borland C++ Builder software version 6.0. Because we used TCP/IP, we used the
client TCP socket to connect the PC with the test platform. Then, we were able to transmit motion
frames and vectors, load serial frame data in the PC to test the block matching circuit, and send the
estimation images generated by the test platform back to the PC for the user to view in real time.

Compile Hardware Project

Establish Project
(Use Standard Project)

Use Quartus II Software to
Design Hardware

Add Hardware via SOPC Builder
& Generate New System Module

Use Quartus II Flash Programmer
to Transmit Compiled Hardware

Project to the Board

Compile Software Project

Call Nios II IDE via
SOPC Builder

Use Nios II IDE to Establish
Software Project

Write C Program

Use Nios II IDE to Transmit
Compiled Software Project

to the Board

Hardware Design Software Design

Observe Results in Nios II IDE
19

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Design Features
Our design has the following features:

■ The H.264 block matching circuit uses Altera’s DMA device to manage the transmission between
the block matching circuit and SDRAM, i.e., to provide effective transmission without using the
Nios II processor.

■ We used SOPC Builder to add Ethernet chip control hardware and automatically generate the
related drivers required for the system’s network functions.

■ The user IP is customized and integrated in SOPC Builder to perform complex computation.
Additionally, the layered modular hardware circuit design reduces the complexity and allows
users to customize the design.

Conclusion
In an era of software, designers seem to pay more and more attention to the study and development of
software. However, our design shows that the H.264 VBS-BMA algorithm used for software can also
be implemented in hardware to provide better performance. Additionally, Altera’s simple socket server
IP allows users to observe the estimation frame in real time without processing complex pins with a
logic analyzer and signal generator and writing a complex testbench.

The Nios II processor allows users to create various devices—such as SDRAM, an Ethernet PHY chip,
UART, SRAM, and flash memory—and embed them in the processor. The user can develop these
modules directly with SOPC Builder, reducing the peripheral hardware design’s complexity and
development time.

In addition to gaining a deeper understanding of the Nios II processor during the design contest, we
learned how to solve problems and achieve peace of mind, which is the most important asset that cannot
be obtained from classroom teaching.
20

An Internet-Based Smart Terminal
Third Prize

An Internet-Based Smart Terminal

Institution: Shanghai Jiao Tong University

Participants: Shanwen Zhang, Jie Zhang, Faheng Zang

Instructor: Zhigang Zhang

Design Introduction
Households, schools, and administrative organizations are using more and more electrical equipment.
With the increase in additional equipment, management becomes an issue. Because the equipment is
usually maintained and managed in wired mode, extra investment will be needed specifically for
equipment management. Our project considers using wireless mode to organize and manage equipment
and centrally control it using the Internet. Internet access has become a standard interface for families
and offices. Therefore, with a wireless control terminal and a cost-efficient receiver for each device, one
monitor can connect to and display information about electrical appliances (such as electric lights, air
conditioners, etc.), saving enterprise administration costs. Our product is applicable to large office
buildings, high-end residential buildings, administrative enterprises, smart villas, schools, hospitals,
etc. that have a lot of electrical equipment to be managed.

The system is very scalable. Users can continuously add new equipment and functions, as long as the
terminal firmware and control software is updated. For example, this system can deliver video and
broadcast to each unit using a high-bandwidth LAN, making it a powerful method for ad broadcasting
in office buildings. Additionally, a touch screen can provide users with more public information.

If electronic equipment vendors accept this scheme as the standard for equipment intercommunication,
preset communication interface, information technology will increase user satisfaction.

This system uses the Altera® Development and Education (DE2) development board as the terminal
control core. Embedded system-on-a-programmable-chip (SOPC) technology conveniently integrates
Ethernet, SDRAM, a programmable I/O (PIO) interface, digital-to-analog (D/A) switch interface, and
a universal serial bus (USB) controller into the system, which greatly contributes to the system
implementation. With the µClinux cross-compilation development environment, we can immediately
begin work, which greatly enhances efficiency. By migrating a clipped µClinux system, managing the
21

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
development board resources is very easy and convenient, which reduces development problems and
shortens the development cycle.

Function Description
Our project is an experiment to provide proof of concept for smart network equipment. To this end, we
completed two functions in this design:

■ Network .wav music playback

■ Remote mouse

Network .wav Music Playback
This functional module sends files from a PC to the DE2 board. The DE2 board stores the files into a
mobile hard disk. The PC can obtain music files from the music folder and select any file to play on the
DE2 board. See Figure 1.

Figure 1. Network .wav Music Player

Remote Mouse
We can connect a USB mouse to the DE2 board’s USB controller. The mouse pointer then appears on
the PC and is controlled through the DE2 board. See Figure 2.

Update List

Transfer Stop Play Next Previous Pause List Port

Control
Port
22

An Internet-Based Smart Terminal
Figure 2. Remote Mouse

Performance Parameters
This section describes the performance parameters of our design.

Music Playing Performance
We broadcast a .wav file in our design. To play the music, the design writes 16-digit pulse-code
modulation (PCM) codes into an audio FIFO buffer. This method is simple and direct, but has the
following weaknesses:

■ Large .wav files are inconvenient for network transmission.

■ The files use excessive memory resources, causing low memory utilization.

Because of these limitations, we plan to use MP3 files in future designs. However, our current project
is an experiment to demonstrate and materialize the concept of smart network equipment. Therefore,
.wav files are fine for this project.

During our experiments, we found inferior sound quality and a noisy background. Through analysis,
we determined that these issues are caused by the .wav file playback algorithm, i.e., cyclic query. Due
to assimilated processing capability of nios2kernel, if we used the CPU query algorithm the design
would overutilize the CPU and affect system processing. We will need to optimize this function in the
future.

When we use an FTP server to upload files, the DE2 board’s fastest receiving speed is 300 k/second,
which is also the DE2 board’s limit for processing data. The .wav file speed is 1,411 bps (or 176 k/
second) and the design consumes some system processes and network services, making playback
difficult to complete in software query mode. Therefore, this mode occupies too many processor
resources, which is a problem we should address first in our future design work.

Stop/Activate Service

Network
Player

Network
Configuration

Remote
Mouse

Microwave
Distance

Measurement

Step
Motor

Water
Temperature

Control

Network
Service

Network Service

Cart

Mouse
Port
23

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Remote Mouse Performance
The system can successfully collect real-time mouse movements and clearly the simulate mouse
movement on a PC.

Design Architecture
The goal of our project is to convert equipment without information processing capability into an
Internet node using a small communication module. Using powerful Internet interactivity, we can use
and control the equipment in centralized management mode, simplifying office communication lines.
Figures 3 and 4 show the block diagrams for our design.

Figure 3. Smart Terminal Block Diagram

Figure 4. Functional System Block Diagram

The remote module uses special communication software to communicate with the DE2 board via the
Internet and sends control instructions. The DE2 board obtains remote messages via Ethernet, interprets
the message packet into specific instructions, and sends them out using a wireless transmission device.
Equipment within the system’s coverage analyzes the instruction upon receiving it and confirms

.wav Play

Remote Mouse

Wireless Smart
Terminal Ethernet

Internet

User

Remote

User

User

FIFO DACUSB Interface

USB
Mouse

Remote User
PC

Communication
Client

Internet

DE2 Platform Smart Terminal

μClinux OS

Data
Collection

Instruction
Analysis

Instruction
Implementation

USB Mobile
Hard Disk

Earphone
24

An Internet-Based Smart Terminal
whether it is the destination device for the instruction. If yes, it carries out the instruction, implementing
remote control and achieving our goal. The entire system has two core modules:

■ An intelligent, integrated, personalized remote control (i.e., the remote equipment management
software)

■ Networking capability, functional expandability, reliability, and low power consumption from the
DE2 board at the smart terminal

The DE2 board has abundant resources to meet the design demands, and we expect them to be
expanded.

Design Methodology
The following sections describe our design methodology.

Migrating µClinux to the DE2 Board
The µClinux system is a reduced Linux kernel without a memory management unit (MMU); we used a
version 2.6 kernel. First we downloaded and installed the kernel:

1. We downloaded the µClinux kernel source code from the Internet at http://www.uclinux.org/
dls.uclinux.org/uClinux-dist-20070130.tar.bz2.

2. We downloaded a µClinux kernel modification file from the Internet at http://nioswiki.jot.com/
WikiHomeOperatingSystems/µclinux/UClinuxDist/uClinux-dist-20070130-nios2-
02.diff.gz?cacheTime=1170915312300.

3. We downloaded a cross-compilation environment file from the Internet at http://
nioswiki.jot.com/WikiHome/OperatingSystem/µClinux/BinaryToolchain/nios2gcc.tar.bz2.

4. We installed the cross-compilation environment, after which we could compile the kernel.

We used the following steps to compile the kernel:

1. At a command prompt, we typed /make menuconfig in the UClinuxDist directory, which
opened the compilation interface shown in Figure 5.
25

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 5. Compilation Interface

2. We selected the Vendor/Product Selection option.

3. For the Select the Vendor you wish to target option, we chose (Altera) Vendor.

4. For the Select the Product you wish to target option, we chose (nios2nommu) Altera Products.

5. Then we went back to the Main Menu and choose the Kernel/Library/Defaults Selection, and
made the following selections:

● (Linux-2.6x) Kernel Version

● (None) Libc Version

● [] Default all settings (lose changes)

● [*] Customize Kernel Settings

● [*] Customize Vendor/User Settings

● [] Update default Vendor Settings

6. We chose Select to exit. The kernel driver and service configuration program displayed next (see
Figure 6).

We needed to configure options so that we could use the USB equipment and the network
modules.
26

An Internet-Based Smart Terminal
Figure 6. Linux Kernel Configuration

7. We made the selections shown in Figure 7 in the File systems > DOS/FAT/NT Filesystems
screen to configure the USB file system.
27

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 7. DOS/FAT/NT Filesystems Screen

8. In the Native Language Support screen, we made the following selections:

● (iso8859-1) Default NLS Option

● [*]Codepage 437 (United States, Canada)

● [*] NLS ISO 8859-1 (Latin 1; Western European Languages)

9. To configure the USB equipment driver, we made the following selections in the Device Drivers
> USB support screen (see Figure 8).

● [*] Support for Host-side USB

● [*] USB device filesystem

● [*] ISP1362 HCD support

● [*] USB Mass Storage support

● [*] USB Human Interface Device (full HID) support

● [*] HID input layer support
28

An Internet-Based Smart Terminal
Figure 8. USB Support Screen

10. We made the following selections to configure support for the DM9000A device.

● In the Enter Network device support screen, we selected:

[*] Network device support

● In the Ethernet (10 or 100Mbit) screen (see Figure 9), we selected:

[*] DM9000A with checksum offloading
29

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 9. Ethernet (10 or 100 Mbit) Screen

After we finished the configuration we exited the kernel compilation program. We could compile the
kernel using the following commands at the command line:

1. : /make romfs r

2. : /make r

3. : /make linux image r

The system compiles the kernel and creates a zImage file in the image contents directory. The next step
was to download the kernel to DE2 board using the Nios® II Integrated Development Environment
(IDE) terminal and activate the µClinux operating system (OS).

Operating µClinux on the DE2 Board
To run µClinux on the DE2 board, we entered the following commands in the Nios II 6.1 Command
Shell:

: /nios2-configure-sof de2-net.sof r (this command configures the hardware circuit)

: /nios2-download-g zImage r (this command downloads the system)

: /nios2-terminal r (this command activates the µClinux system)

Figure 10 shows the interface after activation.
30

An Internet-Based Smart Terminal
Figure 10. Activating µClinux

.wav File Network Uploading and Playing
Figure 11 shows the block diagram for uploading and playing .wav files on the network.
31

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 11. .wav File Uploading and Playing Block Diagram

The system functions are:

■ User interface—The PC’s user interface (UI) sends control information to the DE2 board, such
as obtaining the music file list, playing specified music, suspending music, and stopping
playback. The UI invokes network socket ports on the DE2 board for control:

● 19851—Playing port

● 19852—File list port

● 19853—Remote mouse port

■ Music server process—By transmitting control information, the music server process on the DE2
board automatically recognizes and controls the data. The music server process receives the
control information from the PC via the network. It transmits the information to different energy-
changing processes, and instructs them to finish various functions. When sending files, the music
server process transfers the file name and file data to the music local process, which saves the files
according to the designated file name. To control playback, the music server process sends control
information to the music play server process along with the name of the file to play and when to
pause or stop.

■ Music process—When the music process finishes a task, it keeps reading data from the pipe and
writes it into the audio FIFO buffer. If there is no data, it stops, which is equivalent to the function
of a stop or pause.

■ Music play server process—The music play server process obtains information required for
playback, such as the file to play and control information. When a file must be played, the music
play server process reads it and write its content into the playback pipe. After receiving the
content, the music process begins playing immediately. Meanwhile, if the music play server
process receives a pause or stop command, it stops writing audio information into the playback
pipe and finishes the pause function.

■ List server process—When a list request occurs, the list server process sends all file names in the
music folder to the PC. The PC displays the received file names on the interface for the user to
choose.

■ Music local process—The music local process receives and saves files to the mobile hard disk.
Files sent can be seen with the PC’s list function.

Remote Mouse
Figure 12 shows the remote mouse modules, including:

PC IU

FIFO Pipe

Socket

Music Server

FIFO Pipe

Socket

FIFO
Pipe

File List Server

Local Music
(Save File)

Music Play Server

Music
32

An Internet-Based Smart Terminal
■ PC interface—Because of performance considerations, the PC interface inquires about mouse
movements every 10 ms, obtains 32-byte movement information, and shows it on the interface.

■ Mouse server process—The process continuously reads the piped data, saves it in 32-byte buffers,
and waits for the PC acquisition commands. When there is a PC inquiry, null information is sent
out to ensure that the program performs even if there is no data in the buffer.

Figure 12. Remote Mouse Modules

Implementing On-Line Debugging
The obvious difference between embedded design and ordinary PC program debugging is the
debugging difficulty because every debugging change requires the user to download the entire system
file. With µClinux, however, the network interface simplifies the debugging process. To perform
debugging using telnet, we entered µClinux, configured the network, activated the inetd server, logged
onto the DE2 board using telnet, uploaded the program to debug using ftp, and debugged the program
online. See Figure 13.

PC Interface

Socket

Mouse Server

Mouse

FIFO Pipe
33

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 13. Telnet Debugging Interface

User Interface Compilation
We chose the GTK+ version 2.0 library to compile the UI for the following reasons:

■ GTK+, a cross-platform library, can be run on the Windows, Linux, and Mac OS X operating
systems. With this program, we can release software on current mainstream platforms without
transforming it.

■ It possesses a Glade item and can configure the UI quickly, saving a lot of mechanical work.

Our system has two program UIs:

■ Network player—As shown in Figure 1 on page 22, the network player interface integrates two
functions: a file list that displays the music files on the mobile hard disk and a network player that
selects, plays, pauses, and stops the file listed previously.

■ Remote mouse—When the user plugs a mouse into the DE2 board’s USB port and activates the
network service, the mouse pointer on the monitor moves when the user moves the mouse (see
Figure 2 on page 23). The user can pause or activate this function.
34

An Internet-Based Smart Terminal
Development Environment
Our system has the following development environment:

■ Development board—Altera DE2 board

■ FPGA synthesis tools—Quartus®II version 6.1 development kit

■ Cross-compiling development environment—Suse Linux 10.2 x86

■ Kernel compilation environment—Suse Linux 10.2 x86

■ User interface—GTK+ version 2.0

Design Features
Our design uses the network as information media. With highly integrated technology, the design saves
system costs and shortens the system configuration cycle.

The design positions the PC as a network terminal, integrating the network into every day life. Just
imagine, you can select goods you need at home using a touch-screen LCD on your refrigerator.
Suppliers can sell their goods online, shortening shopping time and minimizing retailers’ costs for real
stores.

In schools, enterprises that manage the electronic equipment has become an important aspect of daily
maintenance. With a smart network platform, administrators can sit in their offices and click a mouse
to control buildings, electric lights, and air conditioners throughout the campus. Costing only a little,
the platform can save huge costs in long-term maintenance.

Technologically, the DE2-based system integrates:

■ Embedded µClinux OS

■ SOPC hardware/software integration

■ Wave music file playback on the DE2 board

■ Loading and using USB equipment on the DE2 board

■ USB mouse

■ Mobile hard disk

■ On-line µClinux debugging

■ Embedded Ethernet

■ Audio D/A converter

We developed a smart control design concept and have essentially finished it. The system integrates
network technology and an SOPC embedded system, and implements a comprehensive technology
application. With the development of additional technologies, integration will provide better
applications.
35

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Conclusion
We spent over three months in the Zhang Zhigang Innovation Lab where we learned advanced SOPC
technology, learned how to use Altera’s FPGAs and software, and gained a lot of experience. Theory is
abstract. Undergraduates who get used to accepting theories lack training, hands-on experience, and
innovation. This contest gave us the opportunity to put what we have learned into practice. From
program design to implementation, it showed us the project stages and the gap between theory and
practice.

Usually we are very confident about what we have learned in school, but we may be unable to deal with
a real project. Because it is systematic engineering, this project covers almost all of our undergraduate
curriculum. With this benefit, we gained a lot from participating in the contest. We had to solve many
hard problems in the contest, and using three different Altera software design programs was the first
one. During the project, a trivial problem could cost us several hours work, so accumulating knowledge
we could use in daily life was very important. A solid foundation will help us solve problems smoothly
and efficiently.

We transplanted µClinux to the DE2 board, which made it convenient and efficient to use the DE2 board
resources. The process plays a particularly important role in multi-tasking development. Modular
concepts are critical for the design of complex tasks. An embedded OS offers an ideal operating
environment for modular programs. In our design, we can perform debugging on each module, which
increases debugging flexibility.

By exposure to Altera’s FPGA hardware/software system, we learned about embedded equipment
trends. Altera’s Nios II IDE supports the developers in hardware and software, saving a lot of time.
Additionally, the products have considerable flexibility: the Nios II CPU can be clipped according to
users’ demands, the system bus interface supports Verilog HDL and VHDL for hardware interfaces, and
users only need to load configured equipment onto the SOPC Builder bus.

By participating in the contest, we learned that system engineering requires comprehensive knowledge,
and its performance is determined by the weakest segment. A faulty segment aborts the entire system.

Finally, we extend our gratitude to Instructor Zhang and the assistant instructors in the innovation lab
for their support in equipment and technology. Without them, we would not have completed the
program.

References
[1] Zhigang, Zhang, DE2 Platform Application and DSP Builder Technology, Training Material for
2007 Altera Cup Shanghai Jiao Tong University Electronic Design Contest, 2007.

[2] Zhigang, Zhang, SOPC Technology, Reference for 2007 Altera Cup Shanghai Jiao Tong University
Electronic Design Contest, 2007.

[3] Thomas, Nathan, Developing on Linux An Introduction to Development on Linux, Red Hat, Inc.,
nthomas@redhat.com.

[4] Corbet, Jonathan, Rubini, Alessandro, and Kroah-Hartman, Greg, Linux Device Drivers, Third
Edition, O’Reilly, Beijing: February 2005.

[5] Strahnen, Dr. Ing. M., HOWTO: NIOS-CPU with additional hardware driven with µClinux.

[6] Linux Application Program Development Guide: to Use Gtk+Gnome Library

[7] GTK+ Reference Manual, GNOME Documentation Library.

[8] http://nioswiki.jot.com
36

Multi-Functional Digital Albums Based on the Nios II Processor
Third Prize

Multi-Functional Digital Albums Based
on the Nios II Processor

Institution: Information Science Institute, Beijing Jiaotong University

Participants: Cheng Hong, Rui Deng, Yongxin Ye

Instructor: Xiaoming Ding

Design Introduction
As digital cameras and high-pixel mobile phone cameras have become more popular, users save their
photos in a variety of storage devices (e.g., PC hard disks, semiconductor storage devices, and
CD-ROMs). Today, most printed photos are from digital cameras or mobile phone cameras. As users
create more and more digital photos, they will spend a lot of money developing these photos, and
traditional photo frames and albums do not store these photos well. Additionally, directly editing photos
on a portable hardware platform independent of a PC would be very convenient when traveling.

Today, the main functions of digital albums on the market are photo storage and playing, which wastes
valuable resources. It would be significant to integrate most functional modules into one system that
fully utilizes the processor, implements more user operations, and meets more requirements.

Our design can be used together with a digital camera. It allows users to edit photos stored in the camera
directly and then transmit the photos to the home or office through a network interface, relieving
pressure on storage devices such as secure digital (SD) cards. A digital album that features digital photo
storage, playing, viewing, editions, and network transmission will satisfy users’ requirements in today’s
information society.

Our design provides users with a complete do-it-yourself (DIY) space that helps them create
personalized photos. When the communication interface between the album and the mobile phone is
developed in the future, users can send DIY photos directly to their friends’ mobile phones.
37

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Application Scope and Targeted Users
The concept of a digital photo is well received in society. Our design plays a role in any field in which
digital photos exist. With the unique editions, receiving, and transmission functions of our design,
travelers do not need to worry about mass storage space for their photos. The user can use this
convienent, portable design at home or while traveling; our design can be widely applied to all groups.

Nios II Processor Design Advantages
Using the Nios® II processor provides the following advantages:

■ Configurability—Compared with traditional processors, the Nios II processor features
configurability to facilitate users’ designs. We can customize the system according to our
demands. Because Altera provides an abundant intellectual property (IP) core library, we can
implement our design ideas quickly, shortening the development period. Additionally, the multi-
functional technology cuts costs significantly and is more flexible.

■ Integrated development environment (IDE)—The complete Altera®-provided IDE, from the
Quartus® II software to SOPC Builder and to the Nios II Embedded Design Suite (EDS), creates
all the hardware and software conditions for our design. Based on Altera’s FPGAs, we can
complete the system configuration and implementation with higher performance and stability.

■ Custom instructions and peripherals—The Nios II soft-core processor can integrate 256 custom
instructions and peripherals to accelerate system operation. The Nios II software development
environment provides a standard program interface to facilitate program migration.

■ Unique C-to-Hardware Acceleration (C2H) Compiler functions—The C2H Compiler has played
a great role in the time since its launch. With this application, we do not need to worry that the
complex algorithms in the Nios II EDS environment will influence the system performance.
Instead, we can accelerate algorithm bottlenecks with the C2H Compiler to easily speed system
operation.

Function Description
This design uses the Development and Education (DE1) multimedia development board to design a
multi-functional digital product—a multi-functional digital album. The album supports all basic
functions of its kind on the market while adding some new functions to meet the requirements of
different user groups. This product contains the following functions:

■ Digital photo storage—It is necessary for a digital album to have a certain amount of photo
storage. Because the DE1 board has an SD card interface, we only need to load the SD card’s data,
demand, and address line to the Avalon® bus and the Nios II processor can control the SD card
data reading and writing.

■ Digital photo viewing and playing—It is a basic requirement for a digital album to allow users to
view their photos at any time. With the µC/FS file system, the album can conveniently notify the
Nios II CPU of photo files in the attached storage media, and users can choose any photo to view
and play.

■ Special music effect—Multimedia is popular in daily life. Most of Altera’s FPGA development
boards can implement multimedia playing. Considering the pressure on the storage media, we
chose compressed G.729 code streams as the music format and embedded a laboratory decoding
algorithm into our digital album so that users can listen to beautiful music while viewing photos,
allowing it to be a “voice album.”

■ Digital photo and audio file management—After migrating the file system, we can easily group
and archive files for convenient operation.
38

Multi-Functional Digital Albums Based on the Nios II Processor
■ Digital photo editions and processing effects—With an embedded platform we can provide a
photo processing effect similar to that on a PC by using software like Adobe PhotoShop.

■ Photo format compression and decompression—Because photos are usually stored in JPEG
format, our multi-functional digital album must meet that requirement. Therefore, we embedded
a JPEG decoder module into the Nios II processor, conducted all processing with decoded RGB
data, and then compressed the photos into JPEG format for network transmission.

■ Digital photo perfection—Traditional photos are usually stored in frames and can fade over time.
In contrast, with a digital format we can add beautiful frames to photos for an amazing effect.

■ Digital photo network transmission—The digital album design can receive JPEG code streams
through the network and transfer them to the FPGA for processing. Then, the album compresses
the photo data into JPEG code streams through the FPGA and transmits the code streams over the
network, allowing the user to share photos with others. Implementing this function requires us to
develop a network interface on the DE1 board, so we created a circuit board with a network
function that connects with the FPGA through the general-purpose I/O (GPIO) pins. Therefore,
our design can partner with digital cameras, allowing travelers to share photos with others anytime
and anywhere.

■ User interface—The DE1 board provides us with a PS/2 interface, so we can load a mouse and
keyboard onto the Avalon bus. To respond simultaneously to the mouse and keyboard data, we
modified the on-board circuit, allowing the Nios II processor to respond to the PS/2 peripheral any
time and constructed the whole album.

■ Digital camera partner—This design provides direct photo viewing and processing operations.

■ Digital watermark embedding and extraction—When processing photos, users often hope the
photos are not modified by others. The digital watermark embedding function of multi-functional
digital album can be used as a photo copyright management tool without changing the effect of
the photo.

When implementing the functional modules, we fully used the Nios II processor features to invoke the
functional modules with the µC/OS-II embedded operation system.

Performance Parameters
Figure 1 shows the hardware resource utilization of the multi-functional digital album.
39

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 1. Hardware Resource Utilization

Figure 2 shows the system software architecture.

Figure 2. Software Architecture
40

Multi-Functional Digital Albums Based on the Nios II Processor
The system has the following specifications:

■ System performance index parameters

● Photo parameter: 320 x 240 JPEG format

● LCD display parameters: 320 x 240 resolution, 5.7 inches

■ System resource utilization (see Figure 1 on page 40 for details)

● FPGA: Altera Cyclone® II EP2C20F484C7

● Program operation space: 8-Mbyte SDRAM

● Static storage: 512 Kbyte SRAM

● User interface: key switch, LED, seven-segment nixie tube

● VGA interface

● Stereo audio codec

● PS/2 mouse and keyboard interface

● External network module control board for the GPIO interface and LCD display

● Storage: Kingston SD card 2.0G/1.0G

■ Expanded resources

● SD card, four-line SD mode

● Network controller circuit board

● PS/2 one-for-two interface

● LCD 65,000-color screen
41

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Design Architecture
Figure 3 shows the hardware design and Figure 4 shows the system hardware and flow.

Figure 3. Hardware Design Block Diagram

CRT SD Card

VGA SD Card
Controller

SDRAM LCD

SDRAM
Controller

LCD
Controller

Avalon Bus

Nios II CPU
Network

Controller

Ethernet SRAM

Button/LED

JPEG
CODEC

I/O PS2 IP
Core

Mouse/Keyboard

Avalon Tri-State
Bridge Flash
42

Multi-Functional Digital Albums Based on the Nios II Processor
Figure 4. System Flow Chart

Design Methodology
This section describes the design methodology.

System Design
The system design contains these functional modules:

■ SD card file system

■ Keyboard input

■ Audio digital-to-analog D/A converter (DAC)

■ DM9000A network controller

Initialization
upon Power On

Enter μC/GUI
Interface

Choose Mode &
Music Play

View Graph Mode
Functional Module

Graph
Zoom-out
Display

Graph
Zoom-in
Display

Mouse Clicks,
Graph Pages

Up or Pages Down

Music
Accompaniment

Enter Graph
View Mode

Enter Graph
Edition Mode

Edit Graph Mode
Functional Module

File
Operation

JPG Graph
Encode/
Decode

Edit Graph
Through

Keyboard

Graph
View
Mode

Multimedia
Music

Photo Frame
Embedding

and Perfection

Digital
Anti-Counterfeiting by

Watermark Embedding

Graph Online
Upload/

Download

Graph
Rotation
for View

Graph
Inverse
Display

Graph
Grayscale
Change

Graph
Zooms

Propoertionally

Contrast
Degree

Adjustment

Binarization
Processing

...

Wait for Key Press
43

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ TCB8000A LCD controller

■ VGA display

■ JPEG codec

■ Image processing

■ Audio decoding

All functional modules are integrated into one system using SOPC Builder as shown in Figure 5.

Figure 5. SOPC Builder System Architecture

Implementation
The whole design adopts a top-down methodology to build the system hardware module in SOPC
Builder. All required functional modules are integrated through the Avalon bus to improve system
stability. Because a multi-functional digital album particularly needs a stable hardware system when
performing multiple functions, we tried to use only SOPC Builder for the hardware.

SOPC Builder’s powerful system integration feature enabled us to shorten the design cycle, build a
stable system in a short time, complete the system software design on the basis of the hardware, and
integrate the software and hardware into a complete system.

SD Card Storage Module
As a totally open standard, SD cards are used in MP3 players, digital video cameras, digital cameras,
e-books, audio-visual (AV) appliances, and particularly in ultra-slim digital cameras. SD cards are the
same shape as multimedia cards (MMC), but they are a little thicker than MMCs and have larger
capacity. Additionally, SD cards are compatible with MMC interface specifications. The nine-pin SD
card changes the transmission mode from serial to parallel, improving the transmission speed. It reads
and writes faster than MMCs and is more secure.
44

Multi-Functional Digital Albums Based on the Nios II Processor
To make the system more applicable and compatible, we decide to use an SD card as the primary storage
media to store photos, music, etc. The one-line SD card read setting on the DE1 board is limited in
speed. We modified the setting to a four-line mode to make it more compliant with the system demands.

Table 1 defines the SPI mode time sequence signals, Table 2 defines the four-line SD mode time
sequence signals, and Figures 6 through 9 show the time sequences for the SPI and SD card modes.

Figure 6. SPI Mode Read Time Sequence

Figure 7. SPI Mode Write Time Sequence

Figure 8. Four-Line SD Card Mode Read Time Sequence

Table 1. SPI Mode Time Sequence

CS Host-to-card chip selection signal.

CLK Host-to-card clock signal.

DataIn Host-to-card data signal.

DataOut Card-to-host data signal.

Table 2. Four-Line SD Card Mode Time Sequence

CLK Host-to-card clock signal.

CMD Control and answer signal.

DAT0-DAT3 4-bit data line.

VDD, VSS1 and VSS2 Power supply and grounding signal.
45

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 9. Four-Line SD Card Mode Write Time Sequence

PS/2 Keyboard and Mouse IP Core Module
The PS/2 mouse and keyboard protocols are the same. The PS/2 mouse and keyboard perform a
bidirectional synchronous serial protocol; each cycle, the data line transmits a bit of data and a clock
line transmits a pulse that is read. The keyboard/mouse can transmit data to the host and the host can
transmit data to the devices. Because the host has priority on the bus, it controls communication from
the keyboard/mouse by pulling the clock low.

A standard PS/2 mouse supports the horizontal displacement, X, vertical displacement, Y, and mouse
left, middle, and right clicks. It reads the input at a fixed frequency and then marks the reflected
movement and click status. A standard mouse has two counters to track displacement. The X and Y
displacement counters can store 9-bit binary complements, and each counter has a corresponding
overflow flag. The overflow flag content and the three mouse-click statuses are transmitted together to
the host in the form of a three-byte mobile data packet. The displacement counter represents the
displacement from the last displacement data packet sent to the host. Table 3 shows the data format.

Figure 10 shows the host/device communication.

Figure 10. Host/Device Communication

According to standard PS/2 protocol, we compiled the mouse and keyboard hardware modules (that are
Avalon slaves in SOPC Builder) to complete the user interface.

VGA Image Display Module
Although this project uses an LCD display, we also designed a VGA interface. The VGA time sequence
includes horizontal and vertical time sequences. Both time sequences contain the horizontal (vertical)
synchronization pulse, the width from the end of horizontal (vertical) synchronization pulse to the
beginning of valid data display zone (backporch), the width of the valid displaying zone, and the width
from the end of valid data display zone to the beginning of horizontal (vertical) synchronization pulse
(frontporch) parameters. The logic zone between the width of the horizontal valid display zone and the
width of the vertical valid display zone is regarded as the video zone, and other zones are regarded as
blank zones.

Table 3. Displacement Counter Data Format

Original Bit 8 Data Bits Parity Bit Stop Bit Answer Bit
Logic 0 Low bit first Determine the parity according to the

number of 1s in the data bit.
Logic 1 Used in host/device

communication.
46

Multi-Functional Digital Albums Based on the Nios II Processor
Figure 11 shows the time sequence of one row or one field.

Figure 11. Horizontal/Vertical Time Sequence

Based on the time sequence in Figure 11, Table 4 shows the time during each stage of the horizontal/
vertical signal.

According to the time sequence requirements, we compiled the VGA controller to display images. We
used SRAM as the image data memory to display the images after decompression and processing.
Figure 12 shows the VGA controller.

Figure 12. VGA Controller

LCD Display and TCB8000A Controller Module
We used a 5.7-inch, 65,000-color thin film transistor (TFT) as the display and the TCB8000A device as
the controller. During the design, we only needed to integrate the interfaces (including an 8-bit data line,

Table 4. Time During Each Stage of Horizontal/Vertical Signal

Parameter VGA(640×480)
Horizontal scanning frequency/vertical scanning frequency 31.469 KHz/59.94Hz

Scanline time 31.77 µs/16.68 ms

hsync/vsync 3.77 µs/0.06 ms

Horizontal/vertical frontporch 0.94 µs/0.35 ms

Horizontal/vertical backporch 1.89 µs/1.02 ms

Valid video zone 25.17 µs/15.25 ms

SRAM_DQ[15..0]
READY
iCLOCK
iCLK
iRST_N

SRAM_ADDR[17..0]

SRAM_CS_N

SRAM_OE_N
SRAM_WE_N

SRAM_BHE_N

SRAM_BLE_N
VGA_R[3..0]

VGA_G[3..0]

VGA_B[3..0]

oVGA_H_SYNC

oVGA_V_SYNC

VGA_Controller

inst5
47

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
write transmission signal, address signal, reset signal, and chip select signal) between the controller and
the CPU in SOPC Builder, and load the module as a peripheral to the Avalon bus to implement the
image data display.

System Software Design
The following sections describe the system software design.

µC/OS-II Operating System
As a free, embedded operation system with public source code, µC/OS-II has been applied widely in
many fields worldwide, such as mobile phones, routers, hubs, aerocrafts, medical instruments, etc.
µC/OS-II is suited to small control systems because it features high efficiency, small size, excellent real-
time performance, good scalability, etc. Software development of the system is completed in the
Nios II-integrated µc/OS-II embedded operating system (OS).

In our multi-functional digital album system, we created Task Main (main control tasks), Task_Gui
(graphical user interface [GUI] user interface display task), and Task_Music (music playing control
task). µC/OS-II schedules the three tasks using a message mailbox.

JPEG CODEC Module
The JPEG CODEC module converts the image format. Digital cameras also embed the CODEC for
JPEG images, and this module is indispensable for our digital album. Figures 13 and 14 show the JPEG
encoding and decoding procedure.

Figure 13. DCT-Based JPEG Encoding Procedures

Figure 14. DCT-Based JPEG Decoding Procedures

In the procedures, the core algorithms are discrete cosine transform, quantization, inverse-quantization,
and encoding/decoding of the quantization coefficient with a Huffman variable-length encoder.
Additionally, the procedures involve technologies such as transforming the color model, a zigzag
arrangement of quantization coefficients, the differential pulse-code modulation of the DC coefficients,
and the run-length encoding of the AC coefficient. Figures 15 and 16 show the encoding and decoding
flow charts, respectively.

8 x 8 Image Block

FDCT

DCT-Based Encoder

Quantizer Entropy
Encoder

Compressed
Image Data

Quantization
Table

Entropy
Encode Table

Source
Image Data

Entropy
Decoder

DCT-Based Decoder

Inverse
Quantizer

IDCT

Compressed
Image Data

Quantization
Table

Entropy
Encode Table

Rebuilt
Image Data
48

Multi-Functional Digital Albums Based on the Nios II Processor
Figure 15. Encoding Flow Chart

Figure 16. Decoding Flow Chart

With these procedures, users can view real-time photos from digital cameras, including JPEGs with
different encodings, making the album a real partner to the digital camera and a good photo processing
tool during traveling.

Network Transmission and Receiving Module
Migrating µC/OS-II enables us to make a network expansion board in the hardware infrastructure. Our
network template creates its own data transmission method by invoking bottom receiving and
transmission packet programs with the Nios II processor. The data is packaged at the Nios II
transmission terminal and the data is unpacked at the network receiving terminal. Figure 17 shows the
multi-functional digital album’s transmitting/receiving interface on a PC terminal.

Read BMP File and
Store Graph

Information in Data
Architecture

Transform
Color Model

Divide Data
into 8 x 8 Blocks

DCT Inverse Transform
Inverse Quantization and

Decode are Made to
Each 8 x 8 Data Block

Utilize Read
Information to

Generate all the Tables
Required by Decode

Store as
JPEG File

Read JPEG File and
Store Graph

Information in Data
Architecture

Transform
Color Model

Divide Data
into 8 x 8 Blocks

DCT Inverse Transform
Inverse Quantization and

Decode are Made to
Each 8 x 8 Data Block

Utilize Read
Information to

Generate all the Tables
Required by Decode

Store as
BMP File
49

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 17. Transmitting and Receiving Terminal Interface

Accessing the network functions means the system can be edited and viewed on-line, which
significantly improves the system’s application scope. On the network, the system can receive remote
image data without depending on a local SD card data source. Additionally, users can transmit their
photos to friends for sharing while traveling.

µC/FS File System
µC/OS-II is contained in the Nios II software development integration environment so that users can
apply it in their own software engineering. To make the concurrent task processing and CPU sharing
more reasonable, we used µC/OS-II with a file system. In the beginning, we selected the zlg file system,
but its speed was unsatisfactory during testing. The reading and writing of 1-Mbyte data into the SD
card required 37 seconds and 57 seconds, respectively. We analyzed why it was so time consuming, and
found that one problem was the SD card’s read/write limitation. On the DE1 development board, the
SD card uses one-line reading and writing, i.e., it only has one data line. By adding data lines, we
modified the mode to four-line reading and writing. Our tests showed that the speeds were improved to
17 seconds and 27 seconds, respectively. This result was still not quadruple the original speed as we
expected.

We determined that another reason for the speed problem was the file system. By searching the Internet,
we found that zlg/fs had low performance and consumed a lot of processing time. So we decided to use
Micrium’s µC/FS, which has excellent compatibility with µC/OS-II and high performance. After
several weeks effort, we successfully migrated µC/FS version 1.34 to the DE1 board to establish a file
system for a four-line SD card. According to the comparison test, the reading and writing speeds were
greatly increased, taking just 3.6 seconds and 11 seconds, respectively for 1 Mbyte of data. This speed
basically satisfied our speed requirement for accessing data files. However, writing was still slow
because when data is written into the SD card, each block needs to calculate a 16-bit cyclic redundancy
code (CRC), occupying a lot of transmission time. Therefore, we accelerated this part with a custom
instruction. Additionally, if the CPU operating frequency improves, the write speed will also increase.
50

Multi-Functional Digital Albums Based on the Nios II Processor
We briefly introduce the µC/FS file architecture in the following sections. Table 5 shows the µC/FS
software packet files. Figure 18 shows the µC/FS block diagram.

Figure 18. µC/FS Block Diagram

Some functions available in the file system are:

■ File system control functions

● FS_Exit()—Stop file system.

● FS_Init()—Start file system.

■ File access functions

● FS_FClose()—Close a file.

● FS_FOpen()—Open a file.

■ Direct input/output functions

● FS_FRead()—Read data from file.

● FS_FWrite()—Write data to file.

■ Directory functions

● FS_CloseDir()—Close a directory.

● FS_MkDir()—Create a directory.

Table 5. µC/FS Software Packet Files

Application Program
Interface (API)

Some external interfaces.

CLIB Implements some basic standard C functions, including processing strings and memory.

CONFIG The configuration items of each target, including all configuration types.

DEVICE The packaging of the device layer, currently including hard disk, RAM, smc, windows (I/O
interface) etc. It primarily implements the FS__device_type interface.

FSL File system layer (supporting all file systems), currently including the FAT file system.

LBL Some OS-level operations (number of signals) of the logic block layer (the packaging of the
OS and device layer).

Applications (Samples)

API
_FS_devinfo

FSL

OS LBL Device

CLIB
51

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
● FS_OpenDir()—Open a directory.

● FS_ReadDir()—Read from a directory.

● FS_RewindDir()—Reset position in directory stream.

● FS_RmDir()—Remove a directory.

µC/GUI Interface
µC/GUI is an excellent graphic software for embedded systems, featuring open source code, portability,
configurability, stability, and reliability. µC/GUI provides rich interface elements, such as buttons, edit
boxs, sliders, etc. Additionally, it supports an efficient windows callback mechanism to provide
interfaces between interfaces and application functions. We developed the user interface of our multi-
functional digital album system with this tool.

µC/GUI Architecture
Figure 19 shows the µC/GUI system architecture.

Figure 19. µC/GUI System Architecture

The µC/GUI function library provides GUI interfaces to user programs. It contains functions such as
text, numeric values, 2-dimensional (2-D) images, input devices, and various window objects. The input
device can be a keyboard, mouse or touch screen. 2-D images contain pictures, beelines, polygons,
circles, ellipses, arcs, etc. Window objects include buttons, edit boxs, progress bars, check boxs, etc.

The µC/GUI function library can be configured via the GUIConf.h file, including whether to use a
memory device or window management device, whether to support an OS or touch screen, the size of
the dynamic memory to be configured, etc. Various hardware-related attributes are defined in the
LCDConf.h file, such as LCD size, color, and interface function. The LCD driver interprets the
µC/GUI functions into the liquid crystal interface function defined in the LCDConf.h file regardless of
the hardware connection. With the driver, the µC/GUI-LCD hardware interface converts the hardware
interface function into an LCD read/write function as defined in the LCDConf.h file.

μC/GUI User Application

Font μC/GUI Function Base

ImageNumeric
Value

Text

GUIConf.h

Input Device

Mouse Keyboard
Window

Window
Manager

LCDConfig.h

μC/GUI API Interface Function

LCD

LCD Driver
52

Multi-Functional Digital Albums Based on the Nios II Processor
µC/GUI Migration
The first step in migration is modifying the GUIConf.h and LCDConf.h configuration files. According
to the display module requirements of the digital album system, we configured the relevant parameters
in the configuration files.

µC/GUI provides drivers for different LCD controllers. For example, the KS0713, SED1335, and
T6963 controllers have corresponding LCD drivers. However, our system’s display module is the
TOPWAY TCB8000A LCD controller with a TFT 65,000 color LCD screen, and µC/GUI does not
provide a driver for it. Furthermore, unlike the LCD controllers for which µC/GUI provides drivers, the
TCB8000A controller has an independent screen control instruction system. These factors made it
difficult to migrate the controller for µC/GUI.

During migration, we first used the TCB8000A instruction system to let µC/GUI provide the most API
functions for the upper application function. Then, for API functions that the TCB8000A controller
does not support in hardware, we repaired the drivers using software. Last, by testing a large quantity
of controls, we adjusted the TCB8000A display instruction parameters used in the LCD drivers,
optimizing the LCD driver performance and seamlessly migrating µC/GUI for the TCB8000A
controller.

µC/GUI provides mouse and keyboard drivers. However, when we implemented the mouse and
keyboard modules in the system, we needed to consider driver problems when combining the IP module
with µC/GUI. Therefore, we compiled the keyboard data receive function in the Nios II processor so
that it is invoked by the µC/GUI keyboard input driver and the obtained hardware keyboard value is
transmitted to µC/GUI to complete a keyboard event. Then, µC/GUI processes the key during a message
processing loop and transmits the key to the current focus form in µC/GUI. With this system module,
we can transmit any input information to µC/GUI and implement text input for system editions.

The mouse driver is more complex. Fortunately, µC/GUI has good mouse driver support and its form
management and message processing mechanism allows the mouse information to be updated and
processed in real time.

The album includes the following functions:

1. The µC/FS file system informs µC/GUI of the photo data stored in the attached SD card.

2. After JPEG decoding, the RGB data is output.

3. The system conducts image processing, output display, editing, and processing in various modes.

Figures 20 and 21 show the album in view and edit mode, respectively.

Figure 20. Album Schemes in View Mode
53

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 21. Album Menu Schemes in Edit Mode

Digital Watermark Embedding
This module is embedded as a menu management sub-block, so that we can add a digital watermark to
our photos to protect them. Due to time and system resource limitations, we did not integrate this
module into the system.

Applying SOPC Concepts
For this design, our hardware structure is completely integrated using system-on-a-programmable-chip
(SOPC) concepts. SOPC design has the advantage that hardware can be rebuilt and reconfigured, which
is a unique feature of FPGAs in hardware development. Additionally, the top-down SOPC design flow
dramatically shortened our design cycle. At the very beginning of the design, we considered using
SOPC design concepts for our system. In our opinion, the biggest advantage of embedded systems is
not making a perfect design, but using the least number of resources to complete the design while
optimizing power consumption and integrity. We also must consider future development of the system.
If the current design is limited in future development and expansion, it will not be a successful design.
In our design, we preserve many operations for future system expansion to allow users to bring their
ideas into the system to perform more and better functions.

Design Features
Our system has the following features:

■ The µC/OS real-time operating system (RTOS) is a key factor in the normal operation of all
functional modules in the system. From a system perspective, this design integrates a digital
album, image processing, compression and decompression, transmission, and receiving into one
system for the first time. The Nios II CPU and Avalon bus arbitration played an important role in
implementing the system. To achieve the integration and operation of functional modules in the
multi-functional album, we introduced an OS embedded in the Nios II processor to schedule the
functional tasks, providing stability, improving system performance, and simplifying our design.

■ This design employs multiple user interfaces including SD card memory, LCD interface, Ethernet
interface, PS/2 mouse and keyboard interfaces, etc. We loaded these peripherals onto the Avalon
bus using SOPC Builder. In spite of the large number of interfaces, the modules operate correctly
in the integrated SOPC environment.

■ For the software interface, we successfully migrated µC/GUI into the the Nios II environment.
The user interface makes the design friendly and photos are easy to manage.

■ To use the mouse and keyboard interfaces simultaneously, we expanded the original PS/2
interface so that one PS/2 interface can allow the Nios II processor to respond to the mouse and
keyboard interrupt signals simultaneously. To provide fast reading and writing to the system for
54

Multi-Functional Digital Albums Based on the Nios II Processor
the SD card interface, we modified the original one-line SPI mode into a four-line SD mode,
improving the read/write speed by four times and satisfying the system requirements.

■ Implementing µC/GUI, µC/FS, and µC/OS-II in the Nios II environment provided a good user
interface for our album. The whole system must operate under a control environment, and
combining the three elements meets the system requirements and provides good driver support to
the hardware infrastructure.

■ The expanded GPIO helped us load the network control module and LCD. The high-integrity
SOPC design ensures stable communication in the whole system.

Conclusion
For this contest, we successfully implemented a multi-functional digital album based on the Nios II
processor. We learned a lot from participating in the contest and now understand Nios II embedded
systems more.

The system design targets an FPGA. We fully used Nios II features to control the whole system’s
operation. With OS scheduling, the tasks are managed according to the task priority. Where conflicts
exist, the tasks are delivered to the OS for management. For example, in the beginning, the mouse and
keyboard IP cores needed to be interrupted continuously and the Nios II processor needed to respond
continuously, causing conflicts in some programs and causing the mouse not to operate in the GUI.
After we introduced the OS, there were no system conflicts.

By participating in the contest, we learned about the high integrity of SOPC Builder, the stability of the
Nios IDE, and the convenience of system debugging. The SOPC-based reconfigurable hardware and
software design and top-down design method provided a flexible system implementation, higher
system integrity, and a shorter design cycle.

Finally, thanks to Altera for giving us this rare opportunity to create the design.
55

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
56

Communications Applications
Communications Applications

This section includes projects that can be used as communications applications, including:

SOPC-Based Cordless Phone.. 59

Nios II-Based Intellectual Property Camera Design ... 87
57

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
58

SOPC-Based Cordless Phone
First Prize

SOPC-Based Cordless Phone

Institution: National Institute of Technology, Tiruchy

Participants: Dhirendrakumar Tripathi, P. D. S. Prasad Reddy, Rashmi HM

Instructor: Dr. B. Venkataramani

Design Introduction
A cordless telephone has a base unit and a handset, and electromagnetic radiation allows the two to
communicate. Cordless phones have become increasingly popular both at home and in the workplace,
and modern cordless phones offer a wide range of features. The primary benefit of the cordless phone
is that the handset does not need to be in a fixed location or close to the base unit. Cordless phones allow
the user to free him or herself from a wired connection to the local telephone line and move about freely.

Most cordless phones come with a built-in speaker phone. Color screens, like those in mobile phones,
have become common in cordless phones as well. These phones support a variety of ring tones and even
wallpapers and screen savers. Cordless phones can also be used to send and receive short message
service (SMS) messages.

Our design provides a digital implementation of a cordless phone operating in the range of 43 to
50 MHz in a Nios® II processor. We used the Nios II processor to build a system-on-a-programmable-
chip (SOPC)-based cordless phone that supports real-time applications. The design enables easy
reconfiguration and low development costs. Altera® SOPC designs let us implement real-time, critical
functions in hardware. Custom instructions make it easy to implement the whole system on an SOPC
platform, with better software partitioning and hardware implementation of the cordless phone.

Design Purpose
In this project, we digitally implemented a cordless phone operating in the 43 to 50 MHz range. So far,
cordless phones operating in this range have only been implemented using analog techniques. We
implemented a significant portion of the cordless phone design using an FPGA. A spread spectrum
technique provides security and isolation between cordless phones. The complete digital transmitter
59

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
and receiver are implemented on an FPGA and interfaced with the external world using analog-to-
digital (A/D) and digital-to-analog (D/A) converters.

Application Scope
The application is a cordless phone that provides enhanced security and advanced features such as an
address book, ring tones, answering machine, etc. at an affordable price. With small modifications, the
same design could be used for secure military communication applications. Low-cost, high-density,
low-power Altera FPGAs could be used to mass produce these phones at an affordable price.

Nios II Processor and SOPC Builder Role
A cordless phone system commonly includes a programmable embedded processor that controls the
phone’s operation. In addition to the real-time requirement, the system also requires interfaces for the
keyboard and display. The Nios II processor is useful for incorporating these features because all non-
real-time tasks can be implemented efficiently in software. Furthermore, we can configure the number
of I/O ports and the size of each port using SOPC Builder. Given these parameters, we implemented the
digital transmitter and receiver blocks as custom instructions in the Nios II processor.

The Nios II processor offers embedded design versatility and reconfigurability to implement all
requirements of the cordless phone. It has built-in memory, peripherals, and interfaces, as well as a
variety of intellectual property (IP) functions. Productivity tools--such as SOPC Builder, the Nios II
Integrated Development Environment (IDE), and Quartus II Compiler combined with an FPGA target
device, allowed us to reduce our turnaround time and costs.

The Nios II processor is a perfect fit because we could select the peripheral, performance, processor
variant, and cost that best suits to our needs. The Nios II processor supports multi-processor systems,
and using SOPC Builder we could implement multiple processor cores if our design required it. We can
efficiently implement a complete system when we integrate high-density FPGAs with high-capacity
RAMs and the Nios II processor. High-bandwidth memories, embedded digital signal processing (DSP)
blocks, phase-locked loops (PLLs), and high-speed interfaces can be programmed into the FPGA,
which facilitated the cordless phone implementation.

Function Description
The SOPC-based cordless phone consists of two primary digital parts, the FM modulator/demodulator
and frequency hopping spread spectrum (FHSS) modulator/demodulator.

FM Modulator/Demodulator
The SOPC-based cordless phone uses a radio frequency link to transmit/receive voice signals between
the base unit and the remote hand set. In this design, voice signal frequency modulation is performed
in the digital domain using the coordinate rotation digital computer (CORDIC) algorithm. The system
demodulates the FM signal in the digital domain using the CORDIC algorithm and a special sampling
technique.

The following sections provide a brief explanation of the CORDIC algorithm and the special sampling
scheme. For more details on these topics refer to “References” on page 80.

CORDIC Algorithm
The CORDIC algorithm uses shifts and adds to compute a wide range of functions, including
trigonometric, hyperbolic, linear, and logarithmic functions. The CORDIC algorithm is used in diverse
applications such as mathematical co-processor units, calculators, waveform generators, and digital
modems. The CORDIC algorithm uses shifts and adds to perform vector rotations iteratively. In rotation
mode, the CORDIC converts one vector in rectangular form to another vector in rectangular form. In
vector mode, it converts a vector in rectangular form to polar form.
60

SOPC-Based Cordless Phone
CORDIC Rotation Mode
The CORDIC algorithm for rotation mode is derived from the general rotation transform:

xfin = xincosΘ - yinsinΘ (1)

yfin = yincosΘ + xinsinΘ (2)

The transform rotates a vector (xin, yin) in a Cartesian plane by an angle Θ to another vector with the
coordinates (xfin, yfin). Rotation is achieved by performing a series of successively smaller elementary
rotations Θ0, Θ1, Θ2... ΘN such that:

Figure 1 shows the case where rotation of a vector of magnitude 1 by an angle Θ is achieved using three
elementary rotations Θ0, Θ1, and Θ2.

Figure 1. Vector Rotation by an Angle Θi Using Steps

Rotation of the vector by an angle Θi can be rewritten as:

xi+1 = xicosΘi - yisinΘi (3)

yi+1 = yicosΘi - xisinΘi (4)

xi+1/ cosΘi = xi - yitanΘi (5)

yi+1/ cosΘi = yi - xitanΘi (6)

The computational complexity of equations (5) and (6) can be reduced by rewriting them as:

xi+1 = xi - yi tanΘi (7)

yi+1 = yi - xi tanΘi (8)

(9)

Θ Θi

0

N

∑=

(1, 0)

x

(cos(Θ), sin(Θ))

y

Θ
2

Θ
1

Θ
0

(x , y)2 2

(x , y)1 1

Θ

xfin yfin(,)
xN

Θicos

1

N

∏

yN

Θicos

1

N

∏
-------------------(,)=
61

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
and performing the division by cosΘi together for all N iterations by dividing the value of (xN,yN) by

.

Further, the value of Θi for i = 1, 2 … N is chosen such that tanΘi is 2-i. Table 1 shows the values of the
angles for i = 0 to 9.

This process reduces the multiplication by the tanΘi to a simple shift operation. As the iteration
increases, Θi becomes smaller and smaller. When the difference between Θ and the sum of Θi from 1 to
N becomes very small for some value of N, the iteration terminates. The remaining angle by which the
vector must be rotated after the completion of i iterations is indicated by the parameter zi+1 as given in
equation (10).

zi+1 = zi - Θi (10)

z0 = Θ0 (11)

Θi is considered to be positive when the rotation required is counter-clockwise and negative otherwise.
To approximate an arbitrary angle using Θi of the form tan-1(2-i), Θi may be negative for some values of i.

The sign (sgn) of zi indicates whether, in the next iteration, the rotation should be counter-clockwise or
clockwise. Because, tanΘi is +2-i when Θi is positive and -2-i otherwise, the iterative equations may be
rewritten as:

δi = sgn (zi) (12)

xi+1 = xi - δi yi 2-i (13)

yi+1 = yi + δi xi 2-i (14)

zi+1 = z1 - δi tan-1(2-i) (15)

The computation of can be simplified.

Because cosΘi = 1 for very small values of Θi, the equation can be computed for N = 6 (therefore
K = 0.6073), and can be used for any other value of N > 6.

Table 1. Values of Θi tan-1(2-i)

i Θi tanΘi

0 45 1

1 26.5 0.5

2 14 0.25

3 7.1 0.125

4 3.57 0.0625

5 1.78 0.03125

Θicos

1

N

∏

Θicos

1

N

∏

62

SOPC-Based Cordless Phone
CORDIC Vector Mode
In this mode, an initial vector with the x, y coordinates of (xin, yin) is rotated such that its y coordinate
becomes zero. The procedure used for rotation may be adopted for vector mode with the following
modifications: rotation is carried out clockwise (so that the y coordinate can be made 0), and the total
angle by which the vector has been rotated from the initial position after i rotations is indicated by the
parameter zi+1 and z0 is defined as 0. See equations 16 through 19. To obtain equation 16, when yi is
positive, the rotation is clockwise in the next iteration. When it is negative, it is counter-clockwise.

δi = -sgn (yi) (16)

xi+1 = xi - δi yi 2-i (17)

yi+1 = yi + δi xi 2-i (18)

zi+1 = zi - δi tan-1(2-i) (19)

As i becomes large, yi goes to 0 and xfin, the magnitude of the vector after N iterations and zfin, the angle
of the vector, are obtained as:

xfin = (20)

zfin = (21)

CORDIC as a Universal Modulator
In this design, we used the CORDIC as a universal modulator, which can be obtained by including an
adder at the output of the phase accumulator. Figure 2 shows the resulting circuit. (xin, yin) denote the
inputs for amplitude modulation. ϕ(t) and Δr denote the inputs for phase and frequency modulation,
respectively. When (xin, yin, ϕ(t)) are (1, 0, 0) and Δr is a constant (as shown in Figure 2) the CORDIC
generates two unmodulated carrier signals in quadrature (i.e., sinωt and cosωt). When modulating
signals are applied, modulated carriers are obtained. When amplitude modulation is required, the
modulating input is applied to the xin input and yin is zero. For generating the carrier with phased,
frequency modulation, the modulating inputs are fed to ϕ(t) and Δr, respectively.

Figure 2. CORDIC as a Universal Modulator

xN

Θicos

1

N

∏

y0
x0
-----⎝ ⎠

⎛ ⎞
1–

tan

FM Modulating Signal
Δr

Adder 1

N-Bit Register

Phase Accumulator

f s

N N

Adder
2

CORDIC
DAC Low-Pass

Filter (LPF)

a(t) Modulating signal for AM/x in

in
y

a(t)sin(ωt + (ϕt))

θ

a(t)cos(ωt + (ϕt))

ϕ(t)

outf
63

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
CORDIC as a Universal Demodulator
If the carrier frequency, amplitude, and phase of the received signal are fi, 2b(t) and Θ(t) respectively,
then the received signal r(t), is given by

r(t) = 2b(t)sin(ωi t + Θ(t)) (22)

One way to demodulate this signal is by generating the in-phase signal I(t) and quadrature signal Q(t)
using a local oscillator of frequency f0 with a known initial phase and equations 23 and 24.

I(t) = b(t){sin(2π(fi - f0)t + Θ(t))} (23)

Q(t) = b(t){cos(2π(fi - f0)t + Θ(t))} (24)

The in-phase and quadrature signals are fed to the two inputs of the CORDIC, which is operated in
vector mode, to obtain the demodulated output.

I and Q Signal Generation Using a Special Sampling Scheme
The I and Q components can be generated using a quadrature mixer or a special sampling scheme. With
the special sampling scheme, if the local oscillator frequency is f0, r(t) is sampled at a rate of fS = 4f0 then

t = nTS = n /4f0 (29)

2πtf0 = 2π(nTS)f0 = 2nπ/4 = nπ/2 (30)

Let us denote the values of r(t), I(t), and Q(t) at t = nTS as r(n), I(n), and Q(n), respectively. Then I(n)
and Q(n) can be written as:

I(n) = r(0), 0, -r(2), 0, r(4), ….

Q(n) = 0, r(1), 0, -r(3), 0, r(5), ….

If the local oscillator frequency f0 is chosen to be the same as the input frequency fi, then fS can be
chosen as 4f0. Table 2 shows r(t), I(t), and Q(t) at various sampling instants. For more details on the
special sampling technique refer to reference [2]. Figure 3 shows a block diagram of the I and Q
generation using the special sampling scheme.
64

SOPC-Based Cordless Phone
Figure 3. I and Q Signal Generation Using Special Sampling Scheme

With this method we can generate the in-phase and quadrature components without using mixers at the
cost of a higher sampling rate.

FHSS Modulator/Demodulator
The FHSS technique, which changes the carrier frequency randomly with time, provides cordless phone
communication with enhanced security and privacy. Transmitted signals that have a carrier frequency
hopped by a pseudo-random code are difficult to demodulate by receivers other than the intended one.
The technique makes the system less vulnerable to accidental or deliberate reception by a third party
and protects privacy. We used the CORDIC as the frequency synthesizer for FHSS modulation and
demodulation.

FHSS
Our cordless phone operating in the 43- to 50-MHz band is allocated 25 sets of frequency sub-bands.
A cordless phone selects a set of frequency bands (one for the base unit to the handset and another for
the handset to the base unit) from these 25 sets and operates at this fixed set of frequencies. If two
cordless phones in the vicinity have the same frequency set, they could interfere with each other or
cause security threats.

To solve these problems, we used FHSS. In a frequency hopping system, the frequency or channel in
use is changed rapidly. The transmitter hops from one channel to another in a pre-determined, pseudo-
random manner. The receiver has the same channel list (the hop set) and pseudo-random sequence
generator. Therefore, the cordless phone only stays in a particular channel for a short time, lowering the
probability of interference and security threats.

In FHSS, the frequencies used in the hopping sequence can be selected by the user. To “tune in,” a
listener must know the number of frequencies selected in the system, the actual frequencies, the order
in which these frequencies are used (the hopping sequence), as well as the dwell time (time for which
a hopping frequency exists). In this way, the FHSS modulation acts as a layer 1 encryption process.

Concerning noise effects, FHSS systems can operate with a signal-to-noise ratio (SNR) of about 18 dB.
Frequency modulation, or frequency shift keying (FSK), is often used in frequency hopping systems.
However, it is used infrequently in direct sequence systems because when a direct sequence signal
passes through a squaring or frequency doubling circuit, a carrier at twice the signal’s center frequency
is produced. This twice frequency narrowband carrier contains any modulation impressed on the direct
sequence signal. Thus, with analog modulation it is possible for the signal to be demodulated without
any prior knowledge of the pseudo-random spreading code.

Table 2. Received Signal Samples for Different Instants

Sample at t = tn =
nTS for n =

0 1 2 3 4

R(t) b(0)sin(Θ) b(t1)cos(Θ) -b(t2)sin(Θ) -b(t3)cos(Θ) b(t4)sin(Θ)

Vif1 b(0)sin(Θ) 0 - b(t2)sin(Θ), 0 b(t4)sin(Θ)

Vif2 0 b(t1)cos(Θ), 0 -b(t3)cos(Θ) 0

r(t)

I1

I0

I1

I0

0

0

I

Q

CORDIC
in Vector

Mode
b(t)
65

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 4 shows the frequency hopping process. The carrier signal is at different frequencies at different
times while retaining the same transmitting power.

Figure 4. Frequency Hopping

FHSS Modulator
An FHSS modulator (see Figure 5) is the integral element of the cordless phone transmitter. It contains
one pseudo-noise (PN) sequence generator, which generates a pseudo-random code. A 6-bit PN
sequence generator generates 64 hopping frequencies. The characteristic equation and the seed value of
the PN sequence generator decide the output pseudo random number sequence. The PN sequence
generator output is fed to a frequency synthesizer, which generates 64 frequencies in a 5- to 12-MHz
band in a pseudo-random fashion. See references [4] and [5] on page 80 for more details.

The CORDIC algorithm implements the frequency synthesizer. We used a slow-frequency hopping
scheme in our project. In this scheme, a particular carrier frequency exists for more than one data
symbol duration. The hopped frequency pattern is up-converted to the 32.3- to 39.3-MHz frequency
range so that the final output frequencies of the cordless phone are in the range of 43 to 50 MHz.

See “Design Description” on page 71 for the Simulink and Quartus® II implementation details.

Figure 5. FHSS Modulator

Key:
Light blue blocks were designed using Altera IP blocks.
White blocks were designed by us.
Pink blocks were implemented by instantiating Altera IP blocks.

FHSS Receiver
At the receiver, the FHSS demodulator needs a synchronizing circuit, which ensures that the receiver’s
pseudo-random code generator is synchronized with the transmitter. When the transmitter and receiver
are synchronized, the user is unaware that the transmitter and the receiver are rapidly changing carrier

Time

Desired Signal Hops from
One Frequency to Another

Frequency

Power

PN
Generator

Clk Frequency
Synthesizer

BPF1
(5 to 12 MHz)

Mixer

27.3 MHz
Frequency
Synthesizer

BPF2
(32.3 to 39.3 MHz) Mixer

Digital FM
Signal

(10.7 MHz)

FHSS Output
(43 to 50 MHz)
66

SOPC-Based Cordless Phone
frequencies. The following sections describe the synchronization scheme implementation (see
references [3] and [4] for more information).

FHSS Synchronization
The synchronization circuit (see Figure 6) has the following elements:

■ Mixer

■ Bandpass filter centered at the FM intermediate frequency (10.7 MHz) with a bandwidth that has
twice the spacing between any two adjacent frequency channels in the hopped spectrum 2fh where
fh = the available bandwidth/number of hopping channels. In our project, 2fh is equal to
2 x (12 - 5)/64 MHz or 0.21875 MHz.

■ Envelope detector

■ Comparator

■ PN generator

■ Frequency synthesizer

■ Clock generator

Figure 6. FHSS Demodulator and Synchronization Circuit

Key:
Light blue blocks were designed using Altera IP blocks.
White blocks were designed by us.
Pink blocks were implemented by instantiating Altera IP blocks.

We used the special sampling technique and CORDIC algorithm to implement the digital envelope
detector. We implemented the frequency synthesizer digitally using a direct digital frequency
synthesizer (DDFS) and the CORDIC scheme.

MixerFHSS
Signal BPF1

(10.7 MHz)
Envelope
Detector

Threshold
Value

Comparator
C

+ -

BPF2
(32.2 to 39.3 MHz)

27.3 MHz
Frequency
Synthesizer

BPF3
(5 to 12 MHz)

Frequency
Synthesizer

PN
Generator

Clock
Generator fH

On/Off Control

Mixer
67

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
For insight into the functionality of synchronization circuitry and the FHSS demodulator, assume that
the receiver has a carrier frequency that does not match the transmitted frequency. In this case, the mixer
does not generate the desired modulated signal centered on fIF (i.e., 10.7 MHz) and the narrow bandpass
filter’s output amplitude (BPF1) is very low, resulting in a low amplitude at the envelope detector’s
output.

The comparator compares the output of envelope detector with a threshold value. When the detector
output is less than the threshold value, the comparator produces a zero output. The comparator output
works as an on/off control for the PN sequence generator’s clock generator. If the on/off control output
is zero, the PN generator output is fixed at the seed value. This setup causes the receiver’s frequency
synthesizer to generate a fixed frequency until the PN generator output changes.

If the incoming frequency matches the receiver’s synthesizer frequency, the mixer generates the
modulated signal centered on fIF (or 10.7 MHz). Then the BPF1 output and the envelope detector are
greater than the threshold voltage of the comparator, which in turn generates a high output. The
comparator’s high output enables the receiver PN generator clock, and afterwards the receiver
frequency matches the transmitter frequency and full synchronization is maintained.

Synchronization Challenges
FHSS synchronization has many technical design issues, specifically:

■ Threshold voltage—Deciding the comparator’s threshold voltage is complicated. There is no
algorithm for deciding the threshold voltage, and the threshold voltage is fixed after performing
several iterations.

■ Synchronization latency—Our scheme uses a serial synchronization architecture, which uses the
least area on the FPGA. The design could implement more than one block with each block having
a different seed value and expecting a different transmitted frequency. Searching for the
transmitted frequency in parallel reduces the synchronization latency.

Nios II Processor Advantages
Using the Nios II processor gave us the following advantages:

■ The customizable Nios II processor provides high performance and supports flexible, low-cost
product development.

■ The Nios II processor’s customizable instruction set accommodates complicated arithmetic
operations. Additionally, it accelerates algorithm processing, which provides faster execution than
implementing these operations in software.

■ A configurable design enhances system performance and allows us to upgrade the hardware and
software on-site easily. Additionally, it helps prevent our system from becoming obsolete.

■ The Nios II IDE enables phased design implementation. We can implement system blocks
separately, integrate them with the Nios II processor, and test them on the chip. This design style
provides a controlled development environment.

■ Implementing the processor, peripherals, memory, and I/O interface in a single FPGA reduces the
total system cost.

■ We can perform rapid prototyping and final system implementation of the original design concept
in a short time with the Nios II processor.

■ The Nios II processor can be customized and reconfigured. For example, it supports three
processor cores, peripherals, the Avalon switch fabric, custom instructions, and hardware
acceleration. All of these functions can be implemented using commonly available Altera FPGAs.
68

SOPC-Based Cordless Phone
■ Using IP optimized for the FPGA architecture, we can easily redesign standard functions, rapidly
customize hardware peripherals, focus on design partitioning, and improve our design knowledge.

■ Integrated development kits, the Quartus II software, SOPC Builder, and the SignalTap® II
embedded logic analyzer provide a complete set of test and debug tools for hardware design. With
the Nios II IDE, we can simplify the software design and development tasks, such as program
editing and debugging.

Performance Parameters
To simplify the design, we preferred to use a development board that has an FPGA with a large number
of logic elements (LEs), an on-board analog-to-digital converter (ADC), and on-board digital-to-analog
converter (DAC). Therefore, we implemented the design using the Stratix® II development board,
which features the Stratix II EP2S60F1020C4 FPGA. Using this FPGA avoids area concerns because
Stratix II devices are the biggest FPGAs available in the market. According to our estimates, this project
consumes more than 90% of the LEs in the Cyclone II EP2C35 device, which is on the Development
and Education (DE1) board.

Table 3 shows the resource usage for our project using the Stratix II board.

Design Architecture
This section describes the hardware and software design architecture.

Hardware
Figure 7 shows the cordless phone’s general transmitter architecture (analog components are shown in
lavender). The ADC receives the input from the microphone, which is converted into a digital signal.
This digital signal frequency modulates a carrier of 10.7 MHz using a digital FM modulator. The FM
modulator output is converted into a serial data stream and is fed as the input to the digital FHSS
modulator (for details see “FHSS Modulator/Demodulator” on page 65). The signal is up-converted to
the 43- to 50-MHz range and fed to the antenna after amplification by the power amplifier. In our
project, the ADC, DAC, power amplifier, BPF, and microphone are analog components. The FM
modulator and FHSS modulator are completely implemented as a digital system in the FPGA.

Figure 7. Cordless Phone Transmitter

Table 3. Resource Usage

Parameter Value
Device EP2S60F1020C4

Tool Used Quartus II version 6.0

Total ALUTs 25,731 out of 48,352 (53.22%)

Total Memory Bits 426,164 out of 2,544,192 (16.75%)

Total PLL 10 out of 12 (83.33%)

Total Registers 11,790

Microphone ADC
FM

Modulator
FHSS

Modulator

Power
Amplifier

BPF
(43 to 50 MHz) DAC
69

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 8 shows the cordless phone receiver. The received signal is passed through a bandpass filter
(BPF) (43 to 50 MHz), whose output is fed to a low-noise amplifier. The signal is digitized using an
ADC. The ADC output is fed to a digital FHSS demodulator, which has frequency down conversion
and synchronization blocks. When there is perfect synchronization between the transmitter and
receiver, the FM modulator activates. The FHSS demodulator output is an FM signal centered around
10.7 MHz. This signal is demodulated using a digital FM demodulator and is fed to the DAC. After
conversion of the digital signal into analog, the DAC output is fed to a low-pass filter (LPF) with a
3.4-kHz cutoff frequency and finally fed to the speaker.

Figure 8. Cordless Phone Receiver

Software Flow Chart
Figures 9 and 10 show the software flow charts for the cordless phone’s transmitter and receiver,
respectively. The whole transceiver can be called using a custom instruction in the Nios II processor.
Using software, we can change the seed value of PN generators and the modulation technique to
quadrature phase shift keying (QPSK). However, our design is currently focused on the FM/FHSS
modulation technique.

Figure 9. Transmitter Flow Chart

BPF
(43 to 50 MHz)

Low-Noise
Amplifier (LNA)

FHSS
Demodulator

Speaker DAC

ADC

FM
Demodulator

LPF

Yes

End

Start

Load the Seed Value to
the Transmitter PN Generator

Get the Signal Samples

Pass the Samples to the
FM/FHSS Modulator

Did the Call End?

No
70

SOPC-Based Cordless Phone
Figure 10. Receiver Flow Chart

Design Description
We implemented the SOPC-based cordless phone project in 5 phases:

1. Modeling and conceptualization of digital FM generation/demodulation.

2. Modeling and conceptualization of digital FHSS modulation/demodulation.

3. Designing cordless phone transmitter (FM generation and FHSS modulation).

4. Designing cordless phone receiver (FM and FHSS demodulation).

5. Creating the whole system as a Nios II custom logic block.

Phase 1 and 2 Implementation
We implemented phases 1 and 2 using The MathWorks MATLAB software and Altera’s DSP Builder,
which links the MATLAB and Simulink software with the Quartus II software. In this phase, we used
Altera-provided DSP Builder blocks and we imported our Verilog HDL design entities into the
Simulink model file using HDL import blocks. This method let us quickly prototype the design and
verify the design concepts. Refer to “Appendix” on page 80 for the Simulink block diagrams.

Figure 11 shows the FM generation simulation result in Simulink. We used the CORDIC as the
universal modulator for generating the FM wave. The message signal is a 3,300-Hz sinusoidal wave.
The FM signal has a center frequency of 10.7 MHz and a frequency deviation of 75 kHz.

Yes

End

Start

Load the Seed Value to
the Receiver PN Generator

Get the Signal Samples

Pass the Samples to the
FM/FHSS Modulator

Did the Call End?

No
71

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 11. FM Generation
Channel 1 is the message signal, channel 2 is the FM wave

Figure 12 shows the result of FM demodulation using the special sampling technique. As shown in the
figure, after a small delay, the final demodulated wave has the same period but different amplitude.

Figure 12. FM Demodulation using CORDIC and Special Sampling Theorem
Channel 1 is the message signal, channel 2 is the FM signal, and channel 3 is the FM demodulated signal using the special
sampling theorem

Figure 13 shows output of the 6-bit PN generator with a count from 1 to 63. We implemented the PN
generator using the HDL import block. The second channel shows the corresponding frequency
generated using direct digital frequency synthesis (DDFS) and CORDIC. As the PN sequence generator
output changes, different frequency components can be obtained.
72

SOPC-Based Cordless Phone
Figure 13. PN Generator Output (Channel 1) and FHSS Signal (5 to 12 MHz)

Figure 14 shows the 10.7-MHz FM signal that has been spread to 43 to 50 MHz.

Figure 14. 10.7-MHz FM Signal (Channel 1) and 43- to 50-MHz FHSS Signal (Channel 2)

Figure 15 shows the output at various points in the synchronization loop. Channel 1 shows that the BPF
output is negligible if the receiver’s PN generator sequence is not synchronized with the transmitter. In
this case, the receiver’s frequency synthesizer output frequency is not equal to the transmitter frequency
synthesizer; therefore, the product of the received signal with the receiver frequency synthesizer’s
output frequency is not centered at 10.7 MHz. The BPF output (centered at 10.7 MHz and a bandwidth
of 0.21875(2fh)) is negligible. Because the BPF output is negligible, the envelope detector output is
negligible.
73

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 15. Synchronization Process
Channel 1 is the BPF output, channel 2 is the envelope detector output, and channel 3 is the threshold detector output going from
0 to 1

When the receiver’s PN sequence generator is synchronized with the transmitter’s PN sequence
generator, the BPF produces a larger amplitude output. The envelope detector detects the signal’s
envelope and its output is compared to the threshold value of the comparator (in our Simulink model
the threshold value is .8E-5). As soon as the envelope detector output crosses the threshold value, the
comparator outputs a 1, which enables the receiver PN generator’s clock. Thereafter it remains
synchronized with the transmitter PN sequence generator.

Figure 16 shows the synchronization between the transmitter PN sequence generator and receiver PN
generator. When they are synchronized, the on/off control (channel 3) goes low and activates a counter
in the receiver PN sequence generator. If they are not synchronized, the receiver PN sequence generator
remains at its seed value, which is 15 in our Simulink model. We kept the receiver clock a little bit faster
to compensate for the inherent delay in the synchronization loop.
74

SOPC-Based Cordless Phone
Figure 16. Synchronization of the Transmitter and Receiver PN Generators
Channel 1 is the transmitter PN generator, channel 2 is the receiver PN generator, and channel 3 is the clock enable for the
receiver PN generator (active-low signal)

Phase 3 and 4 Implementation
In the third and fourth phases, we wrote Verilog HDL code for the digital blocks and testing using real-
time signals.

Our design requires two ADCs and DACs. We used the Stratix II DSP development kit, which has two
high-end ADCs and DACs with a maximum sampling rate (and number of bits) of 125 million samples
per second (MSPS) (corresponding to 12 bits) and 165 MSPS (corresponding to 14 bits), respectively.
The on-board FPGA is the EP2S601020C4 device.

We faced the following implementation problems:

■ The development board’s ADC does not support low-frequency signals, such as voice signals.
Therefore, we had to upconvert the voice signal using an AM modulator to the range of hundreds
of kHz. This up-converted signal is processed further in the FPGA after it is passed through the
ADC. In the actual implementation scheme, the AM modulator must be implemented using an
analog circuit. We could use an integrated circuit (IC) such as the MC1496 device for this purpose.

■ The Stratix II DSP development board has a 14-bit DAC and a 12-bit ADC. Therefore, we had to
reduce the digital filter resolution to either 14 or 12 bits, which affected the final output resolution.

We used the Quartus II SignalTap II logic analyzer to view the signals coming from and into the FPGA
on the board. This feature allowed us to debug and verify the design.

For the digital frequency modulator and FHSS modulator design, we used an unrolled pipelined
CORDIC as the universal modulator. This CORDIC has five pipelined stages and can generate a higher
frequency compared to a simple CORDIC. For FM modulator testing and verification, we fed a high-
frequency message signal to the ADC.

Figure 17 shows the FM modulation result captured by the SignalTap II logic analyzer.
75

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 17. 100-kHz Signal Digital FM Generation SignalTap II Logic Analyzer Output
Channel 1 is the ADC clock, channel 2 is the digital frequency modulated wave, and channel 3 is the message signal

To generate the hopping frequency pattern, we used a digital frequency hopping modulator. The 6-bit
PN sequence generator determines the unrolled CORDIC output frequency. This system generates 64
pseudo-random frequencies in the 5- to 12-MHz band.

Figure 18 shows the system output captured the SignalTap II logic analyzer.
76

SOPC-Based Cordless Phone
Figure 18. Digital FHSS Generation SignalTap II Logic Analyzer Output
Channel 1 is the ADC clock, channel 2 is the DAC clock, channel 3 is the digital frequency hopped wave, and channel 4 is the
PN generator

As mentioned previously, FHSS synchronization requires a narrow-band BPF (BPF1 in Figure 6 on
page 67) that is centered at an FM intermediate frequency (i.e., 10.7 MHz) and has a bandwidth twice
the hopped frequency (2fh). We generated the BPF using the Altera-provided FIR Compiler MegaCore®
function. The BPF has 100 taps and is implemented as a distributed arithmetic full parallel filter with
level 1 pipelining. It uses signed 2’s complement arithmetic. The Stratix II DSP development board has
a 12-bit ADC. To feed the BPF output, we truncated the full resolution filter output to 12 bits. Figure 19
shows the output of this filter when the 10.7-MHz signal is applied (as tapped by the SignalTap II logic
analyzer).

Figure 19. Cordless Phone Receiver’s Narrow-Band BPF Output
Channel 1 is the full resolution BPF output, channel 2 is the 10.7-MHz signal, channel 3 is the DAC clock, and channel 4 is the
12-bit BPF output

As shown in Figure 6 on page 67, an envelope detector is an essential part of the synchronization loop.
The envelope detector is simply an AM demodulator. We implemented the envelope detector using the
special sampling theorem and CORDIC algorithm. Figure 20 shows the envelope detector output when
the AM signal is applied (as tapped by the SignalTap II logic analyzer). The AM signal is generated on
the FPGA using a pipelined CORDIC algorithm.
77

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 20. Cordless Phone Receiver’s Narrow-Band BPF Output (Envelope Detector)
Channel 1 is the full resolution envelope detector output, channel 2 is the envelope detector truncated output, and channel 3 is
the AM signal input message to the envelope detector

We built the FM demodulation process using an unrolled, pipelined CORDIC and the special sampling
technique. Figure 21 shows the FM demodulator result. The FM modulator generates the FM input,
which is fed to the digital FM demodulator.

Figure 21. Digital FM Demodulation
Channel 1 is the FM signal and channel 2 is the 100-kHz FM demodulated signal

To implement the mixers, we proposed implementing the digital AM demodulator using CORDIC. See
“CORDIC as a Universal Modulator” on page 63 for the theory of AM modulation using CORDIC.

Phase 5 Implementation
The fifth design phase involved using SOPC Builder and the Nios II processor to accelerate our time-
critical application by converting our design into a Nios II custom instruction. The custom instruction
has two elements:

■ Custom logic block—This block is the hardware that performs the user-defined operation. The
Nios II processor can include up to five user-defined custom logic blocks. Our custom instruction
logic is directly connected to the Nios II arithmetic logic unit (ALU) as shown in Figure 22. We
designed two custom logic blocks, one for the transmitter and one for the receiver, and placed
them on separate FPGAs.
78

SOPC-Based Cordless Phone
■ Software macro—The macro allows the system designer to access the custom logic via the
software code. We can add 256 custom instructions to the Nios II processor. The transmitter and
receiver custom logic blocks can be accessed using custom instructions.

Figure 22. Nios II ALU Custom Instruction Logic

The Nios II processor sets the transmitter and receiver seed values. It can also choose the modulation
scheme. We can use the processor to use another digital modulation scheme (such as QPSK) instead of
FM and study the performance benefits.

Design Features
Our design has the following features:

■ It implements an FM modulator and demodulator for real-time applications using the CORDIC
algorithm and an unrolled pipelined CORDIC structure.

■ It implements a digital FHSS transmitter and receiver.

■ It implements a FHSS receiver and transmitter synchronization scheme.

■ Because the Nios II processor is reconfigurable, in the future we can enhance our design to meet
real-time and non-real-time application requirements with very low development costs.

■ The Nios II processor enables optimum hardware/software development by executing more
computationally intensive tasks in hardware and the remaining tasks in software.

■ The Nios II embedded processor delivers a good price-to-performance ratio.

■ The Nios II processor lowered our technical development hurdles. We can use the Nios II
processor to implement the processor, peripherals, memory, and I/O interface on a single FPGA,
thereby reducing the total system cost.

■ Altera’s comprehensive development tools such as DSP Builder, the SignalTap II logic analyzer,
and optimized IP functions reduced our software development cost, letting us focus more
attention on the cordless phone’s design details.

&

Out

result
dataa

datab

A

B

Nios II Embedded
Processor

Custom
Logic

Nios II
ALU

To FIFO, Memory, or Other Logic
79

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
In the future, we would like to enhance the cordless phone in the following ways:

■ Using the Nios II embedded processor, the cordless phone could support VoIP and Skype services.

■ By upgrading the operation frequency, the cordless phone with the FHSS scheme can be used for
secure military communication.

■ By using the flexibility of the Nios II processor, we could add many innovative features such as
support for a color LCD screen, SMS service, screen savers, and wallpapers.

■ Using SOPC Builder concepts, we could enhance the cordless phone base station to handle more
than one handset.

■ We could implemented the transmitter and receiver on the same FPGA.

Conclusion
During the design process, we learned how the Nios II processor’s flexibility and versatility can help us
and we learned how the Nios II processor can keep our designs in pace with the emerging industrial
requirement trends. Using the Nios II processor, we reduced our development costs, material costs, and
turnaround times, which improved our competitiveness. Using Nios II custom instructions provided an
added advantage for design customization.

SOPC Builder gave us the exact set of CPUs, peripherals, and interfaces needed for our application. On
the whole, SOPC concepts allowed us to create a more flexible, dynamically reconfigurable, and
computationally intensive implementation.

The support and guidance we received from the Altera web site helped us complete the implementation
in time.

References
[1]Ray Andraka. “A survey of CORDIC algorithms for FPGA based computers,” International
Symposium on Field Programmable Gate Arrays 1998 Proceedings, (1998): pp 191 - 200.

[2] James Tsui. “Digital Techniques for Wide Band Transmission,” Artech House Publishers, (1995).

[3] Taub, Herbert and Schilling, Donald L. Principles of Communication Systems. New Delhi, Tata
McGraw Hill Publication.

[4] Dixon, R.C. Spread Spectrum Systems. New York: John Wiley & Sons, Inc., 1976.

Appendix
This appendix provides Simulink models and block diagrams for our design.

Simulink Models
The following sections provide Simulink models for the modulators and demodulators in the system.

FM Modulator
Figure 23 shows the FM modulator implementation using CORDIC as the universal modulator. A
polar-to-cartesian converter acts as the CORDIC. Adders were instantiated from the DSP Builder
library.
80

SOPC-Based Cordless Phone
Figure 23. FM Modulator Simulink Model

FM Demodulator
Figure 24 shows the FM demodulator implementation using the special sampling technique (“I and Q
Signal Generation Using a Special Sampling Scheme” on page 64).Two T flipflops were used as the
frequency divider. The first T flipflop divides the sampling frequency (it was 171.2 MSPS in this
design) by two, another divides it by four. We added a transport delay element at the path of Q channel
output, which insured that the I and Q channel outputs would be available at the same time.

Figure 24. FM Demodulator Simulink Model

FHSS Modulator
Figure 25 shows the FHSS modulation scheme. We used CORDIC as the frequency synthesizer. We
instantiated adders from the DSP Builder library. The PN generator contains an HDL import block,
which imported HDL code for the PN generator.
81

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 25. FFHSS Modulator Simulink Model

FHSS Demodulator
Figure 26 shows the FHSS demodulator. The envelope detector was implemented as the AM
demodulator. We designed the frequency synthesizer using CORDIC [1]. The receiver PN generator
contains an HDL import block, which imported the PN generator HDL code.
82

SOPC-Based Cordless Phone
Figure 26. FHSS Demodulator Simulink Model

Block Diagrams
The following sections provide block diagrams for various system blocks.

FM Modulator/Demodulator
Figure 27 shows the FM modulator and FM demodulator block diagram. The figure combines the FM
modulator and FM demodulator Block Design Files (.bdf) to show the overall design.
83

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 27. FM Modulator/Demodulator Block Diagram

FHSS Modulator
Figure 28 shows the FHSS generation BDF. The external environment provides the seed value. The
module spread contains one FM modulator, which generates the output frequency depending on the PN
generator output value.
84

SOPC-Based Cordless Phone
Figure 28. FHSS Generation Block Diagram

AM Demodulator or Envelope Detector
Figure 29 shows the envelope detector or AM demodulator. bpf1 is the bandpass filter, which is used
for synchronizing the FHSS receiver (see “FHSS Synchronization” on page 67).

Figure 29. AM Demodulator or Envelope Detector Block Diagram
85

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
86

Nios II-Based Intellectual Property Camera Design
Third Prize

Nios II-Based Intellectual Property
Camera Design

Institution: Xidian University

Participants: Jinbao Yuan, Mingsong Chen, Yingzhao Shao

Instructor: Ren Aifeng

Design Introduction
With the development of network technology, people have higher requirements for monitoring
functions. By revolutionizing the traditional monitoring methodology, an intellectual property (IP)
camera provides a good solution for remote real-time monitoring. With this technology, the user can
check the safety, in real time, of the locations such as the home, office, etc. via a web site or video
browser.

At present, most IP cameras on the market are implemented with hard-core microprocessors (MCUs)
such as a special media processor. Our design proposes a network video transmission solution based on
the Altera® Nios® II embedded soft-core CPU, implementing video data transmission via Ethernet. To
reduce the data traffic and improve the video image’s network transmission speed, the design uses an
extraction algorithm and implements the video data transmission over the local area network (LAN)
with the user datagram protocol (UDP). On the receiving side, it successfully displays data on the video
terminal with the National Instruments LabWindows/CVI software. Altera’s FPGAs are well known by
engineers for their superb performance and configurability. The Nios II processor-embedded system
features excellent flexibility, scalability, and upgrade options. Additionally, the Nios II soft-core
processor embedded in a Cyclone® II FPGA is low cost and has performance up to 100 DMIPs, making
it very competitive in the marketplace.

Hardware Platform
Using the Terasic Technologies, Inc Development and Education (DE2) board as the core hardware
platform, our design implements video data collection, transmission, and remote display with an
87

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
National Television System Committee (NTSC) camera, liquid crystal display (LCD), etc. Figure 1
shows a block diagram of the system.

Figure 1. System Block Diagram

Software Platform
The following sections describe the software platform.

Embedded Development Software
We used Altera’s Quartus® II version 7.0, SOPC Builder, the Nios II Integrated Development
Environment (IDE), etc. to develop the FPGA design in hardware logic and embedded system software.

As Altera’s fourth-generation programmable logic development tool, the Quartus II software provides
the complete multi-platform development environment designers need. It integrates such development
environments as system and programmable logic components design, combination, layout and
threading, as well as verification and simulation. The overall development environment specially
designed for a system-on-a-programmable-chip (SOPC) is the basis for SOPC design.

SOPC Builder is an SOPC development tool integrated into the Quartus II software that helps users
create a complete system. Designers can use a variety of free components that are integrated in SOPC
Builder or define their own peripherals or commands. As long as designers make configuration choices
as required during the design process, they can build a system with reasonable resource usage.
Furthermore, SOPC Builder automatically generates an in-chip bus structure, arbitration, and interrupt
logic for each hardware component, and generates headers compliant with subscribed system features
for successive software design (these headers define memory mapping, interrupt priority, and the data
structure of each peripheral register space). When the hardware system changes, SOPC Builder
automatically updates these headers and provides software designers with an automatic configuration
interface, showing flexibility that ordinary hard-core processors cannot achieve.

The Nios II IDE is the basic development tool for the Nios II embedded processor: the user can
complete all software development tasks, including editions, compilation, debugging, and program
downloading, with the Nios II IDE. The Nios II IDE provides a uniform development platform for all
Nios II processor systems. With only a PC, an Altera FPGA, and a JTAG-capable download cable,
software developers can write data into the Nios II processor system and communicate with it.

Video In

VGA
Interface

Ethernet
Interface
88

Nios II-Based Intellectual Property Camera Design
Camera Display Development Software
The display is an integral part of an IP camera. Although various PC applications are available on the
market, due to time limitations we chose a development platform that was easy to learn, easy to develop,
and had the functions we needed.

In our project, we created an Ethernet terminal application using the LabWindows/CVI software, which
is an interactive C language development platform. By combining the powerful, flexible C language
platform with a professional measuring and control tool for data collection, analysis, and display,
LabWindows/CVI utilizes its IDE, interactive programming method, function board, and rich function
library to strengthen available C language functions. It provides an ideal software development
environment for C language developers and designers to compile a detection system, automatic testing
environment, data collection system, process monitoring system, etc.

The functionality of LabWindows/CVI lies in its rich function library, which not only has regular
program design but also supports complex data collection and device control systems development.
Additionally, the LabWindows/CVI user interface editor enables graphical user interface (GUI)
creation and editing. The user interface library functions allow the design to create and control the GUI
in the program. LabWindows/CVI offers a variety of professional controllers for designing GUI panels
that help the designer build excellent user interfaces.

Function Description
This section describes the design functionality.

Video Collection
The NTSC camera and video decoder chip collect video images and convert them into digital video data
that is compliant with the ITU-R656 standard. The data is sent to the FPGA for additional processing.

Video Compression
The resolution output from the video processing control module is 640 x 480; therefore, each data frame
is 9,216,000 bit (640 x 480 x 30 bits), which is too much bandwidth. To solve this problem, we
converted the resolution to 320 x 240 for lower data traffic, and take the five higher bits in the 10-bit
RGB component signals output by the video decoding module as the lower 15 bits of the 16-bit data
transmitted (add a 0 onto the highest bit).

Local Video VGA Display
Besides remote monitoring, this design is also applicable to short-distance monitoring using a long
video cable. Without processing the data, the transmitted video is smoother and more clear when
displayed at a shorter distance. Figure 2 shows an example of the local video display.
89

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 2. Local VGA Display Example

Ethernet Video Transmission
We implemented the remote monitoring function (which was the original purpose of our design) by
adding an Ethernet control chip to the system with the help of a light-weight TCP/IP (LwIP) protocol
stack. To ensure real-time operation and avoid frame loss, we chose the UDP communication protocol.
Compared to the TCP protocol, the UDP protocol is more appropriate for multi-media data
transmissions. However, to achieve this error-free control protocol, the design includes automatic
packaging and automatic header additions in the transmitter’s UDP error control module. The receiver
performs the reverse function to provide a normal display.

Remote Display using the Ethernet Terminal
In this project, the computer’s Ethernet terminal connects to the server (which is the DE2 board),
receives and displays video data via Ethernet, and saves and plays back video fragments in real time. In
the display’s real-time window, the user can see the remote video transmitted via the network. The Save
function allows the user to save the video data of interest (e.g., when an abnormality occurs during
monitoring). When the user clicks Playback, the saved video plays. The Exit button logs out of the
application. Figure 3 shows an example of the remote video display.
90

Nios II-Based Intellectual Property Camera Design
Figure 3. Real-Time Remote Video Display Example

IP Address Display
An LCD panel automatically displays the IP address allocated by the video collection server (the DE2
board) and the name of the system. Figure 4 shows the LCD panel display.

Figure 4. LCD Display

Performance Parameters
This section describes the design’s performance parameters.

Video Parameters
The video parameters are:

■ Input video standard: NTSC

■ Input video resolution: 768 x 494

■ Output video standard: RGB
91

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Output video resolution: 320 x 240

■ Data traffic: 320 x 240 x 15 bits/frame

FPGA Resource Utilization
Figure 5 shows the FPGA resources used in this design.

Figure 5. FPGA Resource Utilization

DE2 Development Board Resource Utilization
The design uses the following DE2 board resources:

■ FPGA: Altera Cyclone II EP2C35 FPGA

■ Dynamic memory: 8-Mbyte SDRAM

■ Static memory: 512-Kbyte SRAM

■ Flash memory: 4-Mbyte flash device

■ 50-MHz, 27-MHz crystals, oscillators

■ Switch, key, LED, LCD

■ Video decoder chip: ADV7181B device

■ 10-bit video digital-to-analog (D/A) converter: ADV7183 device

■ XSGA video port
92

Nios II-Based Intellectual Property Camera Design
Design Architecture
The system design makes full use of the DE2 board’s hardware resources. The whole system includes
a camera, the DE2 board, a PC, and a monitor. The system provides video collection, video processing,
and video transmission and display. Figure 6 shows the overall system structure.

Figure 6. Overall System Structure

The camera generates the video source for the system, and inputs analog video signals to the DE2 board
via the video-in port. The DE2 board’s ADV7181B video decoder chip decodes the analog video signal,
converting it to a digital video signal that is compliant with the ITU-R656 standard. The system sends
the signal to the FPGA’s internal video decoding module to convert the YCbCr color-difference signal
to an RGB tri-chromatic signal. The signal is then sent to the video compression module, which saves
the compressed RGB three-way data into SRAM. Every time a frame is saved, the data transmission
control module sends RGB data in the SRAM to the client for display via the DM9000A device.
Controlled by a toggle switch, the user can display compressed or uncompressed RGB data on the VGA
display.

Design Methodology
This section describes our design methodology.

System Function Design
The system design includes a video decoding module, a video compression module, an SRAM bus
switch module, and a video transmission module. Figure 7 shows the system diagram.

Camera

Analog Video
Signal

DE2 Board SDRAM
(8 Mbytes)

Flash
(4 Mbytes)

SRAM
(512 Kbytes)

TV Decoder

YCbCr

BS

VS

FPGA (Cyclone EP2C35F672C6

SDRAM
Control

Interface

Flash
Control

Interface

I C
Master

Nios II
Core

Avalon Bus

LCD
Control

Interface

LED
Control

Interface

VGA
Control

Interface

LCD LED Switch

DM9000A

XSGA
10-Bit
DAC

RGB
Video Data

PC

VGA
Monitor

2

93

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 7. System Diagram

Embedded System Design
The embedded system design consists of hardware and software.

System Hardware Design
The following sections describe the modules in the hardware design.

Video Decoding Module
The video decoding module has two functions:

■ Configuring the video decoder chip ADV7181B.

■ Converting video data from the video decoder chip to RGB format.

Figure 8 shows the video decoding process.

Figure 8. Video Decoding Schematic Diagram

This system has an external NTSC (768 H x 494 V) camera connected to the DE2 board’s video-in RCA
interface. The design uses the I2C bus to configure video decoder chip properly. Figure 9 shows the
hardware implementation.

VIdeo
Decoding
Module

RGB Data Video
Compression

RGB 555
320 x 240

RGB 555 Video
Buffeting
SRAM

Nios II
Processor

Ethernet
Controller

RGB 555

InternetVGA_MUX

VGA Display

I C

Camera Video Decoder VEDIO_to_VGA

RGB Data

HS VS Blank

Configuration

2

94

Nios II-Based Intellectual Property Camera Design
Figure 9. ADV7181B I2C Configuration Schematic

After configuration, the video decoder chip outputs YCBCR video data and control signals according
to the ITU-R656 standard. Because the output data is for interlaced scanning, we designed the
VEDIO_to_VGA module to process the data source interlacing and provide color space conversion.
The module generates RGB video data, horizontal/vertical synchronization in line with the VGA
sequence and blanking signal, etc. Figure 10 shows the hardware implementation.

Figure 10. Video Decoding Schematic

Video Compression Module
Because too much video data can slow the network transmission, we compressed the original video. We
used a simple extraction algorithm to compress the video data: the design extracts every other line and
one of every two points from the original video. Using the algorithm, the video data decreases to one
fourth of the original. Because human eyes are insensitive to color signals, the design takes the five
higher bits of the RGB components to compress the video data to an RGB555 video stream with
320 x 240 resolution. At the same time, the address adds 1 for each pixel point generated. Figures 11
and 12 show the video compression block diagram and hardware schematic.

Figure 11. Video Compression Module Block Diagram

Input Video Data

Input Control Signal

Nios II Write Start Signal

Video
Compression

Module

Compressed Video Data

Compressed Video Data Portfolio

Read SRAM Start Signal
95

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 12. Video Compression Module Schematic Diagram

When the remote Ethernet terminal receives a video request, the Nios II processor sends the
NIOS_OUTCMD0 control signal to the hardware. When the module receives the command, it compresses
the current image frame to generate the pixel to be extracted and the pixel’s address in SRAM. When a
frame is full, the read RAM start signal is sent to the Nios II processor.

SRAM Bus Switching Module
The image is obtained and stored using a hardware description language (HDL), and the Nios II
processor controls the video’s network transmission. The SRAM bus switching module sends the video
data obtained by the hardware to the Nios II processor, and then the Nios II Ethernet controller sends it
to the remote terminal. Figures 13 and 14 show the video compression block diagram and hardware
schematic.

Figure 13. SRAM Bus Switching Module Block Diagram

Figure 14. SRAM Bus Switching Module Schematic Diagram

When the Nios II processor’s NIOS_OUTCMD0 control signal is high, the SRAM bus switching module
writes the output video data from the video compression module into RAM. The hardware notifies the

Nios II Control Signal

Read SRAM Signal

Write SRAM Signal

SRAM Bus
Switch Module

SRAM Pin
96

Nios II-Based Intellectual Property Camera Design
Nios II processor to read using an interrupt. When it receives the read signal, the Nios II processor sends
the NIOS_OUTCMD0 control signal as 0 and the SRAM bus switching module controls the SRAM bus
to connect externally with the Avalon® bus.

Data Transmission Control Module
The data transmission control module generates the read/write control signals. When the client has a
video request, the Nios II processor writes a video frame to the video buffer module’s SRAM and waits
for an external interrupt before it reads data in the buffer module and transfers it to the client. Figure 15
shows the hardware schematic diagram.

Figure 15. Data Transmission Control Module Schematic Diagram

We implemented the data transmission control module in the Nios II soft-core processor. The processor
conducts network initialization to acquire the MAC and IP addresses, receive the remote client’s video
request, control video compression and read/write video buffering, and transfer video data.
97

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Local VGA Display Selection Module
The VGA display selection module controls whether the video displayed on the VGA monitor, i.e., it
chooses whether the video is displayed compressed or uncompressed using a toggle switch. Figure 16
shows the hardware schematic diagram.

Figure 16. VGA Display Selection Module Schematic Diagram

System Software Design
The following sections describe the system’s software design.

µC/OS-II OS
Due to the embedded system’s limited resources and real-time video transmission requirements, we
chose to use the µC/OS-II real-time operating system (RTOS). µC/OS-II is a portable, scalable,
preemptive real-time, multi-tasking OS kernel. It distributes a separate stack for each task and provides
multiple system services for interrupt management. It is easy to load µC/OS-II in the Nios II IDE
provided the µC/OS-II option is selected when constructing the project. More important, the OS is
loaded dynamically according to the hardware platform chosen by the designer in SOPC Builder. To
develop a system, the designer modifies and adjusts the hardware platform to implement the best
configuration. The Nios II IDE loads µC/OS-II automatically according to the modified hardware
platform; therefore, designers do not need to worry about mismatches when changing the hardware
platform.

LwIP Protocol Stack
Our system requires network transmission, so it loads a network protocol. The LwIP protocol stack is
integrated in the Nios II IDE, so we chose that protocol. Altera provides a Nios II port of LwIP, which
enables a fast, open-source access to an Ethernet connection stack. Altera’s LwIP port includes socket
API encapsulation to provide a standard socket API with complete document description. After loading
µC/OS-II, users can add the protocol stack by selecting the corresponding LwIP option.
98

Nios II-Based Intellectual Property Camera Design
System Software Process
The system software consists of three parts (see Figure 17):

■ Initialize the LCD and acquire the MAC and IP addresses.

■ Send control signals to the hardware and control the video data access.

■ Wait for remote client requests and output video data to the video buffer.

Figure 17. System Software Process Flow Chart

Client Application Software Design
We developed the client video display application using the LabWindows/CVI software. The client
communicates with the server using socket programming.

The client’s key function is to receive and display a complete image frame. The client negotiates with
the Nios II processor to regulate the frame’s transmission time. The Nios II processor transfers RGB
data in 5:5:5, but the client displays it in 24-bit bitmap format to enhance the effect. Therefore, the
application uses an algorithm to convert the data from 16-bit RGB to 24-bit RGB image data.

Start

Wait for Remote
Request

No

Yes

Send Write
Instruction

Send Data

Initialization

Wait for
Interruption

No

Yes

Finish
Reading?

Yes

Stop?
NoYes

No
99

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
A display function provides these operations by:

■ Stipulating the number of UDP packages that a frame is divided into when programming the client
application, so that we can easily know the image size and provide a timely display.

■ Using an algorithm to convert from 16-bit RGB to 24-bit RGB image data. The code is as follows:

for(k = 0; k < 153600; k++)
{
rgb555 = (int)buff[k];
rgb555 = rgb555<<8;
rgb555 = rgb555|(int)buff[k + 1];
k = k + 1;
r = ((rgb555 >> 7) & 0xF8);
g = ((rgb555 >> 2) & 0xF8);
b = ((rgb555 << 3) & 0xF8);
buff24[n++] = (unsigned char)r;
buff24[n++] = (unsigned char)g;
buff24[n++] = (unsigned char)b;

}

The received unsigned char data (buff, and two as a unit), is put into the unsigned int data
(rgb555). Then it shifts rgb555 and conducts an 0xFF AND operation to extract three component data
(r, g, and b), puts them into the buff24 memory, and uses them for display.

For the save and playback functions, the problem lies in correctly selecting the data storage time in the
program. Considering the image integrity, we set a mark in software to identify when the client
application starts receiving a complete frame, and then save the data to ensure the integrity of the video
data.

Figure 18 shows the client application flow chart.
100

Nios II-Based Intellectual Property Camera Design
Figure 18. Client Application Flow Chart

Design Features
Our design has the following features:

■ SOPC technology—Making full use of SOPC features, the system uses an FPGA and embedded
soft-core processor and uses the FPGA hardware to collect and analyze data for parallel
processing. With SOPC Builder’s custom peripheral feature, we added the DM9000A device to
the system according to our requirements, enabling the Nios II processor to transmit data quickly.
This method enhances system reliability and reduces power consumption.

Start

Press Start Key?
N

Y

Create Connection
with Nios II

Receive IP
Package

A Complete Frame
of Data

Save?

Convert 16-bit to
24-bit RGB

Display a Frame
of Image

Y

Y

N

N

Playback?

Read a Frame of Data
from Memory

Convert 16-bit to
24-bit RGB

Y

N

Save Data to
Memory

Display a Frame
of Image

Stop Save
101

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Real-time data transmission by compressing video data with an extraction algorithm—Before
transmission, the system compresses the video data using an HDL module. With a simple
compression algorithm, the overall performance of system is greatly enhanced, the visual effect
is ensured, and the transmission efficiency is doubled. Thus, the system will better meet market
demands.

■ SRAM bus switching technology—In this system, we used SDRAM as the program buffer.
Considering the capacity of the single-chip SRAM and SRAM on the development board, we used
SRAM as the image buffer. Because SRAM cannot conduct dual-port operation, we used bus
switching technology. When image data needs to be updated, the SRAM is connected to the data
compression module. After a frame of video data is written into SRAM, the SRAM is connected
to the Avalon bus and the Nios II processor reads the SRAM data for transmission.

■ Custom peripherals—With custom peripherals, any hardware can be connected to the Avalon bus,
and peripherals defined in SOPC Builder can be added into the system. For example, by adding
custom peripherals (such as the DM9000A, I2C bus interface, or SRAM interface) to the system
to expand system performance, the Nios II processor strengthens its peripheral support.

■ Embedded µC/OS-II and LwIP protocol stack—It is difficult for hard-core processors such as
ARM processors to use µC/OS-II. In contrast, the Nios II IDE makes µC/OS-II and the LwIP
protocol stack very easy to use. By integrating µC/OS-II and the LwIP protocol stack into the
Nios II IDE, the system makes OS configuration and other operations part of a friendly GUI,
which speeds software development. Considering the real-time requirements of video
transmission as well as the convenience of adopting standard socket programming, we chose
µC/OS-II OS. Because the LwIP protocol stack supports standard socket programming, software
development times are further reduced.

■ Nios II technology—Compared with inquiry methods, Nios II interrupt technology greatly
improves the CPU’s efficiency. In the Nios II processor, interrupt processing is easy to use. When
an abnormality occurs, all functions except the interrupt service request (ISR) are performed by
the hardware abstraction layer (HAL) system library code without operations required by the
designer. Designers only need to compile the interrupt processing program in a specified format
and register the interruption to the HAL during system initialization. In our system, the Nios
processor can only execute operations when it receives the read RAM enable signal from the
video processing control module. Because inquiry mode lowers CPU efficiency, we used
interrupts to solve this problem.

■ Enhanced display of upper computer images—Outputting video data through Ethernet
transmission technology, the client application software can view, save, and play video. To
enhance the display, we used an algorithm in the client application to convert 16-bit RGB data to
24-bit data.

Conclusion
This design gave us a better understanding of SOPC technology and the design process allowed us to
learn, attempt, and innovate. During the short period of time that Altera hosted the SOPC embedded
processor contest, we received an overview of SOPC solutions and the Nios II soft-core processor, and
changed our viewpoint on FPGAs. SOPC design makes an FPGA single function, because all external
control devices (e.g., single-chip) operations are integrated into the FPGA. The designer can add or
remove Nios II peripherals and interfaces as required, facilitating the design process. Because the
hardware does not have to be changed when the design changes, SOPC design provides a seamless
interface between the processor and hardware logic, free from the problems of hardware threading and
ensuring system stability. In SOPC design, the software and hardware are developed collaboratively,
enabling synchronized FPGA logic development and Nios II soft-core program development in the
same FPGA, which greatly increases the design efficiency.

We had a variety of problems to solve during our development process with the DE2 board. For
example, we started using an inquiry method but found it to be inefficient. We then tried using
102

Nios II-Based Intellectual Property Camera Design
interrupts. As long as the status of programmable I/O (PIO) interfaces changes, the embedded system
interrupts, improving the efficiency of the video data collection and the transmission speed.

Some design upgrades we would like to implement in the future are:

■ Using a standard compression algorithm (e.g., H.263) to reduce the data bandwidth and
implement access to the Internet. In this design, we planned to use a simple extraction method as
our algorithm to compress video data. Due to time constraints and the complex HDL or C
language required for the video data compression algorithm, we eventually abandoned the idea.
The current design is based on a LAN, but a data compression algorithm is necessary when the
system accesses a wide area network (WAN). By improving our HDL design, we could implement
compression in the FPGA. Alternatively, we could design the algorithm using C and convert it into
HDL using the C2H Compiler.

■ Using the real-time transmission protocol (RTP) to improve the transmission speed.

During this contest, we learned the importance of collaboration. Together, we shared the experience of
studying a technical problem overnight. In the final stages, although facing a lot of pressure, we were
able to finish the project sucessfully. We thank our tutor Mr. Ren Aifeng who supported us during the
project. Without his help, we would not have completed it. Although our design is imperfect, we gained
valuable knowledge and friendship by participating in the contest. If possible, we plan to improve our
design in the future.

Finally, we thank Altera for hosting the contest.
103

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
104

Industrial Applications
Industrial Applications

This section includes projects that can be used as industrial applications, including:

Police Vehicle Support System with Wireless Auto-Tracking Camera .. 107

Smart Self-Controlled Vehicle for Motion Image Tracking.. 125

RTOS Acceleration Using Instruction Set Customization .. 143

Smart Bus Station Sign ... 195

Aerial Photographic System Using an Unmanned Aerial Vehicle .. 157

Laser Direct Writing Digital Servo Controller Based on SOPC Technology 173

FPGA-Based Smart Induction Motor Controller Design.. 205

Intelligent Solar Tracking Control System Implemented on an FPGA... 217

Nios II Processor-Based Fingerprint Identification System.. 247

Fingerprint Identification System Based on the Nios II Processor ... 281
105

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
106

Police Vehicle Support System with Wireless Auto-Tracking Camera
First Prize

Police Vehicle Support System with
Wireless Auto-Tracking Camera

Institution: Inha University, Korea Aerospace University, Hongik University

Participants: Sung Woong Joo, Ho Seong Suh, Young Je Moon

Instructor: Professor Tak Don Han

Design Introduction
Our project, a police vehicle support system with a wireless auto-tracking camera, has three main goals:

■ To improve police vehicles’ ability to collect and interpret data.

■ To provide real-time image transfers and an information sharing system between police vehicles
and the command center.

■ To create a high-performance, affordable solution using system-on-a-programmable-chip (SOPC)
design concepts.

Existing police vehicle tracking systems can lose a suspected vehicle on screen because the vehicle’s
camera is fixed. Our project provides an auto-tracking solution that continuously shows the suspected
vehicle’s position on screen. To achieve this goal, we use an automated threshold calculation method
that reduces the effect of light.

The pan-tilt camera uses a step motor. The camera moves right, left, up, and down. We designed the
FPGA step motor controller to react quickly. In fact, the FPGA step motor controller’s reaction time is
faster than the software controller; therefore, the motor controller also helps the camera focus on the
suspected vehicle continuously, even when the vehicle moves fast.

We designed an automatic voice alert system, which operates with the pursuit camera. We implemented
hardware acceleration using Nios® II custom instructions for MPEG audio playback, eliminating the
107

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
need for an extra chip to perform MPEG audio decoding. We developed a μClinux audio driver for the
WM8731DAC device on the Development and Education (DE2) development board.

We developed an FPGA-based on-board diagnostic system (OBD-II) interface to obtain vehicle
information such as velocity and fault state from the engine control unit (ECU), which is a vehicle
control system. The OBD-II interface measures the relative velocity and monitors the vehicle’s state,
replacing a high-cost laser measuring instrument. We designed the JPEG compression module using the
libjpeg library, which is commonly used in Linux systems, and Altera’s C-to-Hardware Acceleration
(C2H) Compiler. The compression module provides image storage and wireless transfers. Our design
improves the compression performance without requiring us to modify the code.

Another main feature of this project is a global, wireless, high-speed downlink packet access (HSDPA)
function. The collected real-time data and image information is transferred wirelessly from the police
vehicle to the command control center.

Suitability of In-Vehicle FPGAs
The police vehicle support system is a complex field that demands image, voice, communication, and
sensor data processing. The vehicle systems increase in complexity as the amount of loaded equipment
increases. For the OBD-II interface, different vehicles have different systems because their protocols
are different. FPGAs are suitable for this field because they are easy to reorganize and re-synthesize.

We developed our SOPC system using the Quartus® II software and Nios II Integrated Development
Environment (IDE) version 7.0. We implemented the operating system (OS) and applications using
GNU tools. SOPC Builder made it easy to configure the system, and μClinux and the GNU tools offer
familiar development environments.

Police Vehicle Needs
According to police pursuit policy, the officer must activate warning and recording equipment and
report to the command control center upon engaging in a pursuit. It is difficult to perform all of these
actions at the same time, so our project provides an automated, integrated solution. Figure 1 shows the
design concept.

Figure 1. Design Concept

Function Description
This section describes the functionality of our design.

Auto Tracking Pan & Tilt Camera
HSDPA Modem
Global Wireless Network

Wireless Internet

Command Control Center

Video Information

Vehicle Information

Automated Pursuit Report

Altera Cyclone II FPGA on DE2

Suspected Vehicle

Automated Voice Alert

OBD-II Interface
Vehicle Diagnostic Information
108

Police Vehicle Support System with Wireless Auto-Tracking Camera
Auto-Tracking Camera
We made a camera module that moves horizontally and vertically so that the target vehicle’s position is
at the center of the screen at all times. A critical part of the pan-tilt camera module is the reaction time.
A faster reaction time reduces the chance of losing the target vehicle. Figure 2 shows the pan-tilt camera
module.

Figure 2. Pan-Tilt Camera Module

We chose a hardware-controlled method instead of a software-controlled method. We designed the
stepper motor controller using Verilog HDL. The pan-tilt motion commands from the image processing
module are transferred directly to the stepper motor controller on the FPGA. Then, the stepper motor
controller receives the commands and generates operating signal pulses. Finally, the controller sends
signals to each motor.

To enter tracking mode, the user aligns the camera to the target vehicle and presses a button on the DE2
board. The image processing module extracts the average color feature from the target vehicle and
estimates the target vehicle’s location. The pan-tilt camera tracks the vehicle as soon as the vehicle
moves.

The captured 640 x 400 images are saved in USB storage and transferred to the control command center
simultaneously. We tested the auto-tracking camera on the road (see Figure 3) and it works well in most
cases. Our tracking mechanism does not operate at night and has a weakness with some colors because
the tracking algorithm is based on color differences. Figure 4 shows the embedded systems in the
vehicle.

Light Sensor

Stepper Motor for Tilt
Movement

CCD Sensor

IR LED

Stepper Motor for Part
Movement

Stepper Motor Driver

ADV7181B

DE2 GPIO

Image
Capture
Module

Cyclone II
FPGA

Stepper Motor
Controller
109

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 3. Road Tracking Test

Figure 4. In-Vehicle Embedded System Configuration

Automated Voice Alert
For the convenience of the officer in the vehicle, the automated voice alert system begins operating as
soon as the auto-tracking camera enters tracking mode. MPEG audio data is played using a Nios II
custom instruction without any extra processors. The Nios II processor operates at 100 MHz on the DE2
board.

The development board can play 128-Kbps, 44.1-KHz MPEG1 layer-3 mono-channel audio without
acceleration, although the processor does need to reduce its load for multi-tasking. Therefore, we added
a 64-bit multiplier, which improves the playing capacity approximately 2.5 times.

Image Capture Module
Figure 5 shows the image capture, processing, and transfer block diagram.
110

Police Vehicle Support System with Wireless Auto-Tracking Camera
Figure 5. Image Capture, Processing, and Transfer Block Diagram

The camera’s analog image information is converted into an ITU656 standard digital stream on the DE2
development board. This stream is used in three ways:

■ It controls the auto-tracking camera’s left, right, up, and down operation.

■ It provides a vision sharing system and JPEG compression of the wireless transfers.

■ It provides the in-vehicle display.

This image capture module preprocesses the image by modifying the image size, removing interlacing
mode, and calculating the frame buffer memory address.

Image Processing Module
The camera’s auto-tracking function requires a motion tracking algorithm. We used an adapted color
tracking algorithm, which is easily supported on an FPGA. This algorithm calculates the average value
of the changing vehicle color depending on the direction, and accordingly creates a new binary
threshold value.

This algorithm processes by line unit, which is synchronized with the display input module in the FPGA
without software processing. The design does not need outer frame buffer memory. The main benefit
of this method is performance. The system transfers control commands to the motor controller every 1/
30th of a second. Figure 6 shows the tracking algorithm being tested in the lab.

Figure 6. Tracking Algorithm Lab Test

SRAM

PreprocessorADV7181B

VGA Controller
In-Vehicle

Display

Pan-Tilt
Camera Motor

Motor
Controller

Network
Manager

HSDPA
Modem

μClinux on
Nios II Processor

Image
Processor

YUV 4:2:2 640 x 400 One Frame JPEG

Step PulseRGB
640 x 480

ITU656

Synchronized Logic Circuit

D-SUBOverlayed Frame

Degree
111

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
C2H Accelerated JPEG Compression on μClinux
The images are 640 x 400 pixels and are compressed using JPEG. We replaced the libjpeg forward
discrete cosine transform (DCT) function with an accelerator that we developed using the C2H
Compiler. The accelerator can be accessed in the μClinux environment. Combining the C2H accelerator
and μClinux is a very important feature because the acceleration operates concurrently with other tasks.
By accelerating libjpeg, a standard library, we improved compression performance without using an
extra digital signal processing (DSP) chip or other typical software. Applications using libjpeg have
improved compression performance through recompiling without modifying any code. Figure 7 shows
the JPEG compression diagram with C2H acceleration.

Figure 7. JPEG Compression Diagram

Custom OBD-II Interface
Vehicles, including police vehicles, have ECUs for system management. The ECU is a very important
component in recently manufactured vehicles because it unifies the engine and various electronic
controls. OBD-II is an interface that provides communication between devices and connects a computer
or diagnostic tools to the ECU for vehicle maintenance.

There are many OBD-II standards depending on the vehicle manufacturer. Our project adopts the
ISO9141-2 international standard. Using OBD-II, we can determine the driving speed, fuel state, and
vehicle fault state. OBD-II has a 5-baud initialization procedure and a 10.4-k baud communication
speed. Received information bytes have to be complemented and sent back to the ECU for
communication. We used the SOPC Builder UART component because it is similar to serial
communication. Figure 8 shows the DE2 board and extension equipment for the OBD-II interface.
Figure 9 shows the captured image and OBD-II information display.

YCbCr
640 x 400

Raw Image

(SRAM)

YCbCr
640 x 400

JPEG Image

(USB Storage)

C2H Accelerated JPEG Compressor
uClinux-dist/lib/libjpeg

(Nios II Processor)

Signed
Conversion

DCT Operation Quantize and
Descale

(FPGA) (FPGA) (FPGA)

Network Manager

Hardware
Accelerator Using
C2H Compiler
112

Police Vehicle Support System with Wireless Auto-Tracking Camera
Figure 8. DE2 Board Extension Equipment and OBD-II Interface

Figure 9. Captured Image and OBD-II Information Display

Performance Parameters
This section describes the performance parameters of our design. Table 1 shows the time interval
between when the image processing module sends control signals and the stepmotors receive the initial
operation signal. We measured the time interval using an oscilloscope. In the software program

DE2 Development Board

Two Additional Audio DAC

Power Module

USB Type
HSDPA Modem

2 Gbyte USB Storage

RS232C Connector for
Relay Interface Board

OBD-II Level Converter

OBD-II Connector

ISO9141-2
Vehicle Engine

Control Unit
113

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
controller, the Nios II processor receives interrupt signals and generates an operation signal, after which
the stepmotor starts through the general-purpose I/O (GPIO) interface.

The velocity of the auto-tracking camera is mostly determined by the image processing performance.
Table 2 shows the tested frame rate of each tracking algorithm for different platforms. The DE2 board’s
frame rate is almost 60 frames per second (fps) because the image processing module operates in
interlace mode; however, we show 29 fps, which is the number of effective frames.

Table 3 shows the compression performance of the libjpeg DCT function accelerated using the C2H
Compiler. The 640 x 400 x 24-bit bitmaps are compressed 20 times for accurate measurement.
Compiling with the C2H Compiler shows worse performance than the design that has no accelerator.
To solve this problem, we changed the buffer management method, resulting in a 4x performance
improvement after modifying the DCT function.

Table 4 shows the modem performance test. When we designed the system, we were concerned about
low performance when using a USB modem with the μClinux system. According to our test, it showed
almost the same network performance as the PC environment.

Design Architecture
Figure 10 shows the system architecture.

Table 1. Stepper Motor Pulse Generation Method Comparison

Latency Using Interrupt Routine and Timer Full FPGA Controlled Method
Average latency (μs) 60 35

Table 2. Tracking Algorithm Performance Comparison

PC ARM DE2 Board
Clock 2.4 GHz 520 MHz 100 MHz

Implementation Software Software Full FPGA

Frame rate (fps) 29 10 29

Table 3. JPEG Compression Performance Comparison

libjpeg libjpeg mod-libjpeg
Compiler gcc gcc, C2H gcc, C2H

Accelerated function N/A forward_dct() forward_dct()

Compression time (seconds) 210 281 52

Table 4. USB HSDPA Modem Performance Test on μClinux

Expected (PC) DE2 Board
OS Linux 2.6.22 μClinux 2.6.19

Download (Kbytes/second) 32 30

Upload (Kbytes/second) 28 25
114

Police Vehicle Support System with Wireless Auto-Tracking Camera
Figure 10. System Architecture

μClinux controls the software systems. The FPGA contains the camera control system and sub-systems,
including the image processing modules. Grey boxes in Figure 10 indicate custom-designed SOPC
components. Figure 11 shows the system in SOPC Builder.

Network
Subsystem

Audio Decoding
Subsystem

Network Manager
(PPP)

OBD-II
Manager

Software-Hardware
Codesigned

MPS Decoder

CDC-ACM

USB Driver

μClinux Kernel 2.6.19

ISP1362
USB-Host

OBD-II
Custom Logic

& Level Convertor
Audio
DAC

f_mul
Custom

Instruction

Nios II Fast Core
8-Kbyte Instruction Cache
4-Kbyte Data Cache

Forward DCT
C2H Accelerator

Compression
Buffer

on SDRAM

Software-Hardware
Codesigned

JPEG Compressor

On Board Diagnostic
Subsystem JPEG Compression

Subsystem

Preprocessor Image Processor

ITU656 Decoder Crossbar Generator Pulse Generator

Stepper Motor Controller

720 to 640 Converter Average Color Extractor Degree to Step
Converter

Line Selector Adapted
Binary Filter

YUV to RGB Converter Position Estimator
VGA Controller
Path-Through

Frame Buffer
on SRAM

Camera Control Subsystem

Resized & Filtered Frame

H
ardw

are
S

oftw
are
115

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 11. SOPC Builder Configuration

We moved the libjpeg DCT function into the C2H accelerator. We combined the image processing
module, VGA controller, and stepmotor controller into a unique SOPC component. The design uses
31,000 logic elements (LEs). Figure 12 shows the Quartus II compilation report.
116

Police Vehicle Support System with Wireless Auto-Tracking Camera
Figure 12. Quartus II Compilation Report

Figure 13 shows the top-level entity.
117

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 13. System Top-Level Entity

Figure 14 shows the on-chip and in-vehicle block diagram.
118

Police Vehicle Support System with Wireless Auto-Tracking Camera
Figure 14. On-Chip and In-Vehicle Configuration

HSDPA
Modem

2-Gbyte USB
Storage Terminal

Relay
Input

Module

Onboard
SRAM

512 Kbytes

Onboard
SDRAM

8,192 Kbytes

Onboard
Flash

4,096 Kbytes

ISP1362
USB Host

Onboard
MAX232

Additional
MAX232

Onboard
LED &

Software

SRAM
Controller

SDRAM
Controller

Flash
Controller

ISP1362
Interface

RS-232
Interface

RS-232
Interface

LED &
Software
Interface

Avalon Bus

Audio
FIFO

Audio
FIFO

Audio
FIFO

Nios II/f
Fast

Processor
8 Kbytes/
4 Kbytes

Custom Instruction

Image
Capture
Module

Image
Processing

Module

Step
Motor

Controller

Path-through
VGA Controller

OBD-II
Interface

Onboard
WM8731

DAC

Additional
WM8731

DAC

Additional
WM8731

DAC

ADV7123
DAC

ADV7181

Amp &
Speaker

In-Vehicle
Aux

Amp &
Speaker

In-Vehicle
Display

Camera
Analog
NTSC

Motor
Driver

ECU
OBD-II

Step
Motor

Additional
MAX232

FPG
A

D
E2 D

evelopm
ent B

oard
119

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Design Description
This section describes our implementation method and the steps we used to build our design.

Combining μClinux and C2H
Using an operating system offers development flexibility for complex multi-device systems. The
μClinux kernel is appropriate for non-memory management unit (MMU) processors. Because μClinux
does not have an MMU, the Nios II processor application that accesses the custom hardware accelerator
is simpler. We compiled the code we wrote in the Nios II IDE to operate in a multi-tasking environment
under μClinux with few or no changes because there is no limit writing to memory-mapped addresses
in μClinux. We used the C2H accelerator on μClinux with typical techniques. The following discussion
describes the steps required to move the C2H accelerator from the Nios IDE into μClinux (see
Figure 15).

First we made a temporary project. Then, we compiled and generated the accelerator in the Nios II IDE.
After generation, the accelerator’s wrapping function is saved in the debug directory. We copied the
header files and wrapper to the μClinux development directory and programmed the FPGA.

Next, we compiled the accelerated application using Nios II gcc tools with the elf2flt option, we first
made sure that the required header files such as system.h and io.h existed. We then copied the generated
execution file to the development board. This implementation is faster than a software-only system in
most cases. Unfortunately, we faced a performance problem when converting the libjpeg DCT
function to the accelerator. “Optimizing the JPEG Library for the C2H Compiler” on page 120
describes how we solved the performance problem.

Figure 15. Moving the C2H Accelerator Wrapper into μClinux from the Nios II IDE

Optimizing the JPEG Library for the C2H Compiler
Generally, developers use a digital signal processor for JPEG compression, but a processor requires
software to support it. Using the C2H Compiler to accelerate libjpeg is an interesting solution
because many existing applications use libjpeg, which is a standard JPEG library.

When converting an original DCT function with the C2H Compiler, however, the function had lower
performance than the software-only design. Flushing the data cache, which occurs every 64 bytes of
data processing work, caused the performance problem. Therefore, we designed an optimized buffer
120

Police Vehicle Support System with Wireless Auto-Tracking Camera
management system that was suitable for the C2H Compiler. This solution improved the performance
4 times. Figure 16 shows the optimized DCT function block diagram.

Figure 16. Optimized DCT Function Block Diagram

Creating the Custom SOPC Component
We combined the image processing module, VGA controller, and stepmotor controller as a unique
component because these functions need to work together closely. We designed each block separately
in Verilog HDL and added them to SOPC Builder as components. The components write image data in
the SRAM as an Avalon® master. Figure 17 shows the custom component in SOPC Builder and
Figure 18 shows the multiplier custom instruction.

Figure 17. Custom SOPC Builder Component

Prepare a Buffer

Unsigned to Signed
Conversion

Quantize/Descale
the Coefficients

C2H Compiled

Call DCT Function
jpeg_idct

Repeated
Cache Flush

Cache
Flush
Once

Modified Forward DCT

C2H Compiled

Prepare a Buffer
(Modified)

Unsigned to Signed
Conversion

jpeg_idct
(Merged)

Quantize/Descale
the Coefficients

Foreward DCT

Lo
op

Lo
op
121

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 18. 64-Bit Multiplier Custom Instruction

MPEG Audio Decoding Custom Instruction
There are three main issues to consider when playing MPEG audio in a Nios II processor/μClinux
environment

■ Processor performance

■ FIFO buffer size

■ μClinux device driver output

The design had poor performance when the 100-MHz Nios II processor in the Cyclone® II device
decoded the stereo 128-Kbps, 44.1-KHz MPEG1 layer 3 audio. With a big enough FIFO buffer, the
system could play mono-channel audio but the CPU allocated all of its time to playing audio.

To solve this problem, we added a 64-bit multiplier custom instruction to the Nios II processor to
implement a 64-bit multiply calculation that is frequently used by the libmad library. With this change,
we increased the audio playback performance about 2.5 times and decreased the number of clock cycles
required for the calculation.

Other issues can also cause audio playback problems, such as a bad sampling rate, a lack of buffer
space, and a multi-tasking environment. Figure 19 shows a configuration that solves this problem with
a 17-MHz audio reference clock.
122

Police Vehicle Support System with Wireless Auto-Tracking Camera
Figure 19. DAC FIFO Setting for 44.1-KHz MPEG Audio

Design Features
The most fascinating part of this system is its integrity. One FPGA performs the whole function,
including image processing, compression, transferring, MPEG audio decoding, step motor control, and
OBD communication. Each block is an SOPC Builder component, so it is very easy to recycle
components for different projects.

We designed the device driver so that all systems can operate in the μClinux environment. The access
method connects the μClinux application, custom instruction accelerator, and C2H technology. We
unified the software as well as the hardware.

The main image processing feature minimizes memory access. We only used the frame buffer memory
for JPEG compression because the image processing is implemented by a line unit. Eventually, we
could dramatically save Avalon bus bandwidth. Table 5 shows the design’s key features.

Conclusion
We developed and tested a police vehicle support system representing an application in the telematics
field. The auto tracking camera tracks a typical vehicle and positions it at the center of the screen at all
times. The OBD interface is based on FPGA technology and captures information about the vehicle’s
state. A remote system distantly verifies the vehicle’s image and state information and communicates
using a global wireless HSDPA module.

Table 5. Key Features and Related Modules

Feature Related Module Implementation
Auto-Tracking Camera Stepper Motor Controller Custom SOPC Builder Component

Image Capture Module

Image Processing Module

Automated Voice Alert MPEG Decoder Nios II Custom Instruction

WM8731 DAC Driver for μClinux Character Device Driver

Command Control Center (Remote
Dashboard)

OBD-II Interface Module Custom SOPC Builder Component

JPEG Compressor C2H Compiler
123

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
We started the project with a fixed hardware platform and limited resources. FPGAs offer amazing
technology that can easily adapt to design configuration changes. Our simple, effective design method
involved modifying the hardware design when there were performance problems or problems that could
not be solved in software. We noted that FPGAs are particularly valuable in the field of image
processing.

We used the Altera® C2H Compiler for JPEG compression. We started out with the libjpeg DCT
function, which is commonly used. We achieve high performance in our design by accelerating the
libjpeg DCT function with C2H technology. We believe that the C2H Compiler, which translates C
programs into HDL, is driving a changing software paradigm. The C2H Compiler has challenges, but
we expect it will contribute to the development of software-to-hardware translation technology.
124

Smart Self-Controlled Vehicle for Motion Image Tracking
First Prize

Smart Self-Controlled Vehicle for
Motion Image Tracking

Institution: Department of Information Engineering, I-Shou University

Participants: Chang-Che Wu, Shih-Hsin Chou, Chia-Hung Chao, Chia-Wei Hsu

Instructor: Dr. Ming-Haw Jing

Design Introduction
Automobile electronics pose high requirements for safety, and the number of automobiles on the road
is huge. According to Global Automotive Components, there were 760 million automobiles in 2004 and
850 million in 2005. General Motors projects that by 2020, there will be 1.1 billion automobiles
worldwide. Data from IC Insights shows that until 2010, automobiles with on-board electronics will
account for 40% of these vehicles. Therefore, there is a huge potential for growth in the automobile
electronics market, which can generate substantial profit for automobile vendors as well as provide an
opportunity for rapid growth of Taiwan’s high-tech vendors. In these circumstances, auto electronics
will become the highlight of Taiwan’s research and development.

Our project uses image processing technology to provide identification and implement self-controlled
auto guidance. For example, if the driver is not familiar with backing an auto into the garage, he/she can
start the electronic automated guide setting for automated guidance, speed control, identification, etc.

In October 2007, Toyota’s latest Lexus models, the LS 460 and LS 460L, were marketed in U.S. These
models are equipped with Toyota’s latest Advanced Parking Guidance System. The system uses a
backward camera and a sonar sensor to detect the vehicle’s surroundings. If the driver presses a button
and turns on the brakes to control the auto’s speed next to a parking space, the system automatically
hands over the power steering to finish parking.

Similarly, the automatic guided vehicle (AGV), which is most commonly used in automated factory
systems, can move forward, stop, and turn following the commands and routes of the program, and can
be linked to a material handling system. A type of fully automated material handling equipment, an
AGV can load goods automatically at a fixed location and move to another location for unloading. The
125

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
basic function of the AGV is to walk automatically along a fixed track. Although this technology has
been used in factories, it cannot be used in a complex environment because its route must be planned
in advance and the track must be drawn on the ground.

Unlike the AGV, our project uses images to identify a mark, the position of which can be altered
according to the application environment. Compared with traditional AGVs, our design has wider
application. Additionally, this design can search for a specific mark, automatically analyze the existing
image information, lock in on the object, and control the automobile. Besides assisting people with
parking and backing into a garage, the system can be used for airplanes and any other power vehicle.
This project implements a machine vision algorithm based on a hardware acceleration module, and uses
the efficient, multi-core embedded Nios® II processor to implement the self-controlled automobile
guidance platform. In the future, the design can implement many applications such as auto security,
including anti-bumping, driveway deviation alarms, driveway retaining (i.e., guiding the driver to the
original path), rear obstacle alarm, pedestrian monitoring, distance monitoring (i.e., keeping the driver
some distance away from the auto ahead), night viewing, automatic headlight adjustment,
transportation/speed-limit sign identification, blind spot monitoring, etc.

Using two embedded Nios II soft-core processors, this design integrates complex peripheral circuits and
memory modules into an auto control platform through the easily designed, highly integrated Avalon®
bus. With the high-performance Nios II processor, the design can easily implement real-time image
processing and high-speed automated control products.

Project Description
Using hardware and software co-design, we integrated the image input port, auto-controlled platform,
and power control module into an experimental platform for automated target tracking. We built the
smart image-tracking embedded system platform with a high-performance soft-core CPU controlling
the peripheral modules and a VHDL image processing core circuit. See Figure 1.

Figure 1. Embedded System Featuring Smart Image Tracking

The core components of the system are:

■ CMOS sensor hardware module

● CMOS sensor controller—Drives the CMOS sensor, continuously captures images, and
imports the motion image data flow.

Real-Time
Image Input

Auto Control
Platform

Image
Capture
Module

Peripheral
Memory

Display
Module

Auto
Control
Module

Nios II
Processor

Image
Processing

Core

Power Control
126

Smart Self-Controlled Vehicle for Motion Image Tracking
● Data simplification—Compresses the image data (GB and GR) captured by the CMOS sensor,
reducing the computing workload and analysis time.

● SDRAM controller—With six FIFO controllers, it allots SDRAM resources to two CMOS
sensor controllers and VGA controllers (three for writing and three for reading).

■ VGA hardware modules

● VGA controller—Uses its components to display images on VGA directly in real time.

● XY histogram—Marks the target’s position with XY coordinates and makes a histogram of the
X and Y axes for real-time images.

■ Power control—With a second soft-core CPU executing instructions from outside, the CPU drives
the wheel’s control circuits with four groups of programmable I/Os (PIOs), controlling whether
the auto goes forward/backward or turns left or right.

Figure 2 shows a photo of the smart image-tracking auto.

Figure 2. Smart Image-Tracking Auto

Application Areas
The design can be used for the following applications:

■ Smart auto electronic devices applied in guidance systems for backing the autos into the garage,
pulling over, and automated driving

■ AGV automated material handling systems

■ Automated airplane piloting and positioning to gates or runways

VGA Output

DC Motor
Auto Body

Drive Circuit

Charge-Coupled
Device (CCD) Ln
127

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Automated image and visualization control interfaces, such as input interfaces used for toy autos
or boats, or control commands (e.g., video game handsets)

■ Automated guidance for assistance equipment such as wheelchairs and electric autos

Target Users
Our design targets the following users:

■ Automobile electronics equipment manufacturers

■ AGV automated guidance auto-controlled system vendors

■ Airplane automated piloting and control system manufacturers

■ Home entertainment product manufacturers

■ Assistance equipment manufacturers

Development Board
For this design, we used the Development and Education (DE2) board, which includes an Altera®
Cyclone® II EP2C35 FPGA with 35,000 logic elements (LEs), 8-Mbyte (1 Mbyte x 4 x 16) SDRAM,
4-Mbyte flash memory, a secure digital (SD) card interface, a USB master-slave controller with class
A and B USB interfaces, a 10/100 Ethernet physical layer/media access controller (PHY/MAC), two
serial connectors (RS-232 DB9 ports), etc. See Figure 3.

Figure 3. DE2 Development and Education Board
128

Smart Self-Controlled Vehicle for Motion Image Tracking
Function Description
We used the Quartus® II software version 7.1 to design the Data Compress and XY Histogram cores of
the smart vehicle guidance system. We created the cores using VHDL and Verilog HDL. Our design
has the following functionality:

■ Captures images with a CMOS sensor, reduces the number of images using data simplification,
and displays them on-screen in real time via the VGA controller.

■ Analyzes the reduced image data and generates statistics on the X and Y axis for analysis.

■ Builds the whole system’s infrastructure with SOPC Builder, complete hardware and software co-
design, and 100% demonstration.

■ Implements the self-controlled auto body guidance system and demonstrates automatic stop, left
or right turn, automatic searching for special targets, etc.

■ Implements the SDRAM controller with multiple interfaces and distributes the SDRAM writing
and reading in a FIFO structure.

■ Delivers a dual-CPU embedded system for the CMOS sensor image processing and auto body
power control.

Major Hardware Components
We created the dual-CPU core with SOPC Builder, designed hardware circuit components in
Verilog HDL, conducted timing simulation and verification with waveforms, and connected the CPU
using the PIO method. In addition to the peripheral circuits provided by SOPC Builder, the design has
a dual-CMOS sensor image capturing circuit, a 6-port SDRAM controller, and a VGA controller that
contains the image processing circuit. Figure 4 shows the hardware circuit, which has been integrated
into a bigger module (the block on the left of Figure 4). This block is a dual-CPU module created with
SOPC Builder.
129

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 4. Hardware Components

Dual-Core Processors
Figure 5 shows the dual-core processors. cpu_0 controls the CMOS sensor and image processing, and
cpu_1 controls the auto-controlled power.

Figure 5. Dual-CPU System

Dual-CMOS Sensor Grabber
The dual-CMOS sensor grabber compiles the control hardware circuit grabbed onto the lens image, and
simultaneously grabs images from the dual lenses using two Integrated Development Environment
(IDE) interfaces (expansion headers 1 and 2) on the DE2 development board.

Multi-Port SDRAM Controller
The multi-port SRAM controller generates six FIFO interfaces (implemented in embedded RAM),
three for reading and three for writing, with the Quartus II MegaWizard® Plug-In Manager. The
controller enables two groups of CMOS sensor grabbers and one group of VGA controllers to read and
write to the SDRAM.
130

Smart Self-Controlled Vehicle for Motion Image Tracking
VGA Controller and Image Processing
The VGA controller and image processing function write the hardware control circuit output by the
VGA monitor, generate image statistics on the X- and Y-axis while outputting images, and store the
results in on-chip memory for the Nios II processor to read.

SOPC Builder Settings
We used SOPC Builder to create the Nios II system. For example, we added user-defined pins on the
DE2 development board to control custom peripheral circuits, and used a phase-locked loop (PLL) to
generate a 100-MHz clock source for the SDRAM. See Figure 6.

Figure 6. SOPC Builder Settings

Memory Configuration During System Software Execution
Because the CMOS sensor grabber and VGA controller occupy the development board’s SDRAM, the
cpu_0 and cpu_1 programs are stored in flash memory. The exceptional vectors of cpu_0 are put in
SRAM at the time of program execution, and cpu_1 is put in on-chip memory. When we developed the
CPU software in the Nios II IDE, we assigned variable stack areas to relevant memories, as shown in
Figures 7 and 8.

New Users

Generate Multiplication

Custom Pin

Frequency with PLL
131

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 7. cpu_0 Memory Configuration in SOPC Builder (up) and Nios II IDE (down)

Figure 8. cpu_1 Memory Configuration in SOPC Builder (up) and Nios II IDE (down)

Performance Parameters
The application differentiates 640 x 480, 24-bit full-color real-time images for each of the 10 frames
per second. It must process 8.78-Mbytes of data per second while conducting binarization and image
processing of the X- and Y-axis histograms. Because the massive image information must be handled
quickly, we used an architecture accelerated in hardware and controlled by software. Additionally, the
SDRAM resources can be switched to the Nios II processor, and the Nios II processor can read and
process the SDRAM image. When we tested the image processing algorithm, we also developed a PC
simulation program with BCB (Intel 1.6-GHz dual-core, 1-Gbyte RAM, and 1.3 mega CMOS sensor).
Table 1 compares the experimental data.

Table 1. Performance Analysis for Three Image Processing Platforms

PC Software
Simulation

Nios II Software Nios II Software
plus Hardware
Acceleration

Frames handled
per second

1 to 2 3 to 4 9 to 11

Notes Developed with a Video For
Windows (VFW) function for
binarization, histogram
analysis, etc.

Includes switching SDRAM master,
reading SDRAM, binarization,
histogram analysis, etc.

Includes reading
SDRAM, binarization,
histogram analysis, etc.
132

Smart Self-Controlled Vehicle for Motion Image Tracking
Design Architecture
Figure 9 shows the system development flow chart.

Figure 9. System Development Flow Chart

System Architecture
As shown in Figure 10, the design has a dual-core system: one CPU controls the CMOS controller
module and another controls most peripheral components. Between the two CPUs are input and output
pins for information communication. With this design, one CPU handles massive image information at
full speed and the other operates the auto control system. Thus, when a deviation or a crash is detected
in the images, the system triggers the intermission of another CPU via a PIO and informs the auto
control system in real time that it should give commands to rectify the direction or avoid a bump.
Peripheral components used in the design include: flash memory, SDRAM, SRAM, M4K RAM, LCM,
JTAG-UART, RS-232, general-purpose I/O (GPIO), button, switch, timer, LED, segment, VGA, CMOS
sensor, etc.

Select
Components

Customize &
Integrate

System
Verification &
Construction

External
CPU/DSP

Soft-Core
CPU Nios/

Nios II
Processor

Intellectual
Property (IP)

External
Devices,
Memory,
ASSPs,
ASICs

System Definition &
Customization

Avalon
Switch Fabric

System Components
Avalon Switch Fabric

(VHDL or Verilog HDL)
Testbench Environment

Embedded Software
Design

RTOS Development
Environment

OS/RTOS Kernels

Nios II IDE

Preferred IDE

Header Files
Generic Peripheral
Drivers
Custom Software
Libraries
133

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 10. System Block Diagram

Image Processing
Figure 11 shows how the design supports dynamic real-time image tracking. When the CMOS sensor
captures an image through hardware components, RAW data is converted into RGB. After binarization
and grayscale application, the data is easy to process and the image is immediately shown on the VGA
display. The whole process is performed in hardware. For image tracking, the Nios II processor marks
the target using the X- or Y-axis histogram statistics. When a new image arrives, the Nios II processor
can read out the values needed without doing anything, achieving the advantages of hardware
acceleration.

Figure 11. Image Processing Block Diagram

Software Flow Chart
Figure 12 shows the software flow chart, which is described as follows:

1. For computational acceleration, binarization and statistics are performed in hardware.

2. The system searches for the position of the target mark.

3. The system dynamically locks the mark.

CMOS Controller

SDRAM
Controller

VGA
Controller

Gray

Threshold

Nios II
Processor

01

Nios II
Processor

02

On-Chip
Debugging

Avalon
Bus

Data Memory

Instruction Memory

SDRAM Controller

SRAM Controller

Flash Controller

M4K RAM

GPIO

PIO

Information
Analysis

CMOS
Sensor 1

CMOS
Sensor 2

Sensor
Switch

VGA

Data Bus 32 Bits

Data Bus 16 Bits

CMOS
Capture

CMOS
Capture

VGA Control

RAW2RGB
&

Mirror_Col

RAW2RGB
&

Mirror_Col

Gray
&

Threshold

Gray
&

Threshold

Sdram_Control
(6Port)

SDRAM
134

Smart Self-Controlled Vehicle for Motion Image Tracking
4. The system determines the length of the mark and whether the distance between the self-
controlled auto and the mark is the shortest. If it is not, the system determines whether the mark
is longer than 70% of the mark frame. If it is, the system enlarges the mark frame.

5. The PIO sends the forwarding command to the self-controlled auto.

6. If the self-controlled auto is at the closest point to the mark, the system determines whether it is
a mark for turning left or right. If it is, it turns left (or right) according to the mark; otherwise it
stops the auto.

Figure 12. Software Flow Chart

Hardware Circuit Diagram
The dual-CMOS sensor image capturing component switches between main and sub-pictures. One of
CMOS sensors controls the frame speed, by which the value output at once is 10 bits. Meanwhile, the
pixel’s X and Y axis are output for reading. See Figure 13.

CCD
Capturing

XY Statistics
Search for the

Position
of Mark Line

Lock the
Mark Line

CCD Capturing

XY Statistics

Turn the Auto
Right/Left

Auto Runs
Forward

Enlarge the
Mark Frame

Does It Arrive
 at the

Nearest Place?

Determine the
Length of the

Mark Line

No

Is the Mark
Line for Turning
Left or Right?

Auto Stops

Shorter than
70% of Mark

Frame

Longer than
70% of Mark

Frame

Yes

No

Yes
135

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 13. Dual-CMOS Sensor Module

The multi-port SDRAM controller uses six FIFO buffers to provide three read and three write SDRAM
controllers. Each FIFO is 2 Kbytes and is generated by M4K RAM. See Figure 14.

Figure 14. 6-Port SDRAM Controller

For the VGA controller and image processing functions (see Figure 15), the system combines the values
read by SDRAM with the appropriate H_sync and V_sync signals, and sends out pixels one by one.
Meanwhile, it generates the X- or Y-axis histogram statistics and stores the results in another M4K
RAM block where the values can be read immediately when the Nios II processor needs them.
136

Smart Self-Controlled Vehicle for Motion Image Tracking
Figure 15. VGA Controller and Image Processing Modules

DC Motor Driver Circuit
The wheel’s forward or backward rotation is controlled by a full bridge circuit. The Nios II processor
controls the auto’s body movement with CAR_CMD [3..0], the PIO. CAR_CMD[1..0] is the back-
wheel switch and CAR_CMD[3..2] is the front-wheel switch. Figure 16 shows a full-bridge circuit
switch that controls forward or backward electrical flow for the back wheels (the case of the front
wheels is similar). Table 2 shows the detailed control commands.
137

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 16. Back Wheel Full-Bridge Circuit Switch

Test Scenarios
In Figure 17, the smart image tracking auto has locked onto a special target and is heading towards it.
The image clearly shows that, in addition to the white arrow, there are many other white obstacles such
as white walls, tissues, etc. Figure 18 shows the VGA output of the smart image tracking auto, and a
binary image can be seen clearly. The smart image tracking auto locked onto the white arrow (within a
green rim) and when the auto body moves forward, the green rim automatically grows bigger and locks
onto the white arrow.

Table 2. Auto Control Commands

CAR_CMD[3] CAR_CMD[2] CAR_CMD[1] CAR_CMD[0] CAR_CMD Car Body
Movement

0 0 0 0 0x0 Stop

0 0 0 1 0x1 Forward

0 0 1 0 0x2 Backward

0 1 0 0 0x4 Front wheel turning
right

1 0 0 0 0x8 Front wheel turning
left

0 1 0 1 0x5 Right forward

0 1 1 0 0x6 Right backward

1 0 0 1 0x9 Left forward

1 0 1 0 0xA Left backward
138

Smart Self-Controlled Vehicle for Motion Image Tracking
Figure 17. Smart Image Tracking Auto Moves Towards Target

Figure 18. Target Locked by Forwarding Smart Image Tracking Auto
139

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Design Methodology
This section describes our design methodology.

Implementation Method
We used the following implementation methods:

1. Define the system—We included processors, memory, peripheral components, and pins
connecting the peripheral components.

2. Generating system—We produced a system .ptf file using SOPC Builder.

3. Hardware design—We compiled and set up the required components using Verilog HDL. We
integrated, compiled, and simulated circuits, designed the auto body driver circuit, and measured
the required electrical characteristics.

4. Software design—We used BCB to check the image processing algorithm, using the Nios II IDE
to generate relevant header documents and drivers, and wrote system applications and compiled
them into .elf.

5. Simulation—We used the ModelSim software for simulation. When we found a problem, we went
back to step 2 and redesigned the software and hardware.

6. Verification—Using the JTAG interface, we downloaded the hardware and software to RAM or
flash in the DE2 development board for physical verification.

7. Test—We combined the application with the auto body power control to conduct a product test on
a rudimentary system.

Design Steps
To our knowledge, system-on-a-programmable chip (SOPC) design can provide an integrated,
hardware/software platform with high elasticity. Because our design involves applying the embedded
system to mechanical controls, the design planning consisted of four phases:

■ Define the input port and output ports—Define modules needed by each stage from outside to
inside, and determine their input or output pins. For example, the input port of the outermost
system is the CMOS sensor while the output port is the VGA output and power control of the self-
controlled auto. The inside modules include the CMOS grabber, SDRAM controller, VGA
controller, Nios II CPU, automated auto driver module, etc.

■ Select cores and custom intellectual property (IP) components—The design uses two full-edition
CPUs. Aside from the peripheral interfaces attached to SOPC Builder, we needed to create the
multi-port SDRAM controller and VGA controller.

■ Perform hardware and software system design—We conducted the hardware and software design
jointly, which was a challenge because software development involves planning and distributing
hardware resources as well as the system performance. SOPC Builder enables an integrated
development interface with high elasticity, which accelerated the system planning process. The
Nios II IDE enables a complete environment for software development, including setting up break
points, debugging, simulating instructions, etc., all of which accelerate product development.

■ Perform mechanical integration—The design combines modules such as a DC motor, pulse-width
modulation (PWM) sign control, full bridge switch, transistor enlarger circuit, etc. at which we
are not adept (for we are majors in information engineering). However, being enthusiasts, we
enjoyed the learning process and felt successful. We present our work using mechanical
integration, allowing the prototype development system to be presented more dynamically.
140

Smart Self-Controlled Vehicle for Motion Image Tracking
Design Features
Our design has the following features:

■ Dual-CPU communication—We used two CPUs to control and manage the smart image tracking
system and obtained dual-CPU communication with I/O and interrupts.

■ 100% hardware and software implementation—We perfectly implemented the smart image
tracking auto functions, such as target searching, target locking, auto body automated leading
control, automated stop, etc.

■ Custom peripherals with hardware acceleration—At first we developed the CMOS sensor
controller and SDRAM controller with a hardware circuit; we stored the CMOS sensor image
directly in SDRAM and made the SDRAM a Nios II master. But the experiments showed that the
speed could not meet our requirements because the Nios II processor spent too much time reading
SDRAM and image processing. Therefore, we developed circuits combing the VGA controller
with image processing and implemented the VGA output and image processing at the same time.
This design delivered the effect that we wanted.

■ Three IP functions connected outside of the Nios II processor—Because the Nios II processor can
be set with elasticity, PIO pins communicating outside can be easily designed according to the
user’s needs. By combining the hardware circuits such as the VGA controller, multi-port SDRAM
controller, image processing function, etc., we improved the performance of the massive image
data processing.

■ Fully uses the FPGA resources—The design uses the Cyclone II EP2C35 high-capacity FPGA.
However, because we used a dual-core CPU and developed many complex IP cores in which many
components use M4K RAM (e.g., the FIFO buffer and image processing components), the whole
system uses a total of 21,732 logic elements (LEs) (65%) and 347,248 RAM bits (72%), taking
full advantage of the FPGA resources. See Figure 19.

Figure 19. FPGA Resources Used
141

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Conclusion
We benefited greatly from participating in the Altera Nios II Embedded Processor Design Contest 2007.
We divided our work into systems integration, hardware development, and control circuit design, which
are described as follows:

■ System integration—Thanks to the Nios II IDE and convenient SOPC Builder, we implemented
the soft-core CPU in the prototype machine with a flexible design, accelerating the development
process. With quick executive efficiency provided by a dual-core PC, the new Quartus II
version 7.1 software and Nios II IDE version 7.1 largely reduced the time we had to wait for
hardware integration or software compilation.

■ Hardware development—Thanks to the contest, we are now acquainted with SDRAM controller
design. With timing adjustments, we designed multiple high-speed peripherals that share one
SDRAM device. Besides the VGA controller, we learned how to process real-time images while
outputting image pixels, etc.

■ Control circuit design—We are honored to participate in this Nios II design contest. Although the
challenge of working with unfamiliar mechanical controls gave us a lot of trouble, we finally saw
the clumsy, smart image-tracking auto operate on various surfaces. This contest brought all
members in our lab together to solve problems jointly. Thank you for providing young students
with such a precious opportunity to make our dreams come true.
142

RTOS Acceleration Using Instruction Set Customization
Star Award

RTOS Acceleration Using Instruction
Set Customization

Institution: Centre for High Performance Embedded System (CHiPES), Nanyang
Technological University (NTU)

Participants: Muhamed Fauzi Bin Abbas, Ku Wei Chiet

Instructor: Professor Thambipillai Srikanthan

Design Introduction
As embedded system designs become increasingly more complex, the use of real-time operating
systems (RTOS) becomes essential to meet time-to-market pressures and to contain non-recurring
engineering costs. However, an RTOS consumes precious CPU cycles in return for the services it
provides. Further, the RTOS is typically treated as a pure software entity and is subject only to minor
adaptations. In this project, we leverage work done by our research group towards instruction set
customization for RTOS acceleration using dedicated hardware and apply it to the Nios® II processor.
We present our design, findings, and results in this paper.

In this project, we implemented RTOS acceleration by customizing the Nios II instruction set. As part
of the process, we identified RTOS operations that are executed frequently and converted them into
custom instructions (CIs), thereby collapsing a series of instructions into fewer operations and reducing
the RTOS CPU overhead.

By reducing the time consumed by system tasks, greater processing time is made available for user
applications. The system becomes more responsive, and this effect is further noticeable if the CPU is
clocked at a lower clock frequency, where the same number of clock cycles constitutes a higher
percentage of system overhead. By allowing more time for user tasks, RTOS acceleration benefits
applications that are run on the system without changing the applications. This acceleration provides a
drop-in method for improving system performance and responsiveness.

The effect of our work is very noticeable in systems that run a large number of tasks. For our project
we use the Nios II/s CPU and µC/OS-II.
143

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
We decided to use the Nios II processor because of the following factors:

■ The Nios II processor is a soft-core CPU that allows instruction set customization. In our opinion,
using instruction set customization for RTOS acceleration is extremely attractive because the
instruction execution is serialized with respect to other instructions, retaining the sequential
nature of the original function being accelerated. However, all parts of the custom instruction can
execute in parallel when the instruction is executed. Finally, this instruction can be accessed either
in assembly language or as an intrinsic function from a high-level language such as C or C++,
making integration with the software RTOS simpler.

■ SOPC Builder makes it extremely easy to add custom instructions to the CPU core. In the future,
we plan to explore the use of the C-to-Hardware Acceleration (C2H) Compiler for this work. This
implementation would potentially make it easy to create new RTOS customization instructions
because the RTOS itself is typically written in C.

At the same time, it seems that the Nios II processor is typically targeted at medium complexity
applications (about a 100-MHz clock with multiple tasks). We found that in this configuration, RTOS
overheads can be very significant in systems with a large number of tasks. These types of systems stand
to benefit significantly from our work. However, as we shall demonstrate later in the paper, our
proposed design can be easily parameterized to cater to different workloads and requirements.

Function Description
For this project, we used µC/OS-II running on the Nios II/s processor. By analyzing the RTOS, we
determined that the two most frequently executed portions are:

■ Timer tick routine—The timer tick routine executes at the system clock frequency, which typically
ranges from 100 Hz (10 ms) to 1,000 Hz (1 ms). Because all RTOS operations are expressed
relative to this parameter, the system clock frequency has a direct impact on the system resolution.
This routine runs as part of the interrupt service routine (ISR) in response to the timer tick,
therefore, it is executed very frequently, and acceleration results in significant savings.

■ Scheduler—The scheduler is called every time the status of one or more tasks changes in the
system. Further, some portion of the scheduler is called with interrupts disabled. Any
improvement in these areas results in reduced interrupt latency. In general, the scheduler is called
as the final operation of many system calls and acceleration improves the system call processing
time.

µC/OS-II handles 64 tasks with unique task priorities. The task priority is the same as the task ID.

Time Management Module
The timer services offered by µC/OS-II consist of timeouts and delays. The timer services’ basic unit
of measurement is the system timer tick, which is generated as a periodic interrupt by a hardware timer
in the system. Timer management affects the following areas:

■ All delays and timeout requests are expressed in number of ticks. µC/OS-II, which has a 16-bit
internal timer delay variable, supports delays of up to 65,535 ticks.

■ When a timer tick occurs, the tick ISR decrements the waiting task’s delay variable. If the variable
reaches 0, the task can be added to the ready list.

■ If the task is suspended when its delay value reaches 0, the task delay value is reloaded with 1 to
delay it by another tick. This process continues until the task is resumed.

The timer module’s basic architecture comprises a 16-bit counter to store the delay value for each
supported task. Additionally, two extra bits are stored for every task: one bit stores whether the delay
144

RTOS Acceleration Using Instruction Set Customization
counter is active and the other stores whether the task is suspended. Figure 1 shows the basic unit for
each task, which is replicated for the number of tasks expected in the system.

Figure 1. Timer Management Basic Unit Architecture

Figure 2 shows the architecture for a full implementation with 64 units. The instruction usage is
described next.

Figure 2. Custom Instruction for 64 Tasks

Scheduler Module
In an associated project in our research group, the basic scheduler was accelerated using instruction set
customization [1]. Figure 3 shows the architecture diagram for that implementation. We implemented
the scheduler so that it could be instrumented and tested in the same manner as the other work done in
this project.

Delay (16) A S

Delay 16 Delay counter.

A 1 Active. Indicates whether the counter is in use.

S 1 Suspended. Indicated whehter the task is suspended.

Name Width Function

0

1

2

3

4

5

...

n

...

...

63

Task ID Delay (16)

dataa (32 Bits) datab (32 Bits) prefix (8 Bits)

S (1)A (1)

Calculate list of tasks made ready

32-Bit Result

Array of Task Delays
(64 x 16 Bit)

Active Bit
(64 x 1 Bit)

Suspended Bit
(64 x 1 Bit)

Lower
List

Upper
List

Get
Delay
145

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 3. Scheduler Custom Instruction Architecture Block Diagram

Member Select

Map

Command

Set or
Clear

Group Select

Ready Table
8-Byte Array

Ready Groups
8-Byte Array

Highest Ready Member

Unmap

Highest Ready Task

Low

High
Highest Ready Group

Unmap

WDAT1

WADR1
RADR1
RADR2

RDAT1
RDAT2

WDAT1

WADR1 DAT[7:0]
146

RTOS Acceleration Using Instruction Set Customization
Performance Parameters
The design uses 3,748 registers and 41% of the logic elements (LEs) available in the Cyclone® II device
on the Development and Education (DE1) board, as shown in Table 1. Details about the hardware
consumption are discussed later in this section.

Figure 4 shows the debug messages sent from the DE1 board to the PC console through the JTAG
connection. The messages show how we benchmarked the system using the Dhrystone benchmark
program.

Table 1. Design Resource Usage

Resource Description
Flow status Successful - Tue Oct 02 09:52:15 2007

Quartus II version 7.1 Build 156 04/30/2007 SJ Full Version

Revision name DE1_SD_Card_Audio

Top-level entity name DE1_SD_Card_Audio

Family Cyclone II

Device EP2C20F484C7

Timing models Final

Met timing requirements Yes

Total logic elements 7,749 / 18,752 (41%)

Total combinational functions 7,278 / 18,752 (39%)

Dedicated logic registers 3,631 / 18,752 (19%)

Total registers 3748

Total pins 287 / 315 (91%)

Total virtual pins 0

Total memory bits 47,104 / 239,616 (20%)

Embedded multiplier 9-bit elements 4 / 52 (8%)

Total phase-locked loops (PLLs) 1 / 4 (25%)
147

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 4. Debug Messages

The custom instructions need to be carefully added into specific parts of the RTOS and are called from
multiple places in the system. Therefore, there is an overall system performance impact from our
project. In this section, we report the main results and improvements by using custom instructions for
RTOS acceleration.

Performance Improvement of Specific Functions
Although the custom instructions are used in many places in µC/OS-II, their main impact is seen in a
few specific functions.

Timer Tick Custom Instruction
For the timer tick custom instruction, the main impact is in the timer tick ISR (OSTimeTick). At every
system timer interrupt (typically every 1 or 10 ms), the timer tick ISR is run in response to the timer
tick interrupt.

The timer tick ISR has 2 main operations:

■ The wait count of each task is decremented by 1 by iterating through the task control blocks for
all tasks present in the system.

■ For unsuspended tasks whose wait count becomes 0, the scheduler is called to update the task’s
ready list.

The timer tick custom instruction only affects the decrement operation. Because the kernel iterates
through the waiting tasks, the function’s execution time directly depends on the number of tasks in the
system. Table 2 shows the results for the OSTimeTick module. The performance improvement
148

RTOS Acceleration Using Instruction Set Customization
(calculated as a percentage) is shown in brackets. We tabulated the results with 4 tasks (light load), 16
tasks (medium load), and 48 tasks (high load) in the system.

As shown in Table 2, the performance improvement is in the range of 70% to 81%, even for systems
with a light load. As the number of system tasks increases, the software RTOS starts to show very high
overhead. In contrast, the RTOS supported by the custom instruction scales better and less time is
consumed in the ISR, showing more than 90% improvement.

Scheduler Instruction
The scheduler instruction significantly affects many areas of the RTOS. The main impact is noticed in
OS_Sched. As with the timer tick, the performance depends on the number of system tasks. Table 3
shows the performance data (see Table 2 for the column definitions). The typical improvement is 40%.

Dhrystone Benchmark
While the performance improvement in individual functions is impressive, it is not representative of the
performance improvement that a system will actually experience because that depends on the custom
instruction usage in the actual system. However, because these instructions are part of the RTOS, some
improvement can be measured without actual applications.

The Dhrystone benchmark is typically used to measure the CPU performance with respect to the
amount of work it performs. In recent years, Dhrystone use for comparing CPUs has diminished.
However, it is still a viable measure of the amount of work that the CPU can perform.

In our case, we are measuring the performance of the same CPU with different amounts of hardware to
offload certain tasks. We are trying to measure the ability of the same CPU to do work when supported
by the custom instructions. On the same CPU, the Dhrystone benchmark is affected only by the number
of CPU cycles that are available for the software to execute. Therefore, we can use the Dhrystone as a

Table 2. Timer Tick Performance

CPU Types
(# of Tasks)

Software (1) Hardware (with Custom Instructions) (2)

st (3) lt (4) st lt
4 Tasks 584 612 107 (81.60%) 183 (70.10%)

16 Tasks 921 2525 249 (72.90%) 298 (88.20%)

48 Tasks 4,057 4,844 219 (94.60%) 260 (94.60%)

Notes:
(1) The Software column indicates performance when only the pure software RTOS is executed (i.e., without any custom

instruction support).
(2) The Hardware (with Custom Instructions) column indicates performance when the RTOS has been accelerated using the

custom instruction.
(3) st refers to the typical shortest time spent in the execution of the relevant portion.
(4) lt refers to the typical longest time spent in execution.

Table 3. Scheduler Instruction Performance

CPU Types
(# of Tasks)

Software Hardware (with Custom
Instructions)

st lt st lt
4 Tasks 295 423 140 (52.50%) 251 (40.66%)

16 Tasks 287 440 154 (46.34%) 269 (38.86%)

48 Tasks 286 437 154 (46.15%) 268 (38.67%)
149

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
benchmark to measure of the amount of work that can be performed as a result of adding RTOS custom
instructions.

Table 4 shows the Dhrystone benchmark for the system running at 50 MHz with the Dhrystone task
running at medium priority. Results are reported for the following four system types with a different
number of system tasks because the number of tasks impacts the RTOS primitive execution times:

■ Original RTOS—The system without any custom instructions.

■ Scheduler modified—The system includes the scheduler custom instruction.

■ Timer modified—The system includes the timer tick custom instruction.

■ Combined modified—The system includes both custom instructions.

The numbers are reported for the system with timer interrupts occurring at 100 Hz (10 ms) and 1,000 Hz
(1 ms). The corresponding percentage improvement is shown in parentheses. As required by the
Dhrystone benchmark, we did not apply a compiler optimization. As Table 4 shows, the performance
is improved by nearly 54%.

Although we collected the data in Table 4 without compiler optimization, we feel that it is not
representative of commercial systems. Table 5 presents the same numbers when compiler optimization
(O2) is applied. Although the differences are not as large as before, we can see that the Dhrystone
benchmark does improve by up to 9.4%. Therefore, the system can perform almost 10% more work
when RTOS acceleration is applied.

Table 4. Dhrystone Tests without Compiler Optimization

of
Tasks

Original RTOS Scheduler Modified Timer Modified Combined Modified
100 Hz 1000 Hz 100 Hz 1000 Hz 100 Hz 1000 Hz 100 Hz 1000 Hz

16 3.995 3.257 4.001
(0.15%)

3.305
(1.47%)

4.023
(0.70%)

3.587
(10.13%)

4.045
(1.25%)

3.722
(14.28%)

48 3.486 2.153 3.491
(0.14%)

2.202
(2.28%)

3.592
(3.04%)

3.194
(48.35%)

3.604
(3.38%)

3.316
(54.02%)

Table 5. Dhrystone Tests with Compiler Optimization

of
Tasks

Original RTOS Scheduler Modified Timer Modified Combined Modified
100 Hz 1000 Hz 100 Hz 1000 Hz 100 Hz 1000 Hz 100 Hz 1000 Hz

16 4.014 3.787 4.023
(0.22%)

3.806
(0.50%)

4.019
(0.12%)

3.85
(1.66%)

4.026
(0.30%)

3.908
(3.20%)

48 3.536 3.159 3.538
(0.06%)

3.18
(0.66%)

3.56
(0.68%)

3.4
(7.63%)

3.566
(0.85%)

3.456
(9.40%)
150

RTOS Acceleration Using Instruction Set Customization
Hardware Resource Requirements
The base hardware was designed to support 64 system tasks. Table 6 shows the resources (logic cells
and registers) required for the scheduler and the timer.

The hardware data is for a custom instruction that supports all 64 system tasks. However, it is possible
to obtain comparable performance while consuming less hardware based on application-specific
parameters because the Nios II processor is a soft-core processor and we can create the CPU to match
the specific application requirements. The system has two main optimization areas:

■ µC/OS-II is extremely customizable and we can restrict the number of tasks that are present in the
system. Depending on the application requirements, we can support fewer tasks. Similarly, we can
restrict the number of tasks that require hardware. For example, if the system needs to support 16
tasks, we only need 16 counters in the timer custom instruction. This method allows us to achieve
the same performance without consuming too much hardware.

■ In software, it is convenient to use entities that are multiples of 8 bits. Therefore, the µC/OS-II
timer wait value is 16 bits. A system that ticks at a rate of 1,000 Hz waits for a maximum of
approximately 65 seconds. A system that ticks at a rate of 100 Hz waits for a maximum of
655 seconds. For a system that typically has small waits, we can reduce the timer tick custom
instruction counter width. For example, a 12-bit counter allows a wait of more than 4,000 ticks
(4 seconds at 1,000 Hz or 40 seconds at 100 Hz). µC/OS-II already supports delays longer than
the time supported by the resolution of the counter. By adapting that area, we can use a smaller
hardware counters width, thereby reducing the hardware requirements.

Table 7 shows the hardware resources required for different numbers of tasks and counter resolution for
the timer tick custom instruction. The hardware required to support 16 tasks at 12-bit resolution is
approximately 20% of the custom instruction (23% logic cells and 20% registers) that supports all 64
tasks at 16-bit resolution.

This result is possible because the Nios II processor is a soft-core CPU and can be easily customized to
closely match the CPU to the application requirements. The custom instructions can be easily
parameterized, i.e., SOPC Builder can generate the custom instruction with the correct bit-width and
task support the designer requires.

Design Architecture
We constructed our basic Nios II platform with µC/OS-II obtained from the Nios II Integrated
Development Environment (IDE) Project Wizard. We developed the custom instruction for the time

Table 6. Hardware Requirements

Optimization Logic Cells Registers
Scheduler 592 80

Timer 3,657 1,184

Table 7. Hardware Results

Tasks Timer Resolution (bits) Logic Cells Registers
64 16 3,657 1,184

64 12 2,834 928

24 16 1,301 432

16 16 917 304

16 12 865 240
151

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
management and scheduler modules and then we modified the µC/OS-II source code to work with our
custom instructions. We also adapted and used the Dhrystone code that came with the Nios II IDE to
benchmark the system’s performance improvement.

The main CPU is the Nios II processor, which was clocked at 50 MHz as the reference design. The
design uses the Nios II/s processor, flash memory, and SDRAM controllers, which are connected to the
Nios II processor by a tri-state Avalon® bridge, ext_ram_bus. We used additional modules, such as a
timer, JTAG UART, etc., to run and debug the Nios II processor. Figure 5 shows the hardware modules
in SOPC Builder.

Figure 5. Nios II Processor and Hardware Modules in SOPC Builder

We designed the following two custom instructions to make the system faster:

#define ALT_CI_TIMER (n, A, B) __builtin_custom_inii(0x20+(n&((1<<5)-1)), A, B)
#define ALT_CI_SCHD (A, B) __builtin_custom_inii(0x0, A, B)

The custom instruction depends on a number of input parameters that cannot be passed to it directly.
Additionally, the design requires functions to load and store values inside the instruction. Therefore, we
set up the instruction to perform a number of different operations. The function is selected by changing
the value of the prefix parameter. Because the custom instruction stores values, it requires two clock
cycles to run. The time management custom instruction has the following operations:

■ Set delay for task n.

■ Clear delay for task n.

■ Get delay for task n.

■ System tick reduces all active counts by 1.

■ Update suspended tasks and read status of tasks 0 to 31.

■ Update suspended tasks and read status of tasks 32 to 63.

■ Clear result registers.

■ Update active bit for all tasks.
152

RTOS Acceleration Using Instruction Set Customization
■ Mark task n as suspended.

■ Mark task n as unsuspended.

The scheduler custom instruction has the following operations:

■ Put a task into ready list.

■ Remove a task from ready list.

■ Find the highest priority task from ready list.

■ Return the ready group value.

■ Clear all the task bits from ready list.

■ Get the bit mask from 0 to 7.

■ Get the bit information from OSUnMapTbl.

■ Get one element value of OSRdyTbl[].

Design Features
Our design has the following main features:

■ Significantly reduces RTOS overhead—While RTOS usage is considered essential in many
modern CPU-based systems, the overhead can be significant. Our approach helps contain it.

■ More time for user tasks—As demonstrated, properly using these instructions results in more time
for user tasks, thereby allowing the same system to do more work at the same frequency.
Alternatively, the system can be clocked at a lower frequency.

■ Improved determinism—When using custom instructions, the execution time does not increase at
a very steep rate as the number of system tasks increases. This situation provides better scalability
and improved determinism because the custom instruction consumes almost the same amount of
time, regardless of the number of tasks.

■ Potentially reduces interrupt latency—Code that uses the custom instructions often runs in system
areas that are either in ISRs or in areas that run with disabled interrupts. Reducing execution time
of these modules reduces the system’s worst-case interrupt latency.

■ Parameterized instructions—The design can be easily parameterized, allowing the designer to
tailor the custom instructions to the target application’s specific requirements. This process is
made even simpler by including SOPC Builder options such that the RTOS design is also
generated when producing the designer’s CPU software development kit (SDK).

■ Drop-in optimization—Application-specific hardware/ software partitioning is a time-consuming
task that requires many design and test iterations. In CPU-based software-intensive systems that
require an RTOS, our approach offers an attractive method to improve the system performance by
simply reducing the RTOS overhead, an area that system designers seldom touch. Additionally,
because the custom instructions are independent and parameterized, the designer can utilize
unused FPGA resources in a final system for RTOS acceleration (the hardware requirements can
be managed by selecting the specific instruction, the number of tasks, and their timer solutions,
etc.), which has a positive impact on the whole system. Because the RTOS and instruction
153

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
generation can be automated, this option can be provided as a customizable, pre-verified, drop-in
optimization.

■ Wide applicability—Because our work makes more CPU time available to user tasks, it is
applicable to any system that is based on a customizable CPU on an FPGA, regardless of the target
application. All software-based systems can benefit from our work.

Conclusion
This project builds on work that was done previously in our research group using the Nios II processor
and an older version of µC/OS-II. Since then, the Quartus II software and SOPC Builder have evolved
significantly, making a number of tasks easier. It is interesting to note that while the participants in our
project group were mentored and supported by the people who did the earlier research, one of us used
the Nios II processor for the first time in this project.

The project was a cumulative learning and knowledge enrichment experience regarding the Nios II
processor and FPGAs. In addition to the fact that we achieved RTOS acceleration, most applications
can reap immediate benefits when run on the modified RTOS.

In our opinion, the Nios II processor is very useful for embedded system engineers and is also an
excellent tool for research engineers. The designer can easily change external peripherals and interfaces
from within SOPC Builder, making a seamless interface between processor and hardware logic. Instead
of passively adapting to the hardware processor, we can customize both hardware and software,
particularly when using Nios II custom instructions that make the system much more flexible than using
standard processors. The Avalon bus quickly helped us connect all the modules required in our system
and made it just as easy to improve the system later when we realized that we lacked something.

While implementing the project, we learned the following things:

■ SOPC Builder is a very flexible, powerful tool that allows even a software engineer to learn and
design a hardware system quickly and efficiently on any Altera FPGA.

■ We spent some time understanding the differences between the Nios and Nios II processors
because we migrated some of the designs from a previous project.

■ We found the Nios II IDE Project Wizard examples very useful because IDE generated the
µC/OS-II and Dhrystone elements we used in this project.

■ We found that the µC/OS-II source code is not copied to each project folder but instead uses the
main copy in the Nios II IDE root folder, which made it difficult for us to switch projects between
our optimized and regular RTOS. This setup is most likely due to the fact that most people treat
the RTOS as a software entity that is not touched as part of the system design process.

■ We were able to implement the accelerated RTOS using two custom instructions for the
competition. It is unfortunate, however, that we did not have sufficient time to implement an event
control block (ECB) custom instruction, which would have further improved the system
performance (particularly for system synchronization and communication). In the future, we hope
to integrate this custom instruction into the Nios II IDE, allowing developers to utilize the
instruction with the Nios II Project Wizard. This modification will make optimization even more
seamless. Additionally, we want to explore the C2H Compiler in the future to see if it can further
ease the process of integrating modules for RTOS acceleration.
154

RTOS Acceleration Using Instruction Set Customization
References
The references are for our group’s relevant research publications.

[1] T F. Oliver, D L Maskell, “Accelerating an Embedded RTOS in a SOPC Platform,” Proceedings of
the annual technical conference of the IEEE Region 10 (TENCON), November 21 - 24, 2004.

[2] M Sindhwani, T Oliver, D L Maskell and T Srikanthan, “RTOS Acceleration Techniques - Review
and Challenges,” Proceedings of the Sixth Real-Time Linux Workshop, Singapore, pp. 123-128,
November 2004.

[3] Z Jin, M Sindhwani and T Srikanthan, “RTOS Acceleration on Soft-core Processors Using
Instruction Set Customization,” 2004 IEEE International Conference on Field Programmable
Technology (FPT 2004), Australia, pp. 371-374, December 2004.

[4] M Sindhwani and T Srikanthan, “Framework for Automated Application-Specific Optimization of
Real-Time Operating Systems,” Fifth International Conference on Information, Communications and
Signal Processing (ICICS 2005), Thailand, pp. 1416-1420, December 2005.
155

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
156

Aerial Photographic System Using an Unmanned Aerial Vehicle
Second Prize

Aerial Photographic System Using an
Unmanned Aerial Vehicle

Institution: Chungbuk National University

Participants: Hyuk Joong Kwon, Woo Joong Kim, Jang Geun Kim, Sang Bae Park

Instructor: Professor Jung-Kwan Seo

Design Introduction
While many software applications support JPEG image compression, few FPGA applications support
it, and those that do are very expensive. Currently, software implementations of JPEG compression use
many operations, and adding an algorithm slows performance. Our system implements JPEG
compression using an FPGA, which improves the compression rate and operation speed. We implement
JPEG compression using the Nios® II soft-core processor, which also performs aerial photography on
an unmanned aerial vehicle (UAV). Figure 1 shows the overview of the project.

Figure 1. UAV Project Overview
157

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Function Description
The aerial photography is saved onto a secure digital (SD) card using a personal computer. The Nios II
processor running on the development board compresses the saved image. Then, the compressed image
is output onto a thin film transistor liquid crystal display (TFT-LCD). See Figure 2.

Figure 2. Design Detail

Performance Parameters
The most important performance aspect of the system is tracking the images of a specific object saved
in the SD card and keeping the image data. The saved image in the SD card is output onto a TFT-LCD
via the Nios II development board. See Figures 3 and 4.

Figure 3. Object Tracking
158

Aerial Photographic System Using an Unmanned Aerial Vehicle
Figure 4. User Interface and External Pilot Image Processing

Design Architecture
This section describes the hardware design block diagram, software flow chart, and JPEG algorithm.

System Structure
Figure 5 shows the aircraft’s internal system.
159

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 5. Aircraft Structure

Figure 6 shows the Nios II system.

UAV

Radio
Control
Servo

Camera
Control

Dropping
Control

RC Servo

Throttle

Aileron

Elevator

Rudder

Global Positioning
System (GPS)

GPS

Sensor

2-Axis
Tilt Sensor

2-Axis
Gyro Sensor

Microcontroller
(MCU)

(Communication)

MCU
(Algorithm)

UART

UART

SPI

CPLD

RF Module

Altimeter

Camera
(Transmitter)

RC Servo
Receiver

MCU
(Fail Safe)

Ground System

PC

RF Module

Image
Receiver

Joystick
(RC Servo

Transmitter)

Ground EquipmentEquipment of Internal Aircraft
160

Aerial Photographic System Using an Unmanned Aerial Vehicle
Figure 6. Nios II System Flow Chart

UAV Software Flow Chart
Figure 7 shows the aircraft’s internal and external programs.

SOPC Builder GUI

Configure Processor

Select & Configure
Peripherals, Intellectual

Property (IP)

Connect Blocks

Generate

Processor Library

Peripheral Library

Custom
Instructions

IP Modules

Hardware Development

HDL Source Files
Testbench

Synthesis &
Fitter

User Design
Other IP
Blocks

Quartus II Software

Hardware
Configuration

File
Executable

Code
Verification
& Debug

Altera
FPGA

On-Chip
Debug

JTAG, Serial or
Ethernet

Software Trace Hard
Breakpoints for

SignalTap Analysis

Software Development

Nios II EDS

Compiler,
Linker, Debugger

GNU Tools

C Header Files
Custom Library
Peripheral Drivers

Nios II C2H Compiler

When Designing JPEG Using
Nios II Processor, Implement
All Algoriths Except DCT with
Software

Software Algorithm Changes
with HDL by C2H Compiler

When Designing
JPEG Using Nios II
Processor, Discrete
Cosine Transform (DCT)
Embody with HDL

User Code
Libraries
Real-Time
Operating
System (RTOS)
161

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 7. UAV Software Flow Chart

Start

Serial Open

Airplane
Class

GPS
Data
Class

Altitude
Data
Class

Gyro
Sensor
Class

Mission
Class

Flight
Photographing

Class

Airplane
Simulator

Class

GPS Data
Simulator

Class

GPS
Mission
Class

Gyro
Sensor

Simulation

Airplane
Simulation

GPS Data
SImulation

Altitude
Data

Simulation

GPS
Mission

Simulation

Flight
Photographing

Start

Mission
Accomplishment

Save of GPS
Data

Save of Altitude
Sensor Data

Save of Gyro
Sensor Data

Algorithm
Accomplishment

Drive of Serve
Motor

Determine
Altitude/Degree?

Transmission of
Wireless Data

Is Mission
Complete?

End

YesNo
Yes

No
162

Aerial Photographic System Using an Unmanned Aerial Vehicle
JPEG Software Flow Chart and Algorithm
JPEG compression has a basic method and an expanded method. The basic method uses 8 bits for each
color in a pixel and consists of a sequential mode and Huffman encoding. The expanded method
supports larger applications with 8 or 12 bits for each color in a pixel, sequential mode or progressive
mode, Huffman encoding, and arithmetic code. The user can select which mode to use according to the
application.

Figure 8 shows the JPEG encoding process. First, the converted input image is divided into 8 x 8 pixel
blocks. A discrete cosine transform (DCT) operation is executed on each block to obtain the DCT
coefficient. The DCT coefficient consists of direct current (DC) and alternating current (AC)
components. Each component is independently quantized and the quantization table is individually
created. The DC part of the DCT coefficient is encoded by the difference between the DC coefficient
of the current block and the DC coefficient of the previous block. The AC components form an array
by zig-zag scanning every block, after which the AC component is encoded. Figure 9 shows the DCT
algorithm.

Figure 8. JPEG Encoding Flow Chart
163

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 9. DCT Algorithm

Design Description
This section provides a detailed description of our design.

UAV Hardware Development Environment
Figure 10 shows a photograph of the aircraft and Table 1 shows additional details.

Figure 10. UAV Photograph

Table 1. UAV Details

Plane Component Description
Place Class High Wing Plane

Body Material Balsa and Plywood

Wing Span 2,040 mm

Fuselage 1,635 mm
164

Aerial Photographic System Using an Unmanned Aerial Vehicle
Figure 11 shows the internal hardware of the aircraft. We tested the hardware on a remote control (RC)
car before using it on the aircraft.

Figure 11. Aircraft Internal Hardware

Nios II Development Environment
Figure 12 shows the system in SOPC Builder and Figure 13 shows the system generation result.
Figure 14 shows the overall system schematic. We used the speed of the Nios II/f processor core to
perform the compression quickly. Table 2 compares the features of the Nios II processor variants.

Figure 12. Configuration of SOPC Builder

Flying Weight 5,500 g

Table 1. UAV Details

Plane Component Description
165

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 13. System Generation Result

Figure 14. Overall System Schematic

Table 2. Nios II Processor Features

Feature Core
Nios II /e Nios II/s Nios II/f

Objective Minimal core size Small core size Fast execution speed

Performance DMIPS/MHz 0.15 0.74 1.16

Max. DMIPS 31 127 218

Max. fM A X 200 MHz 165 MHz 185 MHz

Area < 700 logic elements (LEs)
< 350 adaptive logic modules (ALMs)

< 1,400 LEs
< 700 ALMs

< 1,800 LEs
< 900 ALMs

Pipeline 1 stage 5 stages 6 stages
166

Aerial Photographic System Using an Unmanned Aerial Vehicle
We compiled the generated system in the Quartus® II software. Figure 15 shows the compilation report.
The system used 27% of the total available logic, 36% of the available pins, and 59% of the memory
bits.

Figure 15. Quartus II Compilation Report

Figures 16 and 17 show the SRAM controller and TFT-LCD controller, respectively.

External address space 2 Gbytes 2 Gbytes 2 Gbytes

Table 2. Nios II Processor Features

Feature Core
Nios II /e Nios II/s Nios II/f
167

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 16. SRAM Controller

Figure 17. TFT-LCD Controller

Input Ports Output Ports
fsync = Synchronization of input image
vclk = Data output clock
lvalid = Line value

ntpld[2] = Interrupt generation
address[17..0] = SRAM save address
S_data[15..0] = SRAM save data
S_cs = SRAM chip select
S_oe = SRAM output enable
S_we = SRAM write enable

Output Ports
bled_o = Back light on/off
lcd_de = LCD data enable
lcd_data[15..0] = RGB[5:6:5]
lcd_mclk = LCD clock
168

Aerial Photographic System Using an Unmanned Aerial Vehicle
Image Processing Development Environment
Zoom cameras have many constraints when used in aircraft because of their size and weight. Using two
camera lenses, we reduced this problem. Figure 18 shows the image processing using the dual camera
lenses.

Figure 18. Image Display Processing

Design Features
This section describes the features of our design.

Flight Safety Test
To convert between automatic and manual piloting safely and rapidly, we built a switch using the
GAL16V8 logic device. The device is simple to use. We implemented the conversion between
automatic and manual piloting using channel five in the ratio controller. Two LEDs display whether the
aircraft is on manual or automatic pilot, and can be seen easily. Figure 19 shows the setup of this switch
using the logic device.
169

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 19. Automatic and Manual Pilot Switch Hardware and Flow

User Interface
A user interface provides communication with the aircraft (see Figure 20). See the following discussion
for more information on the numbered areas in Figure 20.

Figure 20. Aircraft Communication User Interface

1. This part of the interface displays data from the hardware system. The application uses serial
communication to connect to the hardware system and data is sent asynchronously.

2. This area represents the aircraft movement with a line. The user can judge any objective errors by
enlarging or reducing the scale. Additionally, the user can determine whether the mission was
executed properly by marking the position of the objective location.

3. This area displays the altitude using a line. The aircraft’s altitude is shown in real time.

Manual Mode

No-Con

Fail_safe

MCU

Pulse-Code
Modulation (PCM)

Pulse-Width
Modulation (PWM)

Signal Selector

PWM Signal
Selector

Auto Mode

MCU

ServosStart
170

Aerial Photographic System Using an Unmanned Aerial Vehicle
4. The 3-dimensional (3-D) motion area determines the aircraft’s altitude and inclination using a 3-D
program.

5. An OpenGL program shows the aircraft’s inclination and direction.

6. This area shows the GPS data received from the aircraft. The application also transmits the
objective location to the aircraft. Additionally, it shows the tracking information obtained by the
aircraft.

7. This area contains the aircraft control buttons for functions such as turning the GPS module on
and off, the camera’s position control, the field of view, etc.

Image Processing Algorithm and Camera Interface Hardware
Figure 21 shows the image processing flow as well as the camera’s hardware interface.

Figure 21. Image Processing Algorithm and Camera Hardware Interface

Nios II Processor Role
The Nios II processor compresses the aerial photography using JPEG compression. The camera collects
a lot of image information to ensure that the mission has executed correctly. The image compression
system codes the aerial photography and then decodes the collected images. Figure 22 shows how the
Nios II processor fits into the system.

The system collects real-time image data and saves it to an SD card. The saved images are JTAG
compressed by the Nios II processor running on the development board. Finally, the compressed image
is output onto a TFT-LCD monitor.

Image Input

Change to Binary Image to Search while Image

Noise Reduction Using Morphology Method

Center Point Detection Using Histogram &
Centroid Method

Image Output

Image Transmission

CAM1 CAM2

Relay Relay

NOT
GATE

MCU

Image
Control
Signal

Image Data

Image
Data

Image
Data
171

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 22. Nios II Processor Role

Conclusion
We learned a variety of things while working on this project, such as:

■ We used the JTAG module to perform many experiments with the Nios II processor and the
development board.

■ We could download the program to memory, and easily start and stop the program execution. The
breakpoint and watchpoint features made it easy to debug any problems. It was useful to reference
data by analyzing registers and memory.

■ The Nios II Integrated Development Environment (IDE) example code and project templates
made it easier for us to build the system.

■ We used the µC/OS-II (real-time kernel) that was provided with the development kit.

■ When we started the project, the on-line demonstrations, such as “Creating a Nios II System” on
the Altera web site, were helpful.

The development board has built-in flash memory, but it is very small. We needed to change the scope
of our project from using MPEG compression to using JPEG compression, which is relatively small in
size. In the future, we will plan to use external memory, which will allow us to perform aerial
photography using video compression.
172

Laser Direct Writing Digital Servo Controller Based on SOPC Technology
Second Prize

Laser Direct Writing Digital Servo
Controller Based on SOPC Technology

Institution: Ultra-Precision Photoelectric Instrument Engineering Research
Institute, Harbin Institute of Technology

Participants: Lei Yan, Tao Cheng, Ya Gao

Instructor: Wang Lei

Design Introduction
The application of precision/ultra-precision processing technology has expanded from a few areas (such
as national defense and aerospace) to different aspects of the national economy. As the semiconductor
industry develops, it imposes increasing requirements on laser direct writing lithography, which is the
core of very-large-scale integration (VLSI) manufacturing.

Laser direct writing lithography applies a flexible dose exposure on a substrate surface with a variable
intensity laser beam. A key step of this process is high-precision scanning with a computer-controlled
laser beam. During lithography, the substrate on the stage moves with the platform and is exposed with
a flexible dose by controlling the laser beam intensity with an acousto-optic modulator. The stage’s
positioning accuracy and motion stability directly affect the performance of the lithography machine
and the quality of the lithographic components. Therefore, a rapid, high-precision straight-line feed
system is needed.

The voice coil motor (VCM) has high displacement resolution, zero-length feed drive chain (i.e., direct
drive or zero drive), strong dynamic sensitivity, and good responsiveness. Therefore, the VCM has
replaced the traditional positioning structure of the rotating servo motor plus ball screw shaft, becoming
the motion servo core for micron or even submicron location of the laser direct writing stage.

The digital servo-based motion controller is the key to an ultra-precision positioning system. Digital
servo means that digital technology is used for closed-loop control and system regulation. Additionally,
the control and regulation are based on software, so that the pulse width modulator (PWM) control
signal is exported directly. Alternatively, a digital-to-analog converter (DAC) chip generates the DC
173

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
drive current and the VCM is driven after power amplification of the motor driver. Software-based
regulators allow a variety of controls, such as vector control, parametric adaptive control, sliding mode
variable structure control, fuzzy control, neuron network control, etc. Software eases parameter self-
optimization and fault self-diagnosis functions, and improves system control performance. It also
overcomes the shortcomings of simulated closed-loop servo systems, including difficulty with weak
signals, noise separation for weak signals, difficulty in improving control precision to above 0.1%,
vulnerability to temperature, zero drift error of the location control, etc.

To curb noise interference (including gas film disturbances in movement of the laser direct writing
stage) and to implement fast submicron location, this paper describes a VCM digital servo motion
controller based on Altera’s Nios® II embedded soft-core processor. The design uses the low-cost, high-
performance Cyclone® II FPGA family and an integrated dual Nios II soft-core application system for
various functions, including fast sampling and high-resolution decoding of signals from a displacement
sensor (laser interferometer), motion state monitoring of a controlled object (static pressure air-bearing
slider and VCM), motion characteristics spectrum analysis and digital filtering, PWM control signal or
DAC DC voltage output based on the integration split packet identifier (PID) control algorithm, etc.
With highly integrated system-on-a-programmable-chip (SOPC) technology, the design features
flexible functions, reduced electromagnetic interference, improved processing speed and control
reliability, reduced development costs, and easier system upgrades and maintenance.

Function Description
In our laser direct writing motion control system, the dual Nios II-based digital servo motion control
reduces noise caused by load disturbances of the motor rotation, gas film disturbances of the air-bearing
slider, and mechanical resonance of the drive system. Our closed-loop servo system has four parts:

■ Controlled object—The controlled object is the stage operating on a static-pressure, air-bearing
slider, and is driven by the VCM.

■ Displacement sensor (feedback)—The sensor is Renishaw’s laser interferometer, which, based on
principles of interferometric measurement, transforms the stage’s displacement information into
a corresponding orthogonal pulse signal and implements a logic-level conversion of the pulse
signal through a signal modulation circuit.

■ Control unit—The control unit is the Altera® Development and Education (DE2) development
board that integrates dual Nios II embedded soft-core processors. It performs several tasks,
including signal acquisition, digital filtering, a PID control algorithm, a DAC chip interface, a
PWM control quantity output, and user interface based on the µC/OS-II real-time operating
system (RTOS).

■ Actuator—The actuator is a motor servo driver with two operating modes: DC voltage driving and
PWM driving. The system can export the control algorithm result through a DAC interface
module or custom PWM peripheral module, which controls the motor servo driver in different
ways.

Figure 1 shows the structure of the digital servo system.
174

Laser Direct Writing Digital Servo Controller Based on SOPC Technology
Figure 1. Digital Servo System Structure

Signal Modulation Circuit
The laser interferometer exports four types of differential signals, including A+, A-, B+, and B-, with
an orthogonal phase relationship and a 5-V TTL logic level. We used the 10-MHz DS26LV32
differential receiver to convert the differential signals into single-ended signals and provide level
conversion, acquiring LVTTL orthogonal pulses A and B for general-purpose I/O (GPIO) sampling of
the control unit. It can also control the chip enable to prevent sampling errors. Figure 2 shows a
schematic diagram of the signal modulation circuit.

Figure 2. Signal Modulation Circuit

Pulse Signal Subdivision Decoding Unit
The pulse signal subdivision decoding unit consists of the subdivision sense module and the M/T
decoding module. The subdivision sense module generates a standard-width spike pulse at the rising
and falling edge of the orthogonal pulses A and B, performs logical OR operations, obtains a quadruple
subdivision pulse (pulse), obtains a system resolution of 80 nm/pulse by calculating the laser
interferometer resolution indexes, and calculates the motor’s motion direction (direc) based on the
phase relationship (advance or lag). The standard frequency signal CLK_100 provides a latency base
value to prevent post-processing counting errors due to narrow spike pulses. Figure 3 shows a schematic
diagram of the top-level module.

5-V TTL

A+

A-

B+

B-

A

B
DS26
LV32

LVTTL

OE

GPIO
175

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 3. Pulse Subdivision Sense Top-Level Module

Figure 4 shows the simulation result of the subdivision sense module functions. CLK_100 is a 100-MHz
standard frequency signal.

Figure 4. Pulse Subdivision Sense Module Simulation Result

The M/T decoding module processes quadruple-subdivision signals while acquiring the motor
movement’s relative position and speed, placing the motor under the control of a position loop or speed
loop plus dual-position loop. The system can acquire the relative motor position (position) by adding
and subtracting pulse by direc. The system synchronously presets gate signal T1 by the tested signal
to acquire the actual gate signal T2. It counts the standard frequency (CLK_50) and pulse
simultaneously in T2 to acquire count values NC and NP. The quadruple subdivision pulse frequency
fP = NP fC/NC, and the motor speed can be acquired according to the motor displacement corresponding
to each pulse of fP. We used a synchronous gate to ensure integral counting multiples and implement an
equal precision measurement within the measuring scope of the signals. Simultaneously counting the
tested frequency and standard frequency allows the system to switch the cycle and frequency
measurements automatically according to the motor’s speed change and ensures a wide band for speed
measurement. Figure 5 shows the schematic diagram of the top-level module.
176

Laser Direct Writing Digital Servo Controller Based on SOPC Technology
Figure 5. M/T Decoding Top-Level Module

Figure 6 shows the M/T decoding module simulation result. CLK_100 is the 100-MHz standard
frequency signal, T1 is the preset gate, T2 is the synchronous gate, and NC and NP are the standard
frequency and count result of quadruple subdivision frequency, respectively.

Figure 6. M/T Decoding Module Simulation Result

Data Processing Unit
For the data processing unit, the core of the closed-loop control system consists of a Nios II hardware
platform (including the Nios II embedded soft-core processor, memory, on-chip peripherals, custom
peripherals, etc), as well as the supporting LabWinsows/CVI software on the PC side:

■ Nios II hardware platform—We used a dual-core Nios II processor and updated parameters such
as control quantity, PID, and finite impulse response (FIR) coefficients in real time via
communications between the serial port and the high-level computer software. The system
performs an efficient real-time FIR filter operation using a custom multiply-add instruction,
collects sensor signals to integrate a split PID operation, and drives a custom PWM or DAC
module to control the VCM servo driver operation. Figure 7 shows the data processing unit
structure.

■ LabWindows/CVI platform—This platform sets the PID control parameter to control the location
and size. It uploads the follow-up signal position collected by the Nios II hardware platform
through the serial port, performs a fast Fourier transform (FFT) operation, and draws a delay/
frequency response curve. It sets the digital FIR filter parameters (such as filter type, order,
quantification coefficient, and window function) according to the FFT analysis result.
177

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Additionally, it sets excitation signals (e.g., sine, square wave, and step) and observes the follow-
up curve position after filtering.

Figure 7. Data Processing Unit Structure

FFT
The discrete Fourier transform (DFT) of N* sample points is defined as:

FFT, as an efficient implementation of DFT, delivers high operation efficiency and is suitable for real-
time digital signal processing (DSP). Because the noise signal frequencies caused by gas film
disturbances, mechanical resonance, etc. are relatively stable, we used post-processing and a CVI
program for FFT operation on the Nios II-collected feedback signals. While ensuring the spectrum
analysis result reliability, this method prevents real-time FFT operation with a Nios II soft-core
processor and greatly reduces the system’s operation load. We tested the system frequency response
using sine wave excitation with a pulse amplitude of 400,000, a frequency of 1 Hz, a sampling
frequency of fs = 250 Hz, and N = 340 sampling points. Figure 8 shows the position-time domain
response curve and the acquired frequency analysis curve.

Lab Windows/CVI

UART

Position Mode/Speed Mode

Ratio

Integration

Differentiation

PwM
Peripheral

DAC
Interface

16 bit DAC

Motor Driver
PWM Mode or

DC Voltage Mode VCM

FIR

R(s) Y(s)

Nios II System

e(s)+
+

+

+
-

FFT

FIR

21

0

() () , , 0,1, , 1
N jkn N

N N
n

X k x n W W e k N
π− −

=

= = = −∑ L
178

Laser Direct Writing Digital Servo Controller Based on SOPC Technology
Figure 8. Time and Frequency Domain Response Curves with 1-Hz Sine Excitation

We tested the system’s frequency response using sine excitation with a 200,000 pulse amplitude and
2-Hz frequency. The sampling frequency and the number of sampling points remain unchanged. See
Figure 9.

Figure 9. Time and Frequency Domain Response Curves with 2-Hz Sine Excitation

According to the frequency response curve, noise interference exists at frequencies of 5 to 60 Hz and
is especially significant around 5 Hz, which is quite similar to the gas film disturbance frequency in
theoretical analysis. Other noise may come from mechanical resonance, electromagnetic interference,
etc.

Digital FIR Filter
FIR filters are widely used in digital system design and can acquire a strict linear phase while ensuring
amplitude characteristics and satisfying technical requirements. The system function H(z) of an
N-order FIR filter is:

In a digital system, the output and input functions y[n] and x[n] are:

1

0
() ()

N
n

n
H z h n z

−
−

=

= ∑

0
[] () []

N

k
y n a k x n k

=

= −∑
179

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
In LabWindows/CVI, we set a 128-order, low-pass FIR filter with a 2-Hz cutoff frequency, a 100-Hz
sampling frequency, a Hanning window, and a 1,000 quantification coefficient. Figure 10 shows the
coefficient distribution curve.

Figure 10. 2-Hz Low-Pass FIR Filter Coefficient Distribution Curve

We downloaded the filter coefficient torque to the Nios II hardware platform through the serial port.
Input x[n] and coefficient a(k) are multiplied and added by a custom multiply-add instruction,
implementing real-time digital filtering of the input signals. Figure 11 shows the time and frequency
response curves for sine excitation with a 400,000 pulse amplitude and 1-Hz frequency.

Figure 11. Time and Frequency Domain Response Curves after Filtering for 1-Hz Sine
Excitation

In LabWindows/CVI, we set a 100-order, low-pass FIR filter with a 5-Hz cutoff frequency, a 100-Hz
sampling frequency, a Blackman window, and a quantification coefficient of 1,000. Figure 12 shows the
coefficient distribution curve.
180

Laser Direct Writing Digital Servo Controller Based on SOPC Technology
Figure 12. 5-Hz Low-Pass FIR Filter Coefficient Distribution Curve

Figure 13 shows the time and frequency response curves for sine excitation with a 200,000 pulse
amplitude and 2-Hz frequency.

Figure 13. Time and Frequency Domain Response Curves after Filtering for 2-Hz Sine
Excitation

According to our analysis, noise in the feedback signals is curbed after we added the digital FIR filter.
The position response curve becomes smooth but a linear phase shift (directly related to the filter order)
occurs. In this project, we use a custom instruction for the filtering algorithm. The operation time for a
single order is controlled to within 10 clock cycles (or 100 ns) and the total latency for a 128-order
operation is about 13 µs, which is negligible compared to the 200-µs servo cycle. Therefore, the steady
state error influence is within the specified scope. We can reduce the latency by increasing the system
clock frequency or reducing filter orders. Additionally, we can reduce the phase delay error
significantly by introducing phase compensation, further improving precision control.

Integrated Split PID Control Algorithm
In ordinary PID control, the proportional element reflects the control system’s deviation signals
proportionally and the controller performs control functions immediately when the deviation occurs to
reduce the deviation. The integrating element mainly eliminates static error and improves the system’s
astatism. The derivative element reflects the variation rate of the deviation signals and introduces a valid
early amendment signal to accelerate system operation and shorten regulation time. The main purpose
of the integrating element is to eliminate static error and improve control precision. However, at the
beginning, end, or substantial change of a setting, there is a large system output deviation for a short
time, leading to an integrated PID operation, control quantity exceeding the control quantity limits
corresponding to the maximum actuating range allowed by the actuator, significant system overshoot,
or even oscillation.
181

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
To prevent this situation, we used an integrated split PID algorithm in this design. The integration
function is cancelled when there is a large deviation between the controlled quantity and the set value
to prevent system instability and increased overshoot caused by integration functions. When the
controlled quantity is about the same as the set value, the system introduces an integration function to
eliminate static error and improve precision control. See the following steps:

1. Set a threshold ε> 0 according to the actual situation.

2. When |error(k)| > ε , PD control prevents excessive overshoot and ensures quick system response.

3. When |error(k)| ≤ ε , PID control ensures the system’s control precision.

The integration split control algorithm can be expressed as:

Of which, KP is the proportionality coefficient, KI is the integration coefficient, KD is the differential
coefficient, T is the sampling time, and β is the integration switching coefficient. See the following
equation:

Custom Subordinate PWM Peripheral
To adapt to the motor servo driver’s PWM operating mode and to convert PID operation results into
control quantity signals, this design uses a customized Avalon® switch fabric-based PWM subordinate
peripheral with an adjustable output frequency and duty ratio set according to the PWM waveform
generation principle. The subordinate peripheral provides linear conversion from the operation result to
the drive voltage, and the theoretical quantizer ratio is 1/232.

The PWM module consists of a bus interface controller, a 2-bit frequency register, a 32-bit duty ratio
register, and a comparator. Figure 14 shows the top-level module.

Figure 14. PWM Top-Level Module

Ignoring the Avalon bus control signals, the PWM module simulation result is shown in Figure 15. clk
is the 100-MHz reference clock, the square wave output frequency (freqdata) is 50, the set duty ratio

0
() () () [() (1)] /

k

P I D
j

u k K E k K E j T K E k E k Tβ
=

= + + − −∑

1 ()

0 ()

error k

error k

ε
β

ε
⎧ ≤⎪= ⎨

>⎪⎩
182

Laser Direct Writing Digital Servo Controller Based on SOPC Technology
(pulsedata) goes from 10 to 30, pwm_en is the module enable signal, pwm_aclr is the asynchronous
clear signal, and pwm_out is the output. The simulation result shows that the module adjusts the duty
ratio from 10/(50 + 1) to 30/(50 + 1).

Figure 15. PWM Module Simulation Result

DAC Drive Unit
To adapt to the motor servo driver’s DC voltage operating mode, we designed a AD669-based DAC
drive circuit for functions such as level matching of the Nios II processing unit control signals, DAC
control output, signal modulation, etc. The AD669 device is a high-performance, parallel DAC chip
produced by Analog Devices, Inc. It features a bipolar voltage output (voltage between -10 and +10 V),
16-bit conversion precision, nonlinear error ≤ 0.003%, and an output setting time of ≤ 13 µs. The Nios II
system writes the operation result into the DAC through the general-purpose I/O (GPIO) and controls
the pin startup and conversion through the LDAC, DACS, etc. In the circuit, the 74LS4245A device
performs level matching and the OP07 emitter provides impedance transformation with the circuit.
Figure 16 shows the DAC drive unit structure and a photo of the circuit board.

Figure 16. DAC Drive Unit Structure and Photo of Circuit Board

Performance Parameters
The high-precision VCM control system should have quick response, small overshoot, and a stable rate.
Therefore, besides performance benchmarks, we must consider the relationship between parameters
when designing the control system. The system’s main technical indicators are:

■ Bandwidth: 10 Hz

■ Maximum travel of VCM: 300 mm

■ Minimum resolution: 80 nm

G
P
I
O

5VTTLLVTTL

Data

Inst Inst

Data

AD
669

Vcc

Vee

OP07

DA

Bipolar Output

Output
74LS

4245A
183

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Maximum tracking speed: 400 mm/second

■ Steady state error: ≤3%

System Bandwidth
The system bandwidth reflects the control system’s reproduction of useful signals and suppression of
useless signals. The control system must have a quick response to curb the dynamic error after
disturbance and fast attenuation to reduce interference, so we proposed a bandwidth requirement.
Because the control system model is unknown, signal excitation is reproduced to acquire the actual
system bandwidth. In this paper, we used a sine signal with a 300-mm amplitude (placed at the
maximum travel of the system) on the controlled object and gradually increased the excitation signal’s
frequency to obtain the amplitude frequency characteristics curve. See Figure 17.

Figure 17. System Amplitude Frequency Characteristics Curve

According to the test result, the system responds quickly when the excitation signal frequency is around
8 Hz, but the position falls significantly as the frequency increases. Therefore, the system bandwidth
for our project meets the 10-Hz design requirement.

Minimum Resolution and Maximum Tracking Speed
VCM features quick response and high tracking speed. The maximum tracking speed is mainly
restricted by the output frequency of the laser interferometer; the system resolution and maximum
tracking speed parameters are contradictory. According to performance parameters of the laser
interferometer, the laser interferometer resolution is set as 80 nm and the tracking speed upper limit is
400 mm/second.

Steady State Error
We used step signals with different amplitudes for excitation to acquire the system position response
and analyzed the test result to obtain the design’s PID parameter. The system controls the steady state
error to within 3% of the total amplitude.

A/dB

Operation Frequency/Hz
184

Laser Direct Writing Digital Servo Controller Based on SOPC Technology
Design Architecture
This section describes the design architecture.

System Hardware Design Diagram
The hardware structure of the SOPC-based laser direct writing digital servo controller comprises the
DE2 development board, sensor signal modulation circuit, DAC drive circuit, etc. The core control unit
(the DE2 development board) consists of a Cyclone EP2C35 FPGA, SDRAM, flash memory, UART
interface, USB-Blaster download interface, clock, configuration circuit, power, etc. The EP2C35 FPGA
integrates the dual Nios II processors, CPU_SYS and CPU_DSP, based on the Avalon switch fabric bus.
To ensure correct access and modification of shared resources, we used Mutex resistive cores to restrict
access rights. Data exchange between the two cores is implemented using MailBox (inbox and outbox).

To enable serial port communication, SDRAM, flash chip access, DAC control, etc, we configure
several additional components, including an Avalon bus-based UART core, tri-state bus, SDRAM
controller, CFI flash controller, M4K on-chip RAM, and universal I/O. Additionally, we customized the
PWM subordinate peripheral to acquire programmable PWM pulse signals and allow the motor servo
driver to operate in PWM drive mode. Figure 18 shows the system hardware block diagram.

Figure 18. System Hardware Block Diagram

System Software
This system integrates the CPU_SYS and CPU_DSP dual Nios II soft-core processors based on the
Avalon switch fabric bus. CPU_SYS is responsible for position and speed signal conversion, integration
of the split PID operation, UART communication, PWM and DAC peripheral output control, etc., and

CPU_SYS
Multi-Task

Scheduling Based
on μC/OS-II

Mutex Resistive
Cores

Mailbox
Message Mailbox

CPU_DSP
FIR Digital

Filtering Based on
Custom

Instructions

Universal I/O

Signal
Modulation

Circuit

Interruption

Pulse Signal
Subdivision

Decoding Unit

JTAG Software
Debugging

JTAG Debugging
Module

Laser
Interferometer
Feedback
Signal

Data

Inst

Data

Inst

Cyclone II FPGA

UART

Tri-State Bridge

SDRAM
Controller

CFI Flash

On-Chip Memory

Universal I/O

Custom
PWM Peripheral

Universal I/O

Power
Configuration

Circuit

TXD

RXD

SDRAM

Flash

Motor
Enable

PWM
Output

16-Bit
DAC

Motor
Driver

Enable
Signal
PWM
Mode

DC Voltage
Mode

Reset Clock

Avalon
Switch
Fabric

Drive
Voltage
185

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
is dispatched and managed by the µC/OS-II embedded RTOS. CPU_DSP is responsible for acquiring
the sensor decoding signals, providing digital FIR filtering, etc.

CPU_SYS Implementation
µC/OS-II is a portable, scalable, preemptive, real-time multi-tasking kernel compliant with the Radio
Technical Commission for Aeronautics (RTCA) DO-178B level requirements adopted by the United
States Federal Aviation Administration (FAA). It has high stability and security. Migration of µC/OS-II
to the Nios II processor is based on the hardware access layer (HAL): the programs are not sensitive to
low-level hardware changes and we can invoke the HAL API function. Figure 19 shows the µC/OS-II
program structure.

Figure 19. µC/OS-II Program Structure

CPU_SYS, the central processing soft core, is based on the µC/OS-II multi-tasking environment.
Figure 20 shows the state transition structure.

User
Application

C Standard
Library

μC/OS-II API

HAL API

Device Driver Device Driver Device Driver

Nios II Processor
System Hardware

...
186

Laser Direct Writing Digital Servo Controller Based on SOPC Technology
Figure 20. Task State Transition Structure

The task sequence, according to priority, is: system initial task, control task, position PID task, speed
PID task, time domain analysis task, FIR parameter modification task, and data upload task. Figure 21
shows the serial port interruption and specific task flow charts.

Initial
Task of
System

OS Task Del

OS Task
Create

Serial Port
ISR

OS Mbox
Post

OS Mbox
Pend

OS Flag Post

Control
Task

Mailbox
OS Flag Pend

OS Flag Pend OS Flag Pend

OS Flag Pend

O
S

 F
la

g
P

en
d

Position
PID
Task

Speed
PID
Task

Time
Domain
Analysis

Task

FIR
Parameter

Modification
Task

Data
Uploading

Task

P
os

 P
ID

S
pe

ed
 P

ID

D
at

a
Tr

an
s

FI
R

 C
oe

f

Ti
m

e
A

na
ly

se
s

Event Flags
187

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 21. Serial Port Interruption Service and Task Flow Charts

CPU_DSP Implementation
CPU_SYS, the data processing soft core, initializes the M/T module, receives CPU_SYS commands
and FIR filter parameters through the message mailbox, protects the shared memory using hardware
resistive cores, and uses a custom multiply-add instruction for efficient digital FIR filter computing.
Figure 22 shows the CPU_DSP flow chart.

Start

Valid Character
N

Y

Receive Characters to
OSMbox

OSMboxPost

Register Initialization

Create Initialization
Task

OSStart

Create Multiple Tasks

Event Flag Initialization

Mailbox Initialization

Create Multiple Tasks

OSTaskDel

OSMboxPend

PID Set?
N

N

Y

Y

Modify PID Parameter
Task

Command?

OSFlagPost

OSFlagPost

Read CPU_DSP
Outbox

PID Computing

PWM Driver
N

Y

Driver PWM Output Driver DA output

OSFlagPendOSFlagPend OSFlagPend

Read CPU_DSP
Outbox

LockNutex

Update FIR
Coefficient

Write CPU_DSP
Inbox

UnlockMutex

Update Position
Feedback Array

Serial Port Sending
Initiation

Upload Array

Start Start Start Start

Start Start Start

Serial Port Interruption
Service Procedure

Principle Fuction Initial Task Control Task

Speed and Position
PID Tasks

FIR Parameter
Modification Task

Time Domain
Analysis Task

Data Uploading Task
188

Laser Direct Writing Digital Servo Controller Based on SOPC Technology
Figure 22. CPU_DSP Flow Chart

Design Methodology
We used the following design methodology.

Nios II System Overall Resource Configuration
We implemented a multi-processor structure based on the Avalon bus: the dual cores share SDRAM and
flash memory and start from different flash memory addresses by setting different reset addresses. We
set multiple startup codes and programs in a single flash device based on the Nios II Integrated
Development Environment (IDE) programming environment. By setting a break address, we can divide
the SDRAM into two equal parts that operate in their respective areas without interfering with each
other. The programmable I/O (PIO) ports are configured for the cores to set the signal subdivision
decoding unit and read the position counting and M/T speed measurement results. The UART serial port
communication module is configured for CPU_SYS to communicate with the high-level LabWinsows/
CVI computer and control the motor state in real time. Considering memory’s read/write speed, the
system allocates a 4-Kbyte on-chip memory for CPU_DSP to implement fast storage position sampling
and speed signals. The dual cores share another 4-Kbyte on-chip memory for FIR filter coefficients and
to protect resources using Mutex resistive cores. The dual cores send messages through two mailboxes
for task synchronization. Figure 23 shows the resource configuration structure.

Start

N

Y

Receive CPU_SYS
Instruction

Motor
Enable?

Initialize M/T
Module

Acquisition Speed,
Position Signal

LockMutex

Self-defined FIR
Instruction Computing

UnlockMutex

Return Filtered
Signals
189

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 23. Nios II System Resource Configuration Structure

We implemented this configuration in SOPC Builder and generated the Nios II system. Figure 24 shows
the system structure.

Figure 24. Nios II System in SOPC Builder

Resource
Admin

PIO

SDRAM

FLASH

UART

PWM

On-Chip
Memory

Mailbox

CPU_DSP

5 Groups

4M

2M

UART_0

CPU_SYS

6 Groups

4M

2M

4KB (Fast Signal
Sampling)

Mailbox_d2s

Mailbox_d2s

1 Channel

4KB (Shared by Mutex)
190

Laser Direct Writing Digital Servo Controller Based on SOPC Technology
Nios II Soft-Core Interaction
We added Mutex components to the design to prevent operation errors when the CPU_DSP and
CPU_SYS cores modify the shared FIR parameters. Before accessing shared resources, the processor
first tests whether Mutex is available; if it is, the resource access right is obtained in the operation. After
using the Mutex-related shared resources, the processor releases the Mutex. Resource sharing between
the dual cores is implemented with the hardware configuration shown previously.

The cores interact using MailBox; we configured MailBox_d2s and MailBox_s2d in this design.
MailBox consists of two resistive cores and a shared memory. The resistive cores ensure single read-
write operation for the shared memory, and the size of the shared memory is configurable. In the HAL,
Altera provides the altera_avalon_mailbox_pend() and altera_avalon_mailbox_post()
functions for using the mailbox. We implement message interaction and task synchronization between
the cores using these functions.

Custom PWM Peripherals
To acquire the PWM drive signal, we designed custom PWM peripherals. See Figure 14 on page 182
for the hardware structure. The Nios II soft-core processor accesses the peripherals through the Avalon
bus. The access interfaces include reset (bus reset signal), clk (bus clock), avalon_chip_select
(bus chip select signal), addrest (1-bit address signal), write (write enable signal), and writedata
(32-bit write data signal). The peripherals export drive signals through the pwm_out pin.

The write drive functions are user_avalon_pwm_init() (for initialization of the custom
peripherals), user_avalon_pwm_enable() (for enabling the output),
user_avalon_pwm_disable() (for disabling the output), and user_avalon_pwm_data() (for
setting the duty ratio and frequency).

Custom Multiply-Add Instruction
For a Nios II embedded system, time-critical software algorithms can be executed faster by adding
custom instructions. These instructions simplify complex standard instruction sequences into one
instruction that is implemented in hardware, thereby optimizing the algorithm structure. In this design,
we customize a multi-cycle instruction for the multiply-add operation, which is a key step in the digital
FIR filter algorithm. At a 100-MHz clock frequency, it takes only 40 ns to complete one double 16-bit
multiply-add operation, which is faster than the software algorithm. The latency for 128-order filtering
is only 13 µs, improving the real-time system performance. Figure 25 shows the multiply-add
instruction top-level structure.

Figure 25. Multiply-Add Instruction Top-Level Structure

Figure 26 shows the simulation result of this module. In this figure, clk is 100 MHz, dataa and datab
perform synchronous computation with clk under the control of the start signal, and the accumulator
signal overflow indicates whether there is overflow in the result.
191

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 26. Multiply-Add Instruction Simulation Result

Design Features
Our design has the following features:

■ The design implements a digital FIR filter with adjustable parameters using the Nios II processor
to curb noise caused by gas film disturbances, mechanical resonance, etc. in the laser direct
writing motion control. We customized a special hardware multiply-add instruction for the
filtering algorithm to improve the algorithm’s execution efficiency and shorten the software
implementation time.

■ The PWM subordinate peripheral waveform, based on the Avalon bus, is customized and the DAC
drive unit outputs the DC voltage. With this implementation, the system can match two drive
modes (PWM and DC voltage) of the motor servo driver, reflecting the flexibility of SOPC
design.

■ For the current VCM digital servo motion control, the MCU (or DSP) is always used for the
control algorithm and the FPGA performs signal decoding. The signals are require a lot of
resources, and are unstable and vulnerable to noise due to their unmatched speed with on-board
signals. Using an FPGA with embedded dual Nios II processors as the main control kernel, this
design implements the MCP and DSP functions at the same time, integrates the system to the
greatest extent, greatly reduces electromagnetic interference, and improves system stability.
Additionally, it simplifies software and hardware design and shortens the product development
cycle.

■ Migrating the reliable, real-time µC/OS-II into the Nios II processor has a significant effect in
critical areas such as motor control.

■ We used the LabWindow/CVI software to write the PC driver and operating interface, implement
a friendly user interface, and complete off-line analysis of the VCM motion noise spectrum
characteristics.

■ With a larger FPGA, we could integrate several VCM digital servo controllers into a single chip
to implement fast, high-precision monitoring of a multiple-degree-of-freedom motor system.

Conclusion
Altera’s RISC-based Nios II soft-core processor had strong performance during system design and
debugging. The VCM servo controller with an embedded Nios II soft-core processor based on SOPC
technology features fast, flexible, scalable hardware design. SOPC Builder and the Nios II IDE provide
a complete solution for software development. The design gives full play to the high-speed, high-
integration features of the FPGA, allowing us to implement a complete motor servo control solution on
a single chip.
192

Laser Direct Writing Digital Servo Controller Based on SOPC Technology
In this design, the PIO reads the M/T decoding module result. We could greatly improve the CPU
utilization if this module were re-created as a custom peripheral and connected to the Avalon bus. For
the digital FIR filter design, considering the system servo cycle, our project implements a filtering
operation of not more than 128 orders. If we used a faster clock, linear phase compensation, and a
further optimized custom hardware structure, we could shorten the phase delay and further improve the
system control precision. Using the serial port for the data transmission channel is not fast and affects
the real-time system performance; using a high-speed bus such as USB can improve this area.

With development of the manufacturing industry, the technical requirements for motor servo control has
increased. Our control system based on integrated SOPC technology has significant advantages in
system volume, speed, signal integrity, etc., and will become the future trend of motor servo control
systems.
193

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
194

Smart Bus Station Sign
Third Prize

Smart Bus Station Sign

Institution: Oriental Institute of Technology

Participants: Jian Jinrong, Zhan Yilin, Lin Taida

Instructor: Xiao Ruxuan

Design Introduction
In modern society, buses are a popular, necessary public vehicle. However, there are some problems and
potential dangers with these vehicles. For example, if a person waves at the driver as the bus is
approaching, the driver may be distracted and cause a dangerous situation. Or, if the bus driver stops
the bus in a hurry to pick up a passenger, the vehicle following the bus may hit the bus. Alternatively,
if a person does not pay attention while waiting for the bus, he/she could miss the bus and waste time.
Research is needed to solve these issues. Our project proposes a smart bus station sign system that can
be used on all roads, improving the convenience and safety of bus passengers.

Target Users
The smart bus station sign’s main interface has a variety of buttons. When a user activates the bus calling
function, the main interface presents the bus lines in real time, and a module on the bus receives a
message from the host machine telling the bus that it has been called. Additionally, a voice function
helps the elderly use the system.

Reasons to Use the Nios II Processor in the Design
We used the Nios® II processor for several reasons:

■ The Nios II system core is flexible and convenient.

■ With the Terasic Development and Education (DE1) board and the Altera®
Quartus® II software, we could rapidly develop an embedded prototype system with the Nios II
processor.
195

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Our instructor and seniors at our school have performed considerable research with the Nios II
processor, and our school supports this system more than any other.

These advantages allowed us to create the system quickly.

Function Description
This design uses the DE1 board. The design is presented in a digital, modern method, and includes
wave-free and bus-coming display functions. With these features, the new bus station sign lightens the
burdens of passengers and the driver, leading to safer transportation. Highlights of the design are:

■ Smart bus station sign (the module at the bus station)

● Build a Nios II embedded system using SOPC Builder

● Create a SD178A voice circuit and an nRF2401 RF module on the DE1 board

● Design a SD178A controller using VHDL

● Compile SD178A sub-drivers using the C language

● Compile sub-drivers using the C language

● Compile nRF2401 RF module sub-drivers using the C language

● Compile the program for the main interfaces of the digital bus station sign using the C
language

■ Smart bus station sign (module on the bus)

● Build a Nios embedded system using SOPC Builder

● Create an nRF2401 RF module on the Taurus ACEX1K development board

● Compile nRF2401 RF module sub-drivers using the C language

● Compile the main program control settings of the bus sub-module using the C language

■ Functions/objectives achieved

● Build Nios and Nios II embedded systems

● Display the main interface of smart bus station sign using a 320 x 240 LCD

● Locate the bus correctly by touching the touch screen

● Accurately send to the specified bus sub-module and support wave-free and bus-coming
display functions

● Support normal Chinese voice functions

● Transmit the RF signal without obstacles
196

Smart Bus Station Sign
Performance Parameters
Table 1 shows the performance parameters for our design.

Design Architecture
The following sections describe the architecture of our design.

System Structure
The hardware has two parts: a module at the bus station and a module on the bus. Figure 1 shows the
block diagram for the bus station module and Figure 2 shows the block diagram for the bus module.

Figure 1. Smart Bus Station Sign (at Bus Station) Design on DE1 Board

Table 1. System Performance

Parameter Description
Flow status Successful – Wed Sep 26 10:04:46 2007

Quartus II version 6.0 Build 178 04/27/2006 SJ Full Version

Revision name Minimal_32_sram

Top-level entity name Minimal_32_sram

Family Cyclone® II FPGA Family

Device EP2C20F484C7

Timing models Final

Met timing requirements No

Total logic elements 3,899/18,752 (21%)

Total pins 164/315 (52%)

Total memory bits 45,952/239,616 (70%)

Total phase-locked loops (PLLs) 0/4 (25%)

USB

USB Is the Interface
for the Download
Program and External
Connection

SRAM/Flash
Memory

SD178A
Voice Circuit

nRF2401
RF Module

SD178A_pio UART_1_debug

JTAG-UART Nios II
Processor

LCD_pio

TP_pio

* Extensive Circuit

320 x 240
LCD Touch

Panel

The LCD Touch Panel
is the Main System Port

EP2C20F484C7
197

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 2. Smart Bus Station Sign (on Bus) Design on ACEX1K Board

Nios II Embedded System Design Diagram
Figure 3 shows the design schematic in the Quartus II software, including:

■ Nios II CPU main system design

■ Touch screen TOUCHCNTR design (compiled from VHDL code)

■ SD178A voice circuit and program SD178A CNTR (compiled from VHDL code)

MAX232
(UART)

UART Is the Interface
for the Download
Program and External
Connection

SRAM/Flash
Memory

nRF2401
RF Module

UART_1_debug

UART_0 Nios II
Processor

LED_pio

* Extensive Circuit

LED

If LED Is On, Someone
Ahead is Waiting for the
Bus

ACEX1KEP1k100
198

Smart Bus Station Sign
Figure 3. Design Schematic

Figure 4 shows the system flow chart for the software on the module at the bus station.
199

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 4. Smart Bus Station Sign Flow Chart (Software at Bus Station)

Software Function User Interface and Flow Charts
Figure 5 shows the main program process and user interface.

Figure 5. Main Program Process and User Interface

Read Main Menu

Operation
Mode

Show HomePage

Read Touch
Panel (TP)

Effective Scope

Call Bus

Exit

Inquire Routing
Information

Read Operation
Menu

List of Newly
Called Bus

Broadcasting
and Transmission

Reception and
Processing

Arrival
Station

Starting
Station

Exit

Time Setting

Read TP

Input OK ExitRead

Show Map

System Setting

Route Setting Exit

System Setting

Read TP

Select OK Exit+ -

Show Time

Show Map

Yes

Yes

No

No

YesNo

User InterfaceMain Program Process

Read Main Menu

Operation
Mode

System
Setting
200

Smart Bus Station Sign
Figure 6 shows the operation mode process and user interface.

Figure 6. Operation Mode Process and User Interface

Figure 7 shows the system setting process and user interface.

Figure 7. System Setting Process and User Interface

Figure 8 shows the time setting process and user interface.

User InterfaceOperation Mode Process

Show HomePage

Read TP

Effective Scope

Call Bus

Exit

Inquire Routing
Information

Read Operation
Menu

List of Newly
Called Bus

Broadcasting
and Transmission

Reception and
Processing

Arrival
Station

Starting
Station

Exit

Yes

Yes

No

No

Yes No

User InterfaceSystem Setting Process

Read Menu

Time
Setting

Route
Setting

Exit

Return to
Main Menu
201

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 8. Time Setting Process and User Interface

Figure 9 shows the route setting process and user interface.

Figure 9. Route Setting Process and User Interface

Design Methodology
Starting with the DE1 development board, we added a 320 x 240 touch-screen LCD, an RF radio
transmission interface, and an SD178 Chinese voice circuit. We performed the following tasks:

■ Designed the SD178A controller using VHDL

■ Compiled the SD178A sub-drivers using the C language

■ Compiled the sub-drivers using the C language.

■ Compiled the nRF2401 RF module sub-drivers using the C language

We then used SOPC Builder in the Quartus II software to build the Nios II embedded system and we
designed the embedded software in the Nios II Integrated Development Environment (IDE). We
compiled the main program of smart bus station sign (at the bus station) using the C language.

User InterfaceTime Setting Process

Read TP

Adj. OK Exit Return to
System Setting

+ -

Show Time

Show Map

User InterfaceRoute Setting Process

Read TP

Adj. OK Exit Return to
System Setting

Read

Show Map
202

Smart Bus Station Sign
Design Features
Our design has the following features:

■ Smart bus station sign (the module at the bus station)

● Build a Nios II embedded system using SOPC Builder

● Create a SD178A voice circuit and an nRF2401 RF module on the DE1 board

● Design a SD178A controller using VHDL

● Compile SD178A sub-drivers using the C language

● Compile sub-drivers using the C language

● Compile nRF2401 RF module sub-drivers using the C language

● Compile the program for the main interfaces of the digital bus station sign using the C
language

■ Smart bus station sign (module on the bus)

● Build a Nios embedded system using SOPC Builder

● Create an nRF2401 RF module on the ACEX1K development board

● Compile nRF2401 RF module sub-drivers using the C language

● Compile the main program control settings of the bus sub-module using the C language

Adaptability
We used the DE1 development board, touch-screen LCD, and Nios II processor to compile the smart
bus station sign program with the C language in the Nios II IDE. Then, we downloaded the application
to the development board and used the touch-screen LCD to input or output the images, thereby
digitizing the bus station signs.

Creation
Our project revolutionizes traditional bus station signs and presents them in a modern, digital manner.
The system helps users operate the interface, and differentiates between the Chinese, English,
Taiwanese, etc. languages, better serving the passengers.

Conclusion
We used software and hardware integration to design the prototype system. Using the DE1 and
ACEX1K development boards, we built Nios and Nios II embedded systems and compiled the main
programs of host machine for the station sign and in-bus module as well as the SD178A voice circuit.
The smart bus station sign prototype features convenience, safety, an excellent user interface, and
Chinese voice controls. We want to incorporate these functions into real life, so we will continue to
research more in this area.
203

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
204

FPGA-Based Smart Induction Motor Controller Design
Third Prize

FPGA-Based Smart Induction Motor
Controller Design

Institution: Electrical Engineering Department, Yuan Ze University

Participants: Zhong Zhaoming, Lin Minghong, Chen Yilong

Instructor: Lin Zhimin

Design Introduction
From a control viewpoint, DC motors must be maintained frequently due to their brushes and rectifiers.
Sometimes the motor is installed in a location that makes it difficult or impossible to maintain or repair
the motor. Compared to the disadvantages of DC motors, AC motors have a variety of advantages. for
example, AC motors feature small size, light weight, low rotary inertia, and low price. Generally
speaking, induction motors are nonlinear and time-varying with a dynamic coupling system, so the
controller design is complicated. When considering control problems, various control theories are often
proposed, e.g., proportion-integral-derivative control, sliding mode control, adaptive control, etc. These
methods aim to make the system’s behavior comply with the design requirements for all system
parameter variations and external interferences.

Most of these methods are based on knowledge of status equations for fully or partially controlled
systems. However, in practice, the status equation is not easily obtained. Therefore, research for a smart
control method with a self-learning capability for better control performance becomes an important
subject. Our design uses a neural network (NN) for its amazing effect, which traditional controllers
cannot achieve, when the system is involved in an uncertain, time-varying, or nonlinear status, etc.

The key for success using NN is the approximation characteristics. Currently, the methods commonly
proposed are the back propagation algorithm, Lyapunov stability method, genetic algorithm (GA), etc.
Although the back propagation algorithm is direct and straightforward to use, it is hard to ensure
stability and robustness in a closed-loop system. A Lyapunov stability theory-based control structure
can ensure system stability, but its computing process is complicated. GA can acquire the global
optimization result, but its calculation is large and unsuitable for real-time control. Therefore, our team
proposed using an adaptive, fuzzy neural network controller algorithm to control the induction motor.
205

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
The whole system can self-regulate parameters in real time based on the learning method deduced from
Lyapunov stability theory and back propagation algorithm. The developed algorithm obtains the fastest
parameter convergence rate, and is easy to perform and implement.

In actual use, digital controllers demonstrate higher stability, expectable output, and stronger anti-noise
capability compared to analog controllers. In particular, the rapid growth of semiconductor technology
in recent years makes single-component logic circuits the design trend. If an integrated circuit (IC) can
be implemented based on digital circuit integration and control rules, the control system will certainly
be less complicated and more reliable, providing smaller hardware, lower design cost, fast execution,
and high flexibility. FPGAs are suitable for economic returns and research schedules. Based on these
theories, we used Altera’s Nios® II processor to implement the design control rules. When writing the
program, we chose the Verilog HDL language for hardware and the Nios II processor for the control
rule software. Meanwhile, we combined some hardware peripheral circuits to finish the design and
construction of the entire experiment environment. Figure 1 describes the design of the proposed
FPGA-based smart induction motor.

Figure 1. FPGA-Based Smart Induction Motor Design

The most important and difficult part of this design is implementing the smart control algorithm
because the proposed control rules involve many calculations and complicated operations (such as
positive/negative numbers and floating-point arithmetic) and Verilog HDL uses binary concepts.
Although the complementary code and fixed-point methods are available, users unfamiliar with
Verilog HDL grammar can spend a lot of time writing code and it is difficult to perform program
maintenance. Instead, using the Nios II embedded processor for the design we wrote our code with the
familiar C language without considering positive/negative numbers and floating-point arithmetic, and
wrote code directly using the decimal system. Compiling the control rules with the Nios II processor
saved a lot of time in parameter adjustment because the Nios II processor is faster to compile than
hardware. Additionally, the Nios II processor offers a floating-point custom instruction; adding this
instruction greatly shortens the time required for the hardware to process floating-point operations,
enhancing system efficiency.

D/A Interface
Circuit

Optical Encoder
Counting Circuit

Motor Control Effort

Motor Angle
206

FPGA-Based Smart Induction Motor Controller Design
Function Description
Generally, the induction servomotor drive system can be simplified as

(1)

Here, J is the rotary inertia, B is a damping coefficient, θ is the motor’s rotation, and Tl is additional
load interference. Te is the electromagnetic torque and can be defined as below:

(2)

 (3)

Where Kt is the torque constant, is the torque current command, is the outflow current command,

np is the pole pair, Lm is the air gap magnetic flux, and Lr is the rotor inductance. In sum, the dynamic
equation of induction motor can be rewritten as:

 (4)

Here, Ap = -B/J, Bp = Kt/J > 0, Dp = -1/J, and is the control command. The purpose of the
entire induction motor control system is to design a control rule, allowing the motor angle to track the
control command exactly. Herein, the tracking error is defined as:

e = θc - θ (5)

First, provided that both system dynamic functions Ap and Bp of the induction motor and external
interference Tl can be acquired, an ideal control rule can be obtained using the feedback control theory.

(6)

Insert equation (6) of the ideal control rule into system dynamic equation (4) and obtain:

 (7)

If the appropriate selection of k1 and k2 allows equation (7) to be a Hurwitz multinomial (i.e., its roots

are all on the left half plane), control objective will be achieved. In actual use, however, the

system dynamic function and external interference often cannot be acquired, i.e., ideal control rule (6)
cannot come true.

To address the problem that the ideal controller cannot be realized owing to failed acquisition of the
system dynamic function and external interference, we proposed an adaptive fuzzy neural network
controller. Figure 2 shows the block diagram, including an NN controller and a compensation
controller, and its arithmetic formula is:

u = unn + ucp (8)

el TTBJ =++ θθ &&&

*
qste iKT =

()() *223 dsrmpt iLLnK =

*
qsi *

dsi

lqs
t T

J
i

J
K

J
B 1* −+−= θθ &&&

lppp TDuBA ++=
Δ

θ&

)()(* titu qs=

[]ekekTDABu clppp 21
1* +++−−= − &&&& θθ

021 =++ ekeke &&&

0lim =
∞→

e
t

207

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
The NN controller unn uses a fuzzy NN to learn ideal controller and uses a compensation controller
to overcome the learning error due to the neural controller. First, we define a sliding surface in packet
identifier (PID) form as shown below:

 (9)

Insert equation (8) into (4) and we get:

 (10)

By subtracting equations (6) and (10), we use equation (9) and get the dynamic equation:

 (11)

Figure 2 shows the adaptive fuzzy neural network control system block diagram.

Figure 2. Adaptive Fuzzy Neural Network Control System Block Diagram

According to the approximation theorem, we know that an optimal neural network controller is near to
the ideal control (6), i.e.,

 (12)

Where is the parameter vector of fuzzy rule of optimal value, is the activation parameter vector

of the fuzzy rules, is the approximate error for network learning, and we assume . In actual

use, the optimal network parameter often cannot be acquired directly or it has multiple solutions, so
the estimation machine estimates the entire optimal network parameter, i.e.,

 (13)

Here, is estimation parameter vector of . Thus, the output learning error of network can be
defined as:

*u

∫++=
t

dekekes
021)(ττ&

lpcpnnpp TDuuBA +++=)(θθ &&&

)(*
cpnnp uuuBs −−=&

Estimation Law

Compensation
Controller

Neural
Controller

Adaptive Laws

Sliding
Surface

S
e-

-

Θ

Θc

+

cpu

nnu

u
+

tK
eT

lT

-

+

1
Js + B

1
s

Θ

Induction Servomotor Drive

Adaptive Fuzzy Neural
Network Control

ε+= Θw Tu **

*w Θ
ε E≤ε

*w

ΘwT
nnu ˆ=

ŵ *w
208

FPGA-Based Smart Induction Motor Controller Design
 (14)

Where . Insert equation (14) into (11) and simplify (11) as:

 (15)

To learn the needed controller parameter online and ensure the stability of the entire closed-loop system,
this design deduces the required learning rules based on the Lyapunov stability theorem. Herein,
Lyapunov functions are selected as shown below:

 (16)

Where and are learning speeds and . Adjust equation (16) for time differential and
insert equation (15) into it to obtain:

 (17)

The learning rule is chosen as shown below:

 (18)

The compensation controller is chosen as shown below:

 (19)

And

 (20)

(17) can be simplified as:

 (21)

=−= nnuuu *~ ε+ΘwT~

www ˆ~ * −=

)~(cp
T

p uBs −+= εΘw&

)
2

~

2

~~
(

2
1

2

2

1

2

ηη
EBsV

T

p ++= ww

1η 2η EEE ˆ~ −=

)
~~~~

(
21 ηη
EEBssV

T

p

&&
&& ++= ww

)
~~~~

()]~([
21 ηη

ε EEBuBs
T

pcp
T

p

&&
++−+= wwΘw

)
~~

()()
~

(~
21 η

ε
η

EEBusBsB pcpp
T

p

&&
+−++= wΘw

Θww s1
~-ˆ η== &&

)sgn(ˆ sEucp =

sEE 2

~-ˆ η== &&

V& pp BsEsB −= ε 0)(≤−−≤ pBsE ε
209

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Thus, the designed control system can ensure the system stability based on the Lyapunov stability
theorem. To increase the network learning performance, our research introduces a steepest descent
algorithm to adjust more parameters. First, an energy function is defined as:

 (22)

Based on the steepest descent algorithm, the adjustment of fuzzy rule is:

(23)

Here . Comparing the coefficient of equation (18) with that of (23) and obtain:

(24)

This is a Jacobian item of the entire system and the membership function parameter can be adjusted as:

 (25)

 (26)

Figure 3 shows a block diagram of the FPGA-based induction motor smart control system. The
hardware circuit includes a frequency divider (Divider), induction motor angle counting module (Theta-
Acc), and two rows of digital-to-analog converter (DAC) modules (DAC_1, DAC_2). The software is
the Nios II embedded processor (Nios II CPU). The following sections provide a detailed description
of each module.

Figure 3. Hardware of FPGA Induction Motor Control System Block Diagram

Divider
Because the FPGA’s input frequency is 50 MHz, it is divided into the required frequency. First, we
designed two frequencies, clk and clk1. One frequency controls the DAC chip select (CS) signal, which
updates the DAC data signal (LDAC) and controls the system to input/output data once for every 1

2

2
1 eE =

kow
k

o

o

o

o
w

k
wk x

w
net

net
y

y
E

w
Ew 4

4

4

4

4

4
δη

∂
∂

∂
∂

∂
∂η

∂
∂η −=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−=−=Δ

4
4

o
o net

E
∂
∂δ =

so =4δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∂

∂
∂
∂

∂
∂

∂
∂−=−=Δ

2

2

2

2

2

3

3

3

3

4

4

4

42
2

ij

j

j

j

j

k

k

k

k

o

o

o

o
m

ij
mij m

net
net
y

y
net

net
y

y
net

net
y

y
E

m
Em

∂
∂

∂
∂

∂
∂η

∂
∂η

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∂

∂
∂
∂

∂
∂

∂
∂−=−=Δ

2

2

2

2

2

3

3

3

3

4

4

4

42
2

ij

j

j

j

j

k

k

k

k

o

o

o

oij
ij

net
net
y

y
net

net
y

y
net

net
y

y
EE

σ∂
∂

∂
∂

∂
∂η

∂σ
∂ησ σσ

Divider

Theta_Acc

Function
Generator

Nios II
CPU

DAC_1

DAC_2

clock

en

clk

Theta

Theta_ref

clk

clk

clk

clk1
Theta
Theta_ref

clk
clk1

U

A0
A1
CS
LDAC
DATA

A0
A1
CS
LDAC
DATA
210

FPGA-Based Smart Induction Motor Controller Design
millisecond (ms). The other frequency controls the DAC data selection signal (A0, A1). Control using
clk1 is slower than clk, ensuring that the data selection signal is not replaced until the output data arrives
at the input latch and avoiding incorrect data output.

Theta_Acc
This module increases the motor angle (en) calculated by the optical encoder’s 12-bit count circuit to
15 bits using an accumulator. The optical encoder’s count circuit output is only 12 bits (0 to 4,095), so
a 15-bit register (Theta) accumulates the optical encoder’s output to make the motor’s rotation angle
larger than 4,095 for forward or backward rotation.

We designed a judgment condition to determine whether the current angle and the subsequent angle,
which are 12 bits beyond the optical encoder (4,095) and smaller than 0, are forward or reverse rotation
to calculate the correct rotation angle. A prerequisite is that the current and subsequent rotation angle
shall not be larger than 2,047°. Then, the design accumulates the result with an accumulator and outputs
it.

Function Generator Module
This module stores the sinusoidal function value in memory. It reads the memory content value using a
look-up table to generate the sinusoidal function (Theta_ref) of the motor tracking command. The
content value of the sinusoidal function memory has output-enabled amplitude of 2 V and a frequency
of 1/2π. It increases as the sinusoidal function of 5/3π after 5.5 seconds.

Nios II CPU
The Nios II CPU writes the induction motor’s proposed smart control rule and uses interrupts to control
its calculation cycle as 1 ms. When an interrupt is generated during program execution, the design first
inputs the motor angle and tracking command output with the induction motor’s angle counting module
hardware circuit and the function generator module into the Nios II CPU. Then, it calculates the motor’s
control effort using a CPU control rule. Because the calculated motor control effort ranges from -5 to
+5 V and the induction motor’s control voltage ranges from 0 to 10 V—in which 5 V means stop, >5 V
means forward rotation, and <5 V means reverse rotation—5 V must be added in the displacement
method to make the control voltage range 0 to 10 V. Finally, this control effort is output to the next
module.

Digital-to-Analog Control Module (DAC_1, DAC_2)
This first group of digital-to-analog (D/A) modules outputs tracking commands and the motor angle,
and the output voltage ranges from -5 to +5 V. Because the DAC IC can output two groups of signals
(12 bits) but can only receive 8 bits of data, the tracking command and motor angle are output four
times. First, the system separates the 12 -bit tracking commands and motor angle for output into 8
low-bit data and 4 high-bit data, and outputs the data to the DAC input latch with data selection signal
(A1, A0), respectively. It uses the update signal (LDAC) to transfer the input latch data to the DAC latch
to output the updated data. The output order is: output 8 low-bit, tracking command data and its 4
high-bit data. Then, output the 8 low-bit data of the motor angle and its 4 high-bit data.

The second group of D/A modules outputs the motor control. Because the DAC IC can output two
groups of signals, the two groups of 12-bit motor control effort are also separated into 8 low-bit data
and 4 high-bit data and output four times. The motor control input voltage of one group ranges from 0
to 10 V for controlling induction motor; the other group ranges from -5 to +5 V for connecting the
oscillometer for observation.

Performance Parameters
Because we used an FPGA in this design, both the angle sampling cycle and induction motor control
frequency can reach 1 kHz. Compared to a computer or single chip, which was used in the past, the
FPGA remarkably boosts the control performance. Particularly, using the Nios II embedded processor
to calculate the proposed smart control rule not only simplifies writing the program with Verilog HDL
211

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
but greatly shortens the development time. Additionally, because we can add peripheral devices quickly
and easily, and many intellectual property (IP) cores are available, we can easily adjust the entire control
system according to our needs and amend the control rule operation parameters and algorithm rules
quickly.

Design Architecture
The design’s peripheral circuit, as shown in Figure 4, contains an optical encoder count circuit and two
groups of D/A signal circuits with adjustable output voltage. The entire induction motor positioning
control experiment environment is shown in Figure 5 and the Nios II system circuit designed with the
Quartus II software is shown in Figure 6. Figure 7 shows the software flow chart of the C language
program flow written using the Nios II Integrated Development Environment (IDE).

Figure 4. Peripheral Hardware Printed Circuit Board

Figure 5. FPGA-Based Induction Motor Smart Control System Experiment Environment
212

FPGA-Based Smart Induction Motor Controller Design
Figure 6. FPGA-Based Induction Motor Smart Control System Circuit Design
213

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 7. Software Flow Chart

Design Methodology
We used the methodology described in the following steps:

1. Design the peripheral hardware circuit of the induction motor system, including one group of the
optical encoder count circuit and 2 D/A circuit groups. The optical encoder count circuit receives
the rotation angle of the optical scale/encoder climate count induction motor, and the MC14584B
IC postpones the optical encoder’s phase A and phase B, causing fourfold resolution. The
SN74159 IC uses the fourfold frequency signal to determine whether the induction motor rotates
forward or backward and calculates its rotation angle with three 4-bit SN74193 ICs, obtaining the
motor’s actual angle. For the D/A design, we use the AD7237 IC, which has two channels capable
of outputting 0 to 10 V and -5 to 5 V voltage signals, respectively. The 74245 IC prevents the
current from back-flowing to the FPGA-based development board.

2. Use the Quartus II software to write Verilog HDL code (motor angle count module, D/A control
module) corresponding to the optical encoder count circuit and D/A circuit. Perform simulation
and actual hardware testing using the Quartus II software and peripheral hardware circuit, and use
an oscillogram and embedded logic analyzer to verify the functionality.

3. Write a divider and control command function generator module. Use the divider to manage the
system hardware control cycle as 1 ms. Pinpoint the command function value as 3 bits after the
decimal point and stored it in the sinusoidal function memory.

End

Update the Control
Parameters

End

Initialize Motor
Parameters &

On-Chip Peripherals

Read Tracking
Command & Rotor

Angle Position

Main

1 ms Trigger Off 1 ms Trigger Off

ISR

Reset Timer Counter

1 ms Trigger
On?

Call Control_Algorithm

Shift Control Effort
to 0 to 10 V

Output Tracking
Command, Rotor Angle
Position & Control Effort

1 ms Trigger
On?

No

Yes

End

No

Calculate the Tracking
Error & Sliding Mode

Surface

Control_Algorithm

Calculate the
Neural Control

Calculate the
Compensation Control
214

FPGA-Based Smart Induction Motor Controller Design
4. Create a Nios II embedded processor for the induction motor control system using SOPC Builder.
The system contain a 32-bit Nios II CPU, floating-point custom instruction, Nios II flash storage
and SDRAM, Avalon® tri-state bridge, system ID peripheral, JTAG UART, timer for the Nios II
processor, timer for interrupts, PLL providing the CPU and SRDAM clock, and an Avalon PIO
for the motor angle, tracking command, and control effort. Combine the system with the hardware
program to complete the hardware structure of the induction motor control system.

5. Use the Nios IDE to write a software program containing the peripheral device, smart control rule
of the induction motor, control program, and main program. Design a 1-kHz interrupt program
that executes the induction motor’s smart control rule once every 1 ms to calculate the induction
motor’s output control effort.

6. Integrate a peripheral hardware circuit, Verilog HDL hardware program, Nios II software
program, and induction motor to complete the FPGA-based induction motor smart control
system.

7. After the induction motor is booted, its actual angle is first obtained by the optical encoder’s count
circuit and is increased by 15 bits through the FPGA hardware’s motor angle count module. It is
then sent to the Nios II CPU with motor angle tracking command generated by the control
command function generator module. After the program is interrupted, the count circuit calculates
the motor control effort using the induction motor’s smart control rule and conveys it to the D/A
module. It outputs to the external D/A chip to control the induction motor after it is converted into
analog voltage.

8. Use a digital oscillometer to observe the control result and verify the performance of the entire
induction motor smart control system. Figure 8 shows the experiment result, including the
tracking command and motor position and induction motor control effort. The result shows that
the method proposed provides a good response after it learns the control parameters, and it is not
bad when the control command changes. Therefore, we conclude that our proposed method can
effectively control the induction motor’s rotation angle.

Figure 8. FPGA-Based Induction Motor Smart Control System Experiment Results

9. Subject to the contest, we have no way to demonstrate the result of the FPGA-based induction
motor smart control system, so we display the hardware performance by controlling a brushless
DC motor when exhibiting the project. In this case, it further reveals and proves the Nios II
functionality and convenience as well as the adaptability of the smart control system. When the
control objects are different, we do not need to change the hardware design or the controller
parameters because of the on-board artificial intelligence.

Design Features
Integrated with an artificial intelligence smart control technology, we developed this design and applied
it to various examples. Applying induction motor positioning control demonstrates the superiority of
the design. This design has the following features:

tracking command

rotor position
1sec

2V

control effort

1sec
2V

Tracking Command and Motor Position Control Effort
215

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Fast learning capability and robust control rules—Because induction motor control is
complicated and motor parameters easily vary with operation, traditional methods cannot provide
effective controls. Therefore, we proposed an adaptive fuzzy neutral network controller. The
entire control system includes an NN controller and a compensation controller, of which the
former uses a fuzzy neural network to learn and is near to an ideal controller and the latter ensures
the stability of the entire system. The controller can self-regulate its parameters in real time
according to the learning method deduced by the Lyapunov stability theory, so that stability of the
entire closed-loop circuit system ensures convergence. An induction motor control system
integrated with the these two controllers achieves robustness and accurate positioning control of
the induction motor control system. The adaptive fuzzy neural network controller has learning
ability and adjusts its internal parameter value promptly according to external interference,
achieving good control performance. Therefore, even for control systems requiring high
reliability and real-time reaction, the designer does not need to worry about poor control caused
by parameter changes or equipment failure due to long-term use.

■ Improved performance with FPGA—In recent years, fueled by improving IC process technology,
FPGA technology has become mature and is often applied to various hardware-enabled
algorithms. Moreover, more and more systems on chip (SOC) have been used, so the proposed
adaptive fuzzy neural network controller is implemented by an FPGA in this design. Compared
with computers that were used in the past, FPGAs reduce the size of the control system, improve
flexibility, lower cost, and boost the system’s calculation and execution speed. In particular, by
virtue of the FPGA’s reprogrammability, designers can keep changing and planning devices to
cater to users’ needs.

■ Coded in Verilog HDL—In the aspect of software writing, the hardware peripheral circuit is
designed in Verilog HDL. We used the Nios II processor for the control rules, which simplifies
the program and accelerates design and parameter adjustment.

■ Control system meets industry demands—Using an adaptive fuzzy neural network controller in an
FPGA, this design offer low cost, high performance, and high reliability for the induction motor
control system. A slightly modified program can be used to control various motors. Featuring
small size, high flexibility, low cost, fast processing speed, short production period, and
modularized design of the hardware architecture, the system does not require much effort when
applied to different control systems. Therefore, the design can be used in various highly efficient
controls, including on-line and real-time learning systems (e.g., a machine arm in industrial and
medical fields), household robot control systems, car back-up systems, automatic driving
systems, and digital wheel chair systems. We believe that the design will contribute to many areas,
including industrial and medical fields.

Conclusion
Before the contest we had a basic knowledge of Verilog HDL programming and the Quartus II software,
but we were not very familiar with them. We did not know anything about the Nios II processor. During
the contest we improved our hardware design ability and found that the powerful Nios II processor can
not only accelerate hardware design, but also simplify and facilitate the design methodology. Thus, we
could use many tools—such as an embedded processor, floating-point custom instruction, and
memory—to plan the hardware quickly and easily. From the results, we were impressed by the FPGA
performance. Moreover, the user-friendly Nios IDE allowed us to write, compile, and execute our
programs easily. This project was not only helpful for our future research, but also strengthened our
competitiveness for development in this field.
216

Intelligent Solar Tracking Control System Implemented on an FPGA
Third Prize

Intelligent Solar Tracking Control
System Implemented on an FPGA

Institution: Institute of Electrical Engineering, Yuan Ze University

Participants: Zhang Xinhong, Wu Zongxian, Yu Zhengda

Instructor: Professor Huang Yingzhe

Design Introduction
In today’s high-tech environment, energy has become the impetus for socio-economic development.
Since the Industrial Revolution, humans have used fossil fuels as their primary energy source. However,
the amount of fossil fuels on the earth is limited, and their use has caused unprecedented changes to the
global ecological environment and climate. Gases from burning fossil fuels can build up in the
atmosphere, becoming thicker and thicker to produce greenhouse effects such as rising global
temperature and sea level. These effects will dramatically alter our living environment. Fortunately,
humans are becoming more conscious of environmental protection, and are seeking new energy sources
that cause less pollution and do not threaten the environment. As a free, nonpolluting, inexhaustible
energy, solar energy is ideal for generating electricity. Currently, generating electricity by solar energy
is inefficient, so our project focuses on how to improve its efficiency.

A solar panel receives the most sunlight when it is perpendicular to the sun’s rays, but the sunlight
direction changes regularly with changing seasons and weather. Currently, most solar panels are fixed,
i.e., the solar array has a fixed orientation to the sky and does not turn to follow the sun. To increase the
unit area illumination of sunlight on solar panels, we designed a solar tracking electricity generation
system. The design mechanism holds the solar panel and allows the panel to perform an approximate
3-dimensional (3-D) hemispheroidal rotation to track the sun’s movement during the day and improve
the overall electricity generation. This system can achieve the maximum illumination and energy
concentration and cut the cost of electricity by requiring fewer solar panels, therefore, it has great
significance for research and development.
217

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Solar Tracking Control System
Our high-performance solar tracking system has multiple functions and uses two motors as the drive
source, conducting an approximate hemispheroidal 3-D rotation on the solar array (see Figure 1). The
two drive motors are decoupled, i.e., the rotation angle of one motor does not influence that of the other
motor, reducing control problems. Additionally, the tracker does not have the problems common to two-
axis mechanical mechanisms (that one motor has to bear the weight of the other motor). This
implementation minimizes the system’s power consumption during operation and increases efficiency
and the total amount of electricity generated.

Figure 1. Solar Tracking Array Architecture Scheme

Figure 2 shows the solar tracking system we designed based on the considerations described previously.
The mechanism must support the solar panel and allow the panel to conduct 3-D rotation within a
certain amount of space. The array-type mechanism has two advantages:

■ High photoelectric conversion efficiency—Because the flexible panel of the solar tracker array
can conduct 3-D rotation, tracking the sun in real time, the system efficiently performs
photoelectric conversion and production.

■ Simple, energy-saving controls—The two rotational dimensions of the array solar tracker are
controlled by two independent drive sources. The rotation angles are decoupled and neither one
has to bear the weight of the other one. Additionally, the overall movement inertia is dramatically
reduced.

We used the Altera® Nios® II processor to perform solar tracking. The design combines a Nios II
processor with a two-axis motor tracking controller to integrate peripherals such as microprocessor,
memory, and I/O into one Altera FPGA based on system-on-a-programmable-chip (SOPC) concepts.
This integration accelerates development while maintaining design flexibility, reduces the circuit board
costs with a single-chip solution, and simplifies product testing.

Solar Battery Panel

Driver B

Driving Mechanism

Z Axis

Y Axis

X Axis

Driver A

Driving Mechanism
218

Intelligent Solar Tracking Control System Implemented on an FPGA
Figure 2. Complete Solar Tracking Control Platform

Function Description
Our design includes three modes: balance positioning, automatic mode, and manual mode.

■ Balance positioning—When setting the solar platform default, we used a mercury switch for
balance positioning. The switch sets the four boundaries of the platform and prevents the solar
panels’s four tilting boundaries from hitting the mechanism platform and damaging it or the
motor.

■ Automatic mode—In this mode, the system receives sunlight onto the cadmium sulphide (CdS)
photovoltaic cells and the CdS acts as the main solar tracking sensor. The sensor feeds back to the
FPGA controller through an analog-to-digital (A/D) device. The Nios II processor is the main
control core and adjusts the two-axis motor so that the platform is in the location for optimal,
efficient electricity generation.

■ Manual mode—If the system has a fault or needs to be maintained, we can switch the system to
manual mode. In this mode, we can adjust the system’s position to check it or perform repairs.

Figure 3 shows the block diagram of the solar tracking system.
219

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 3. Solar Tracker Control Block Diagram

We implemented the system’s logic low design using the Nios II processor control circuit. Figure 4
shows the tracking control flow chart. The system starts when we turn on the tracking control circuit’s
power supply switch. The tracking control circuit performs system tracking, energy saving, and system
protection, as well as a designed control mode and external anti-interference measures. External
interference includes weather influences, such as wind, sand, rain, snow, hail, salt damage (i.e., salt
erosion on the mechanism), etc.

Figure 4. Tracking Control Flow Chart

Performance Parameters
We used the following modules to build our solar tracking system:

■ Balance sensor module—At the initial system reset, the four switches of the balance sensor are
all powered-on at horizontal balance status.

■ A/D module—We used the AD0804 A/D converter, which has a 100-µs conversion time and 8-bit
resolution.

FPGA
Microcontroller

Sensor

Driver A

Driver B

Motor A

Motor B

Solar Rotation
Mechanism

Start

Read Solar
Voltage (V)

Put In Solar
Voltage (V)

Starting Mode

Searching
Mode

Tracking
Mode

Anti-Interference
Measures

Ending Mode
220

Intelligent Solar Tracking Control System Implemented on an FPGA
■ Motor control module—We used a 100-µs circle step motor to control the motor’s speed.

■ CPU—We created a tailor-made 32-bit RISC-based CPU that has the capacity to control the solar
system.

For precision, the fuzzy control time should not be more than 0.1 second. In addition to the reset balance
(positioning level of 0 degree = 262,144), the balance sensor can also bound the X and Y axes.

Design Architecture
As shown in Figure 5, the Nios II processor is the control center and integrates our two-axis control
chip. The system determines which data is fed back to the FPGA using a photography sensor. It
conducts the tracking control rule operation to calculate the angle required by the motor and adjusts
motor’s current angle. It also moves the solar panel to achieve optimal power.

Figure 5. System Architecture

For the hardware design, we first used a balance sensor to set the system’s zero point. Then, we designed
a tracking sensor to determine the orientation of the solar light source. The signals fed back by the
sensor form the basis of the controller input. The control design outputs the signals to control the two-
axis step motor and the solar tracking control system. The following sections introduce the hardware.

Balance Sensor
For the initial reset balance, we used a mercury switch (also called a tilt switch), which is a kind of
circuit switch. Its main body is a mini container that is connected with electrodes and contains a drop
of mercury, and usually the container is a vacuum or infused with inert gas (see Figure 6). Because of
gravity, the mercury bead flows towards the lower position in the container. If it contacts the two
electrodes simultaneously, the circuit closes and the power-on switch opens. According to our design
principle, we set four switches (east, west, south, and north) in the mechanism design and fixed the
mechanism. If the four switches are all powered-on, the mechanism balances. Figure 6 also shows the
balance sensor stereogram.

FPGA

Nios II Processor

CPU

On-Chip
ROM

On-Chip
RAM

UART

PIO

Timer

SDRAM

Driver 1

Driver 2

Avalon
Bus

Digital
Circuit

(PLD) of
Two-Axis

Motor
Control

Photography
Sensor
221

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 6. Mercury Switches and Stereogram

Sensor Design
One of our key modules is the sensor. Because the sensor tracks the solar light source’s orientation,
selecting the right tracking sensor is very important. CdS sensors (see Figure 7) are cheap, reliable, and
photo-sensitive. In our design, the CdS sensor provides the following advantages:

■ Without polarity (ohmic structure), the CdS sensor is easy to use.

■ CdS sensors have a photo-variable resistor in which the internal impedance changes with the
intensity of light energy.

■ When the ambient light brightens, the CdS sensor’s internal impedance reduces.

■ The CdS sensor’s photo sensitivity (i.e., spectral characteristics) is 0.4 to 0.8 mm, which is close
to the wavelength scope of visible solar light (0.38 to 0.76 mm), as shown in Figure 7.

Figure 7. CdS Stereogram and Sensitivity Scope

Mercury Switches Balance Sensor Stereogram

mp

CdS Stereogram CdS Sensitivity Scope
222

Intelligent Solar Tracking Control System Implemented on an FPGA
Tracking Sensor Design
The tracking sensor is composed of four similar CdS sensors, which are located at the east, west, south,
and north to detect the light source intensity in the four orientations. The CdS sensor forms a 45° angle
with the light source. At the CdS sensor positions, brackets isolate the light from other orientations to
achieve a wide-angle search and quickly determine the sun’s position (see Figure 8). The four sensors
are divided into two groups, east/west and north/south. In the east/west group, the east and west CdS
sensors compare the intensity of received light in the east and west. If the light source intensity received
by the sensors are different, the system obtains signals from the sensors’ output voltage in the two
orientations. The system then determines which sensor received more intensive light based on the
sensor output voltage value interpreted by voltage type A/D converter (ADC) and ADC0804 device.
The system drives the step motor towards the orientation of this sensor. If the output values of the two
sensors are equal, the output difference is zero and the motor’s drive voltage is zero, which means the
system has tracked the current position of the sun. The north/south sensors track the position of the sun
similarly. Figure 9 shows the sensor stereogram.

Figure 8. Tracking Sensor Internal Design

Figure 9. Tracking Sensor Stereogram

ADC
Generally, measured continuous signals such as voltage or current are analog signals. An ADC converts
analog signals to digital signals. Digital signals can minimize noise interference during signal

Upward

Northward

Southward

Westward

Right Angle
CdS Mounting Bracket

Standing Platform
CdS Sensor
223

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
transmission and debug noise interference with encoding technology. Additionally, digital signals are
easy to store.

The ADC0804 ADC is a 20-pin device with 8-bit resolution and a single channel operating with a 5-V
single power supply. Its analog input voltage scope is 0 V to 5 V. The power consumption is 15 mW
and the conversion time is 100 µs. Because the resolution is 8 bits, there is a 256-step quantization. If
the reference voltage is 5 V, each step is 5/256 = 0.01953 V. 00000000 (00H) represents 0.00 V and
11111111 (FFH) represents 4.9805 V. The unadjusted error of the ADC0804 device is 1 least significant
bit (LSB), i.e., 0.01953 V, including the full-scale error, offset error, and nonlinear error.

Figure 10 shows the ADC0804 pins. D0 through D7 is the 8-bit output port. When both and

are low, digital data is sent to the output port. When or is high, D0 through D7 float. is

the control signal for initiating conversion. When and are low, the ADC0804 device performs

deletion; when goes high, the device performs conversion. CLK IN is the time sequence input with

a frequency scope of 100 to 800 KHz. is high during conversion and changes to low when
conversion ends. Vin(+) and Vin(-) are differential analog signal inputs, usually single-ended inputs,
and Vin(-) is grounded. The ADC0804 device has two ground ends, A GND and D GND. Vref/2 is
half of the reference voltage input value if the overhead connection, 2Vref, is equal to the power supply
voltage, VCC. The ADC0804 device is embedded with a Schmitt trigger as shown in Figure 11. If
resistance and capacity are added to CLK R and CLK IN, the time sequence, which is required by
operating the ADC, is generated with the following frequency:

 (1)

In the equation, the time sequence signal is decided by R and C and the signal does not need to be added
with CLK IN. Figure 12 shows the ADC0804 circuit diagram. The input analog signal is controlled by
variable resistance VR2 and input from Vin(+) end with Vin(-) being short. 2Vref is provided by

R1, R2 and VR1; C1 and R3 control the time sequence of the circuit. and are grounded to create

the chip enable. and receive the SW1 switch to emulate control signals.

Figure 10. ADC0804 Pin Function Diagram

CS RD
CS RD WR

CS WR

WR
INTR

)(1.1
1

ZCLK HRCf ≈

CS RD

WR INTR
224

Intelligent Solar Tracking Control System Implemented on an FPGA
Figure 11. ADC0804 Internal Time Sequence Generation Circuit

Figure 12. ADC0804 Circuit Diagram

Table 1 shows the ADC specifications.

Figure 13 shows the completed ADC circuit stereogram.

Table 1. ADC Specifications

Operating voltage +5 V DC

Analog voltage input scope 0 ≤ Vin ≤ +5 V DC

Resolution 1/256

Conversion output value 0 to 255

Conversion frequency fc k = 1/(1.1 x R x C)

Conversion error ± 1 LSB

Reference voltage + 2.5 V DC
225

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 13. Complete ADC Circuit Stereogram

Sensor Production
Figure 14 shows the balance sensor circuit diagram for the default mercury switch.

Figure 14. Balance Sensor Circuit Diagram

The CdS sensor’s output signals generated by the solar light source are the input signals for the ADC
chip’s sixth pin. They are converted into analog signals and 8-bit output signals via the eleventh through
eighteenth pin. Then, the signals are sent to the FPGA as input signals. Figure 15 shows the complete
circuit diagram.

Figure 15. ADC Circuit Diagram

1
2
3
4
5
6

JP1

Balance Sensor

100 GND

GND

GND

GND

JP1_5
JP1_5

JP1_4
JP1_3
JP1_2

JP1_4

JP1_3

JP1_2

+5

0.1uF

CS1

RD2

WR3 INTR 5

DB7 11DB6 12DB5 13DB4 14DB3 15DB2 16DB1 17DB0 18

VCC 20

IN+6

IN -7

AGND8

REF/29

DGND10

CLK IN4

CLKOUT19

Ext

ADC0804

330 LED

START

10K

+5

Cds

10K
R

+5

Vout
226

Intelligent Solar Tracking Control System Implemented on an FPGA
Design Methodology
Based on our experience, we know that if we make our solar panel perpendicular to sunlight, the
illumination is strongest and electricity efficiency is highest. When we cannot adjust the actual position
with accurate instruments, we measure, recognize, and determine the position with our eyes. Fuzziness
might not be bad; sometimes we must accept information using a fuzzy method because we cannot
know everything fully. General objects under control require a large number of complex mathematical
formulas. To master controls with fuzzy features, scientists developed fuzzy theory. In application, the
theory gives high importance to human experience and master degree for the properties of things, but
does not advocate resolving problems with complex mathematical analysis and modes. In the following
sections, we introduce fuzzy theory and describe how we use it in our Nios II control system.

Fuzzy Logic Control Design
Since professor L. A. Zadeh of the University of California at Berkeley proposed the concept of fuzzy
sets in the academic journal, Information and Control in 1965, fuzzy theory has boomed. The theory
emphasizes that most knowledge can be expressed with language, i.e., we can fuzzify all knowledge
fields. Implementing the theory provides a wider application scope and error tolerance and is suitable
for nonlinear systems in real life.

Early in 1974, professor E. H. Mamdani of Queen Mary, University of London, successfully applied
fuzzy control to the automatic operation of a steamer. In 1980, a Danish company, F.L. Smidth, used
fuzzy controls on a cement kiln. The corporation transformed the operation statuses of the cement kiln
and their solutions into language-type control rules and controlled the cement kiln by computers.
Additionally, the Sendai Municipal Subway of Japan, which was launched in July 1987, successfully
used fuzzy controls to automatically operate trains. Some consumer electronics also use the theory.

Fuzzy theory is a science closely related to our lives. Because it describes things with language, it is
easy to accept. In real life, most descriptions are fuzzy. For example, when we say “sweet fruit” or
“drive fast,” sweet and fast are not accurate values but simply a description of the degree. However,
people can easily understand the meaning from the description. During nearly 40 years of development,
achievements in fuzzy theory have been recognized and the application of the theory has extended to
all scientific fields, including:

■ Control engineering—Intelligent controls, vehicle electronics, Sendai Municipal subway, etc.

■ Image identification—Image processing, voice identification, signal processing, etc.

■ Consumer electronics—Washing machines, refrigerators, coolers, etc.

■ Other—Data management, teaching appraisals, financial management, etc.

Fuzzy Logic Controller Structure
Figure 16 shows the fuzzy logic controller (FLC) structure. The FLC is composed of a fuzzification
interface, knowledge base, inference engine, and defuzzification interface.
227

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 16. Fuzzy Logic Controller Basic Structure

Fuzzification Interface
The input of a common controller is a specific numeric value, but the knowledge base for fuzzy control
is expressed with language. The system must turn numeric values into language and corresponding
domains to allow the fuzzy inference engine to inference. This transformation is called fuzzification.

Knowledge Base
Knowledge base is the inference basis for fuzzy control. It defines all relevant language control rules
and parameters. The knowledge base (including the database and rules base) is the core of a fuzzy
control system.

Database
Fuzzy control rules have two types of presentations. The first is a state evaluation type that evaluates
the system state at time (t) and calculates the fuzzy control action at certain point in time using the
control rule and database input variables. The second is an object evaluation type that predicts current
and future control actions. It determines whether the control object is achieved and then decides
whether to output a control command. The database is usually built based on the following sources:

■ Working and expert experience—The fuzzy control rule is based on information obtained by a
controlled system. Experience rules are the most important part of fuzzy control.

■ System self-learning—The system has an off-line learning method and builds a rules base with the
help of other algorithms; however, this method requires a system model to be established already.

■ Predication evaluation—This is a traditional method. It uses mass tests to verify the result and
updates the rules base with the latest results. This method takes a long time.

Rules Base
The rules base contains many rules presented as language. The following rule is presented as a simple
conditional statement:

Rt IF x is At THEN y is Bt (2)

where:

■ t is the statement number.

■ IF is the statement antecedent proposing the conditions to determine whether the statement is true.

■ THEN is the statement consequence representing the inference result according to the conditions.

Input OutputFuzzification

Fuzzy Logic
Controller

Decision-Making
Logic (Control Rules)

Defuzzification Controls
e+

-

Fuzzy Knowledge
Base (Fuzzy Inference)
228

Intelligent Solar Tracking Control System Implemented on an FPGA
■ Antecedent x is the input variable of the fuzzy system and is used to measure the system state.

■ Consequent y is the output variable of the fuzzy system and is used to control the system.

The actual variable number can be increased or reduced according to the status of controlled system. At
and Bt are the fuzzy concepts presented by language. For example, the definitions of tall, short, fast, and
slow are different due to human subjective opinions and are difficult to present with data; instead they
are defined using membership functions.

Fuzzy Inference Engine
As the most important part of fuzzy control, the fuzzy inference engine performs the actual decision-
making process. The basic theory of the fuzzy inference engine is an approximate inference. The engine
has two key inference methods: generalized modus pones (GMP) and generalized modus tollens
(GMT). GMT is object-oriented inverse fuzzy theory, but GMP is forwarding linking inference modus.
In GMP, when data is input, the output can be inferred according to rules; therefore, GMP is applicable
for a fuzzy control inference mechanism. Its operation includes the following three calculations:

■ Perform an AND operation for all the propositions of the antecedent of the triggered rule to obtain
the antecedent fit.

■ Perform an AND operation for all the propositions of the consequent corresponding to the
antecedent fit of the triggered rule to determine how strongly true the rule is.

■ Perform an OR operation for all consequents of all triggered rules.

Defuzzification
The reverse of fuzzification, defuzzification transforms the fuzzy inference engine’s output values into
equivalent assured values, making the assured value comply with the input signals of the controlled
system. This process gives output control signals to the controlled system.

Solar Energy Controller Production
Although the solar tracking system’s two drive motors can independently rotate without the problem of
coupling, they inevitably have nonlinear phenomena in the moment of inertia (this is a common
problem for 3-D rotation mechanisms). Therefore, the motors require a closed loop control. Although
nonlinear phenomena exist in the moment of inertia control, it is not necessary for the solar tracking
system to rotate very quickly due to the speed of the sun’s movement. Therefore, we can use fuzzy
control rules to control the motor operation while ensuring the system control mechanism’s
adjustability and fast response time.

We use fuzzy control theory as the control basis of motor driver. When implementing the hardware
control circuit, we used a hardware description language such as VHDL and Verilog HDL to load the
control program into the Nios II processor, which is the control center. Then, we created the sensor,
decoder, and other devices to form a complete control loop, ensuring optimal electricity efficiency of
the system.

Fuzzy Logic Controller Implementation
Our controller designed takes the measured value of the light strength received by the sensor as the
feedback and implements control using many rounds of modifications. Figure 17 shows the basic fuzzy
control system structure. The CdS sensor resistance changes with the light strength. It is converted by
the ADC to obtain a partial pressure voltage. Fuzzy control takes the errors of the two groups in the
vertical (southern and northern) and horizontal (eastern and western) axis as the fuzzy control input.
229

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 17. Solar Energy Fuzzy Control System Structure

The whole fuzzy controller can be designed in five steps.

Step 1: Definitions
We define the input variables, output variables, and linguistic variables. Linguistic variables include the
choice of input and output variables. In this study, for an axis we choose e as the input variable and e as
the output variable, and define five triangle membership functions for one chosen linguistic variable.

■ The input variable is Error e = b_pio - a_pio (3)

■ The output variable is the number of seconds between the rotation and reversion adjustment of the
step motor.

■ For the domain of the output and input variables we used normalized discrete domain to set
domain scope as [-75, 75].

■ For the linguistic items, we defined five linguistic items for each linguistic variable, i.e.,
e ={NB, NS, ZE, PS, PB}. The linguistic items are defined as:

● NB: Negative Big

● NS: Negative Small

● ZE: Zero

● PS: Positive Small

● PB: Positive Big

Step 2: Build Membership Input Functions
Based on the defined linguistic variables, we built the input membership functions. Figure 18 shows the
membership function of errors in a horizontal or vertical orientation.

Input OutputFuzzification

Fuzzy Logic
Controller

Decision-Making
Logic (Control Rules)

Defuzzification Solar Panel
2-Axis Control

e+

-

Fuzzy Knowledge
Base (Fuzzy Inference)

Sensor
230

Intelligent Solar Tracking Control System Implemented on an FPGA
Figure 18. Fuzzy Control System Membership Function

Step 3: Set Up Fuzzy Rules Base
The setup of the fuzzy rules base is crucial because all states must be operated based on the rules defined
in the rules base. To set up a fuzzy rules base smoothly, we adopted five fuzzy control rules expressed
with IF THEN statements.

■ Rule 1—If e is PB, then Uf is PB.

■ Rule 2—If e is PS, then Uf is PS.

■ Rule 3—If e is ZE, then Uf is ZE.

■ Rule 4—If e is NB, then Uf is NB.

■ Rule 5—If e is NS, then Uf is NS.

Step 4: Define Fuzzy Inference Engine
There are many fuzzy inference methods and different results are inferred with different methods. In
this project we use the center of gravity method proposed by Mamdani as the defuzzification tool
because the method is easy and reliable.

Step 5: Defuzzify Result
We defuzzify the result inferred by the fuzzy inference engine to convert the information into precise
numbers. There are many methods for defuzzification. In this project we use center of gravity for
defuzzification to obtain actual operation. The formula is shown in equation 4.

If the inference result is a fuzzy single value, the weighted mean method is most widely applicable. For
n rules, wi is the initiating strength of number i fuzzy rule, ri is the inference result of number i fuzzy
rule, and Ûf is the output operation, the formula is:

 (4)

PBPSZENSNB

70350-70 -35

∑

∑

=

== n

i
i

n

i
ii

f

w

rw
U

1

1ˆ
231

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Here we use the five fuzzy rules as follows:

 (5)

This defuzzification method can also be easily implemented with a digital circuit.

FPGA Program Design
As FPGAs have evolved in recent years, a single FPGA can accommodate more and more logic circuits.
Building of a whole digital electronic circuit on a single chip provides a big edge in speed and power
consumption, making system-on-a-programmable-chip (SOPC) designs gradually become the design
tendency. As an emerging systematic design technology, SOPC design can incorporate the hardware
system (including processor, memory, peripheral interface circuit, and user logic circuit) and software
design on a single programmable chip.

SOPC System Design
Figure 19 shows the SOPC system development flow. First we define the system, including the
processor, memory interface, peripherals, arbitrator, custom instructions, etc. Next, we generate the
system with SOPC Builder. Then we perform the hardware and software design. During hardware
design, we used the Quartus® II software to compile the logic circuit of the HDL programs and EDIF
files. During software design, we used the GNUPro software development tool and software resources
such as header files, library, monitors, and peripheral drivers to generate and edit application code. We
debugged programs using Debug/Profile. To ensure the correctness of the hardware and software
design, we used the ModelSim software for simulation. When we found an error, we went back to
system generation so that SOPC Builder can modify and generate the system until it is right. Finally,
we downloaded the hardware and software design into development board and prototyping kit for
circuit verification.

55443322115

1

5

1ˆ rwrwrwrwrw
w

rw
U

i
i

i
ii

f ++++==
∑

∑

=

=

232

Intelligent Solar Tracking Control System Implemented on an FPGA
Figure 19. SOPC System Development Flow

Hardware Design Solution
With Altera FPGAs, we could use the soft-core Nios II processor or the ARM ARM922T hard core.
Altera provides the soft-core Nios II processor, which is a 16- or 32-bit RISC-based configurable
embedded processor. For peripherals, Altera provides on-chip ROM, on-chip RAM, memory interfaces
(such as SDRAM, SSRAM, and DMA controllers), series I/O (such as UART and Ethernet), parallel
I/O (such as an input/output/two-way port, or PCI interface) as well as timers (such as a simple timer,
frequency timer, and watchdog timer). For intellectual property (IP), Altera provides a PCI 32/33 bridge
and Ethernet MAC. For the bus, Altera provides the Avalon® bus.

For the EDA hardware development tool, we used Altera’s Quartus II software for place and route,
design entry, compilation, and programming of the FPGA. The Quartus II software provides design
entry methods such as VHDL, Verilog HDL, Altera Hardware Description Language (AHDL), and
block/schematic entry. We used the LeonardoSpectrum software for circuit synthesis and the
ModelSim® software for system simulation.

Software Design Solution
Altera provides the following relevant software development tools:

■ Compiler

■ Assembler

■ Linker

■ Debugger

■ Monitor

Processor
Component Library

Peripheral
Component Library

Form a
Processor

Block Connection

Select & Form
Peripheral & IP
Components

Generate
* EDIF
* HDL Source File
* Testbench

Synthesize &
Assemble

* User's Design
* Other's IP

Quartus II

SOPC Builder

Hardware Constitution File

Altera
SOPC FPGA

VerificationHardware Development Software Verification

JTAG Parallel
Ports, Serial Ports,
or Through Ethernet

Verify & Debug

On-Chip
Debugging

Executable File

GNUPro Tools

Custom
Instruction

IP Modules

* C Header File
* Custom Program Library
* Peripheral Driver Program

GNUPro Compiler

* User Program Code
* Program Library
* RTOS
233

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Libraries

■ Utilities

Nios II Embedded Processor
Embedded systems were first designed for industrial computers. With the boom of information products
and digital consumer electronics (CE), embedded systems became more popular. Embedded systems
are used in a variety of applications, from information products, CE, and network products to portable
devices. Because the ARM processor does not include FPGA-based IP, Altera embeds the ARM922T
microprocessor hardware circuit into the FPGA to improve the system design integrity. In this project,
integrating an FPGA control chip, it is convenient and feasible to use the Nios II processor to develop
an SOPC embedded system. Using the SOPC Builder Integrated Development Environment (IDE) of
Altera as an example, we can plan CPU types using the ARM core and Nios II IP (embedded into the
CPU as VHDL or Verilog HDL) as the priorities. The main advantage of the SOPC Builder IDE is that
it integrates and records the required circuits and peripherals to an FPGA to create a small circuit and
maintainable hardware and software while accelerating product development and keeping a scalable
design.

In this project we used the Altera Development and Education (DE1) board and implemented the
Nios II embedded processor in the Cyclone II EP2C20F484C7 FPGA on the board. Figure 20 and
Table 2 show the development board specifications. The resulting processor is a low-cost, high-
performance FPGA and its system performance can be configured by customers as required, including:

■ Three types of Nios II processors: fast (Nios II/f), standard (Nios II/s), and economical
(Nios II/e). They are 32-bit instruction set structural systems.

■ Complete peripheral hardware settings such as a timer, bridge, and counter, which SOPC Builder
uses to integrate a complete microprocessor structure.

■ Avalon switch structure, which can simultaneously process multiple units to improve system
bandwidth with minimum FPGA resources.
234

Intelligent Solar Tracking Control System Implemented on an FPGA
Figure 20. DE1 Development Board

To design a Nios II system, we need to design the software and hardware. We used the Quartus II
software and SOPC Builder to design the hardware. We used the Block Editor to generate the upper
Block Design File (.bdf) and used the Text Editor to create VHDL or Verilog HDL hardware files. We
also used the embedded MegaWizard® Plug-in Manager to generate low-order VHDL design files.

In the hardware design, we used SOPC Builder to establish Nios II system modules including the CPU,
memory, and peripheral circuits. We selected the needed modules and set their parameters to designate
the base address, interrupt request (IRQ), and system frequency as shown in Figure 21.

Table 2. DE1 Development Board Specification

Specification Value
Total logic elements (LEs) 18,752

M4K RAM blocks 52

Total RAM bits 239,616

Embedded multipliers 26

PLLs 4

Maximum user I/O pins 315

FineLine BGA package 484
235

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 21. SOPC Builder System Content

Next, we designated the locations of the memory, boot chip, and interrupt vector table for the design
and other system module settings as shown in Figure 22.

Figure 22. Nios II System Settings

After completing the system design, we turned on the HDL option and turned on the chip model to be
configured if the ModelSim simulation software has been installed. Then we clicked Generate to begin
generation. This step performs the following actions:

■ Generates the HDL file.

■ Generates the simulation items and source files.
236

Intelligent Solar Tracking Control System Implemented on an FPGA
■ Generates the C and Assembly language headers and source files.

■ Compiles the system library.

When system generation completes, we clicked Exit to go back to the Symbol Editor. See Figure 23.

Figure 23. SOPC Builder System Generation

SOPC Builder generates a symbol of system module. Then, we added the circuit symbol into the BDF.
See Figure 24. We added the input, output, and bidirectional pins, and then named each pin and other
basic device symbols.

Figure 24. Quartus II BDF
237

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Finally, we downloaded the designed circuit to the development board using the Quartus II Programmer
as shown in Figure 25.

Figure 25. Quartus II Programmer

We input the decoding circuit for the CdS sensor using Verilog HDL. The signal is sent to the Nios II
CPU, which controls it. See Figure 26.

Figure 26. Input Decoder Circuit using the CdS Sensor

After determining the angle that the solar panels should reach, the Nios II CPU gives a signal to the
motor to drive it. As shown in Figure 27, there are two motor modules controlling the system’s X and
Y axis.
238

Intelligent Solar Tracking Control System Implemented on an FPGA
Figure 27. Step Motor Module

After the required system hardware is generated, we can implement the controller using hardware or
software. We used the Nios II 32-bit CPU to accelerate our fuzzy control rules. The Nios II IDE is
shown in Figure 28.

Figure 28. Nios II IDE

Design Features
The Nios II processor helped us implement the design in the following ways:

■ The major difference between our design and traditional, single-chip designs (such as the 8051 or
PIC device) is that we added a fuzzy control rule to the circuit. Traditional chips cannot write
VHDL. If we used traditional devices, we might need external logic circuits to implement the
fuzzy controller, increasing the controller design volume and cost burdens. Alternatively, if we
239

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
used a microprocessor (MCU) plus an FPGA (excluding the Nios II processor), we would need
to use a two-device assembly.

■ For complex logic circuits, we can create a design using an FPGA and the Nios II processor with
the Nios II IDE. The advantages of this method are that we can use the C language to write fuzzy
algorithms and incorporate them into the Nios II CPU and we can compile the VHDL code into
the FPGA to control the step motor. This implementation allows us to process algorithm
operations and I/O control in parallel, improve integrated efficiency, and quickly implement and
verify our hardware circuits.

Finally, we took the solar tracking control system for an outdoor test. For each 24-hour day, we used
the step motor, FPGA development board, and control and sensing circuit to track the sunlight for about
30 seconds/hour. In one day, the solar panel is charged for about 8 hours, and in for the rest of the time
it does not consume power (i.e., there is no standby mode to consume power). Therefore, we can
calculate the energy data as shown in Table 3.

Comparing the total net electricity generation of the fixed elevation angle control and smart solar
tracking control, we found that smart system is superior to the fixed system.

Outdoor Measurement
In the study, we moved the solar platform to the top of the school building to test the fixed and smart
systems (the results are shown in Table 3). Outdoor fixed and smart solar current collection system
simulations are shown in Figures 29 and 30, respectively.

Table 3. Collected 24-Hour Solar Energy Radiation (Cloudy)

Test Method Measured Data Fixed Solar Current
Collection System

Smart Solar Current
Collection System

Average 24-hour accumulated electricity generation of
the solar panel Ps (J).

276,480 345,600

24-hour accumulated current consumed by step motor
and control and sensing circuits Pc (J).

0 9,216

Average 24-hour accumulated net electricity generation
Ptotal = Ps - Pc (J).

275,480 336,384
240

Intelligent Solar Tracking Control System Implemented on an FPGA
Figure 29. Outdoor Fixed Solar Current Collection System Test
241

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 30. Outdoor Smart Solar Current Collection System Test

Indoor Measurement with Searchlight Simulating Sunlight
In this test, we used a searchlight as a simulated sunlight source, established a fixed and smart simulated
sun running orbit, and used Visual Basic (VB) to transmit the measured voltage to notebook (NB)
computer to measure the actual voltage through the RS-232 port. Figures 31 and 33 show the fixed and
intellectual solar current collection system simulation, respectively. They show the different electricity
generation efficiencies at the same angle. Figures 32 and 34 show the indoor fixed and smart solar
current collection system voltages, respectively.
242

Intelligent Solar Tracking Control System Implemented on an FPGA
Figure 31. Indoor Fixed Solar Current Collection System Test

Figure 32. Indoor Fixed Solar Current Collection System Voltage
243

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 33. Indoor Smart Solar Current Collection System Test

Figure 34. Indoor Smart Solar Current Collection System Voltage
244

Intelligent Solar Tracking Control System Implemented on an FPGA
From Figures 32 and 34, we can see the voltage of the fixed solar current collection system is less than
that of the smart solar current system. Therefore, the smart system is superior to the fixed system.

From the experimental results, we reached the following conclusions:

■ By using the CdS sensor, the step motor, and Nios II processor in the FPGA to write and create
different sunlight processing solutions (such as cloud intervention processing and reset solutions),
we could establish a smart elevation angle control system to track a solar light source and improve
the electricity generation efficiency of the solar batteries.

■ The data in Table 3 shows that the smart elevation control system is a solar battery electricity
generation system deserving wide promotion.

■ Used with an FPGA, Altera’s Nios II processor simplifies research and development and product
testing and reduces circuit board costs, making it far superior to commonly used single devices.

Conclusion
We had used Altera FPGAs before we participated in the contest, so we had heard about the first-
generation Nios processor. However, we only knew the Nios II processor from Altera’s web site and
collateral. This Nios II design contest gave us a good opportunity to enhance our ability in Nios II
processor design and helped us thoroughly understand the Nios II processor’s brand-new design
concepts and features.

In this design, we used Altera’s SOPC-based FPGAs. SOPC design represents a new system design
technology, and SOPC Builder and the Nios II processor helped us see the powerful design technologies
of software and hardware systems. Most traditional circuit designs are composed of hardware
components building on a printed circuit board (PCB). If errors are found or the system needs to be
improved or upgraded, the PCB must be redesigned. Adjusting and modifying the PCB is very
inconvenient and increased the design cost and development period. In this contest, we accomplished
our goals before the deadline. From concept design to system implementation, we only needed to model
on the PC because Altera provides complete tools—including SOPC Builder, the Nios II IDE, and
Quartus II development environment—to accelerate the software and hardware development. The
Nios II processor is greatly improved over the Nios processor, and is more efficient, compact, and
stable. Finally, integrating Nios II development, test environment, and C language compiler provides
great convenience for users.
245

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
246

Nios II Processor-Based Fingerprint Identification System
Third Prize

Nios II Processor-Based Fingerprint
Identification System

Institution: College of Communication Engineering, Chongqing University

Participants: Ji Wang, Liang Wu, Yong Liu

Instructor: He Wei

Design Introduction
With the boom of information technology represented by computers since the 1960s, computer
technology has begun to be used in the fingerprint identification field, bringing new thoughts,
implementation methods, and processing approaches for automated fingerprint identification.
Authorities, institutions, and universities have begun implementing fingerprint analysis and processing
using computers. A computerized system that performs automated fingerprint identification is called an
Automated Fingerprint Identification System (AFIS).

People often need to be identified in society. The common ID authentication methods such as keys,
password, certificates, and IC cards provide identification using objects, which indirectly identify the
object holder. These objects are not very accurate and have significant security risks, including
counterfeited certificates and tokens, and decrypted or stolen passwords. With the development of
image processing and pattern identification technologies, emerging identification technology based on
biometric characteristics has become the focus of research and applications due to its unique reliability,
stability, and convenience. As the earliest and most mature biometric identification technology in the
pattern identification field, fingerprint identification technology integrates sensors, biometric
technology, electronic technology, digital image processing, and pattern identification. Many automatic
fingerprint identification systems are used worldwide, but fingerprint identification technology is not
yet mature. China is behind in fingerprint collection and algorithm study, so the research of fingerprint
identification algorithms and systems will play a significant role in theory and practice.

Systems with fingerprint minutia identification have wide applications in the fields of security,
jurisdiction, military, finance and economy, information service, etc. Identification is needed in access
control systems and other similar applications. Embedded fingerprint minutia identification systems
247

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
fully utilize biometric minutiae and are applicable for determining attendance in schools and
enterprises, identifying residents in residential quarters, and so on.

The study and practice of police AFIS for two or three decades has laid a good foundation for civil
AFIS. Specifically, the existing civil AFIS is easy to use, accurate, reliable, and affordable, allowing
fingerprint identification products to enter our daily life. By replacing a personal identification code and
password, fingerprint identification technology can guard against unauthorized access and illegal use
of ATMs, cell phones, intelligent cards, desktop PCs, work stations, and computer networks. It can
facilitate identification in telephone- or Internet-based financial deals and replace keys, certificates,
stamps, and IC card readers in buildings or worksites.

As microelectronics technology advances, programmable logical controllers are becoming more
diversified, faster, and more powerful. Today, many FPGAs support embedded soft-core processors to
facilitate FPGA-based hardware development. For example, the Altera® Nios® II RISC CPU soft-core
processor features pipelining and single instruction flow, can be embedded in an FPGA, and can
leverage custom logic to build a FPGA-based on-chip system. Compared to an embedded hard core, a
soft core is more flexible. Additionally, the faster FPGA exactly meets the fingerprint identification
system’s speed requirements.

We chose to use the Nios II soft-core processor in our design for the following reasons:

■ The Nios II soft-core processor can cut costs through large-scale system integration and FPGA/
CPU optimization.

■ The Nios II processor is more flexible, provides shorter design cycles, and can prolong the product
lifecycle with upgrades.

■ Custom instructions and logic can accelerate complex arithmetic operations and logic.

■ The Nios II C-to-Hardware Acceleration (C2H) Compiler allows designs to operate more than 40
times faster than software that is not accelerated.

Function Description
We designed the fingerprint identification system based on Altera’s Nios II processor and FPGAs. This
system can collect real-time fingerprint image signals, extract finger minutiae, and match minutiae in a
database to perform fingerprint identification. The whole system design includes fingerprint image
collection, fingerprint image preprocessing, minutia extraction, minutia matching, and a database.

Fingerprint Image Signal Collection
The fingerprint collector serves as the fingerprint collection module. The module’s fingerprint sensor is
Veridicom’s third-generation product, the FPS200 sensor (with 256 x 300 array numbers and 500-DPI
resolution). The sensor uses Veridicom’s ImageSeek function and high-speed image transmission
technology to obtain quality images of all fingerprint types. The fingerprint collector design performs
the following functions:

■ Capture stage—Each column of the capacitor array is connected to two sampling/hold circuits to
capture one row of fingerprint images. The capture procedure has two stages: capacitors in the
chosen row are charged to UDD and store the charging voltage in the first sampling/hold circuit;
next, the capacitors discharge to the current source at a speed proportional to the discharged
current. After a discharge period, the second sampling/hold circuit stores the capacitors’ final
discharge voltage. By measuring the difference (ΔU) between the charging and discharging
voltages, we obtain the capacity (C) of each capacitor unit.
248

Nios II Processor-Based Fingerprint Identification System
■ Analog-to-digital (A/D) conversion—The analog signals representing the unit capacities of the
row go through A/D conversion to generate the digital fingerprint image information for the row.
The system puts the information in a register and captures the fingerprint images of the next row.

■ Fingerprint signal transmission—FPS200 contains three bus interface circuits: USB, serial
peripheral interface (SPI), and microcontroller (MCU) interfaces. This design uses the SPI
interface to transmit the digital information in the registers to the Development and Education
(DE2) board’s SDRAM.

Fingerprint Image Preprocessing
During fingerprint image preprocessing, the fingerprint image is enhanced. Accurate fingerprint
identification relies on the identification of the fingerprint ridge texture and minutiae. However, due to
skin condition, collection conditions, devices, the working and living environment of the fingerprinted
person, etc., the raw fingerprint images collected by the fingerprint sensor usually contain noise and
degrade dramatically. Therefore, the raw fingerprint images must be preprocessed after being collected.
Fingerprint image preprocessing procedures include image normalization, orientation and frequency
extraction, filtration, binarization, ridge thinning, etc.

Normalization
Image normalization reduces the diversification degree of the grayscale along the ridges and valleys
without changing the raw image’s structure or texture information. This process gives the image preset
means and variances, and facilitates pattern capture and fingerprint frequency. Nevertheless,
normalization can also enhance some hash in the image background. Equation 2.1 is for normalization
and equation 2.2 is an improved version based on equation 2.1 for the convenience of hardware
implementation.

(2.1)

(2.2)

Fingerprint Orientation Extraction
The basic concept for pattern extraction is to:

■ Calculate certain statistics (like grayscale difference and gradients) of each point (or block) in all
orientations of the raw fingerprint grayscale image.

■ Decide the orientation of the point (block) according to the difference of these statistics in all
orientations to obtain the fingerprint pattern.

The algorithm process is as follows:

1. Suppose f(i,j) is the grayscale value of fingerprint pixel point (i,j).

2. Divide the image into W x W-sized sub-blocks without overlapping. It is better for W to contain
the size of a ridge and a valley. Here we use 10 for W.

3. Use the Sobel operator to compute the gradients of image’s pixel points (i,j) in X and Y
orientations, GX(u,v) and GY(u,v). Figure 1 shows the Sobel operator template coefficient.

G i j(,)
M0

VAR0 I i j(,) M–()2

VAR
--+ I i j(,) M>

M0
VAR0 I i j(,) M–()2

VAR
--– Others⎩

⎪
⎪
⎨
⎪
⎪
⎧

=

G i j(,)
M0 λ VAR× I i j(,) M–×+ I i j(,) M>

M0 λ VAR× I i j(,) M–×– Others⎩
⎨
⎧

=

249

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 1. Sobel Operator Template Coefficient

4. Calculate the partial orientation Θ(I,j) of the W x W sub-block focus on (I,j).

5. Smooth the resulting fingerprint pattern.

Fingerprint Frequency Extraction
In partial non-singular areas of the fingerprint image, the changing pixel point values of the ridges and
valleys constitute an approximate two-dimensional (2-D) sine wave along the orientation vertical to the
ridges (i.e., the gradient orientation of the ridges). The fingerprint frequency algorithm procedures are
as follows:

1. Divide the normalized fingerprint image into W x W-sized sub-blocks without overlapping. Here
we use 16 for W.

2. For each image sub-block focusing on (i,j), use the fingerprint orientation Θ(i,j) of (i,j) for the
minor axis and draw a rectangular orientation window of L x W (32 x 16).

3. For each rectangular orientation window, calculate the grayscale discrete signals X[0], X[0],…X
[L - 1] vertical to Θ(i,j) (i.e., the gradient orientation of the fingerprint) according to the following
method: because X[k] constitutes an approximate 2-D sine wave, calculate the mean distance of
the sine crest L0 to obtain sine wave frequency f = 1/L0.

Generally the frequency scope of 500-DPI fingerprint images is [1/25, 1/3].

Valid Mask Extraction
Valid masks are an important part of fingerprint image preprocessing. Valid mask extraction
distinguishes the foreground of the finger image from its background. If we do not extract the valid
image masks, we will waste time processing background areas and obtain many false minutiae.
Therefore, it is necessary to extract valid masks of the fingerprint to eliminate the background and
reduce false minutiae points. A valid mask in the fingerprint image sub-block must satisfy the following
conditions:

1. The difference between the maximum crest (GMAX) and minimum trough (GMIN) in the 2-D sine
wave along the fingerprint gradient orientation of the sub-block’s central point should be more
than the threshold (T).

2. The frequency of the sub-block’s 2-D sine wave should be within a certain scope. Here we use
[1/25, 1/3].

3. The amplitude variance of the sub-block’s 2-D sine wave should be more than the threshold (D).

4. In the sub-blocks, the fingerprint grayscale along the fingerprint orientation and along the
orientation vertical to the fingerprint orientation should have distinct differences.

1

0

2 1

-1

0

-2

0

-1

1

2

0 -1

-1

0

0

-2

1

X-Axis Orientation Y-Axis Orientation
250

Nios II Processor-Based Fingerprint Identification System
Gabor Directional Filtration
To greatly improve the fingerprint image quality, our design uses an orientation filter enhancement
method. The Gabor filter formula is:

Removing the odd component simplifies the formula. Turn to the fingerprint orientation. The design
takes each pixel point in the fingerprint image as the central point and W x W as the window to obtain
the Gabor enhancement coefficient of each pixel point in the block along the fingerprint’s texture.

Binarization and Noise Reduction
The binarization process generates a monochrome fingerprint image from a grayscale image. To
implement binarization, we use an adaptive, local threshold scheme, i.e., we adjust the threshold by the
global grayscale of a block in the image. The procedures is:

1. Divide the fingerprint image in the valid mask into W x W blocks (we use 8 for W in this design).

2. Calculate the grayscale mean of each sub-block.

3. Take the grayscale mean as the threshold to implement binarization in the sub-block.

4. The binarization process may introduce noise; therefore, after binarization the fingerprint image
should be filtered and have noise removed to delete the holes, notches, and other salient features
caused by binarization.

Thinning
Ridge thinning transforms distinct but diversely sized binary fingerprint images into a single-pixel
central point and thread image. Our design uses the Hilditch algorithm for this operaton. With this
method, the whole image must be scanned several times. During each scan, pixel points satisfying given
conditions are marked. After scanning, the marked pixel points are deleted and the next scan begins.
When no pixel points are marked during scanning, the ridge thinning process finishes.

This functional algorithm has been emulated successfully using the C language. We used different
schemes to implement modules according to their operation time. If we directly implemented the
normalization, frequency and orientation extraction, and orientation filtration of the fingerprint image
in the Nios II processor, the operation time would be unacceptable. Therefore, our system accelerates
the hardware logic and instructions with the C2H Compiler. Because binarization and image thinning
consume less time, we can implement them directly in the Nios II processor. Additionally, the whole
algorithm involves many multiplication, evolution, rotation, and floating-point operations, which
greatly slow the processing speed. Therefore, our design uses custom instructions in the Nios II
processor to add the custom functions directly into the arithmetic logic units of the Nios II CPU,
implementing these complex, time-consuming operations in hardware.

Fingerprint Minutia Extraction
Minutiae extraction involves preprocessing the image to obtain a quality image, and then finding and
specifying the minutiae. After a raw fingerprint image goes through orientation filtration, binarization,
and thinning, it becomes a thinned image. We then determine the endpoint and bifurcation according to
the crossing of each point on the thinned image and extract the useful information of the two minutia
points, such as coordinate position, type, and orientation. Fingerprint minutiae fall into many types.
From the perspective of probability, 2-bifurcation and ending are the most common.

G x y(,) 1
2πσxσx
----------------- 1

2
--- x2

σx
2

----- y2

σx
2

-----+
⎝ ⎠
⎜ ⎟
⎛ ⎞

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

2πifx–()expexp=
251

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Minutia Point Extraction
For thinned images, the pixel point grayscale value can only be 0 or 1. We set 0 as the background point
grayscale and 1 as the foreground point grayscale of the ridge. The crossing number CN of eight fields
of any point P on the thinned image (see Figure 2) is defined as:

, here P9 = P1.

If CN(P) = 1, point P is an endpoint. If CN(P) = 3, point P is bifurcation. Otherwise, point P is a
consecutive point or an isolated point and cannot be calculated into the minutia set.

Figure 2. Minutiae Point Block Diagram

False Minutiae Removal
The thinned fingerprint images that are not refined include the false minutiae shown in Figure 3.

Figure 3. Basic False Minutia Structure Types

We remove these different false minutia points using different algorithms:

1. Remove the edge effect of the image.

2. Delete the false minutia point caused by the obscure part of the image.

3. Delete the false minutia point caused by broken ridges.

4. Delete the false minutiae point caused by holes.

5. Delete the false minutiae point caused by burrs.

6. Delete the false minutiae point caused by bridges.

CN
1
2
--- Pk 1+ Pk–

k 1=

8

∑=

(a) (b) (c) (d) (e)

Short Line Hole Burr Bridge Broken Line
252

Nios II Processor-Based Fingerprint Identification System
These algorithms have been emulated successfully using the C language. Because the algorithms are
comparatively easy, do not have time-consuming operations, and the processing speed meets real-time
requirements, we implemented them directly in the Nios II processor.

Minutia Matching
Fingerprint minutia matching is the core of the fingerprint identification algorithm and is an important
research subject. The accuracy and speed of minutia matching have a huge influence on the whole
algorithm. Minutia matching matches the extracted minutia information set of two given fingerprint
images to determine whether they are identical. In our design, we:

■ Use a typical point pattern matching algorithm based on a minutia point coordinate mode.

■ Utilize the triangle structure composed of three neighboring minutia points to locate a datum mark
and to find conversion parameters.

■ Conduct matching in the polar coordinate system after coordinate translation.

■ Introduce multiple judgement conditions and a variable limit-box matching algorithm to improve
the identification rate.

We implemented the algorithm as follows:

1. For any minutia point Qi in input point set Q and any minutia point Pj in template point set P,
search the two minutia points (Qi1,Qi2) and (Pj1,Pj2) that are nearest to Qi and Pj, respectively, in Q
and P. Thus, points (Pj,Pj1,Pj2) and (Qi,Qi1,Qi2) form two triangles ΔPj,Pj1,Pj2 and ΔQi,Qi1,Qi2.

2. Determine whether the two triangles are identical and have the same rotation orientation. If they
do, take the point as a polar point to create polar coordinates, and then match the minutia points
using a variable, limit-box method.

3. We believe there is a match only if the two conditions are met:

where Nm is the number of matching point pairs of the two minutia sets, Tm and Ts and are the
thresholds under the two conditions, and N and M are the minutia numbers of the two minutia
point sets.

These algorithms have also been verified successfully in the C language. For our simple fingerprint
authentication service system, we implemented these functions in the Nios II processor.

Database
Due to the limitations of time and conditions, our system implements a simple fingerprint
authentication service system. For this system, we loaded the fingerprint database into the flash memory
on the DE2 development board. The system stores and accesses data using a linked list.

Liquid Crystal Display (LCD)
The system’s LCD module is a complete hardware-control module designed with a hardware
description language (HDL). When the CPU is not accessing the SRAM, the image information in the
SRAM is displayed on the LCD. Fingerprints are displayed on the left side of the LCD and the names
of the participating team and team members, as well as the operation button prompts, are displayed on
the right.

Nm Tm≥() η
2 Nm×
N M+
------------------ 100 s≥×=⎝ ⎠

⎛ ⎞,
253

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
The CPU does not need to control the LCD module. Using 1% of the FPGA logic resources, the
function can satisfy the real-time system requirements and demonstrate the advantages of combining
hardware and software using system-on-a-programmable-chip (SOPC) technology.

Performance Parameters
This section describes the design’s performance parameters.

Actual System Performance Parameters
The actual system has the following parameters:

■ Power supply: DC, 9 V

■ Operating environment

● Operating temperature: -5° to 45°

● Relative humidity: 8% to 95%

■ Input signal

● Method: Input by our fingerprint collector with the FPS200 fingerprint sensor

● Sensor array number: 256 x 300

● Sensor resolution: 500 DPI

● Signal transmission mode: SPI

■ Display

● LCD: 16 x 2

● Display: 320 x 240

■ Fingerprint recognition rate

● Number of tested users: 5

● Test times: 20 times/person

● Recognition rate: 99%

● False rejection rate: 1%

■ Consumed time

● Fingerprint collection time: 2.3207 seconds

● Fingerprint image preprocessing time: 24.1294 seconds

● Normalization time: 0.8326 seconds

● Orientation extraction time: 1.3586 seconds
254

Nios II Processor-Based Fingerprint Identification System
● Frequency extraction time: 2.8262 seconds

● Gabor filtration time: 12.5535 seconds

● Binarization time: 0.4280 seconds

● Thinning time: 6.1305 seconds

● Minutia extraction time: 1.4634 seconds

● Minutia matching time: subject to the number of fingerprints in the database

■ Fingerprint database storage size—The flash storage device on the DE2 board is only 4 Mbytes.
Of the 4, we use 1 Mbyte to store other information, so the fingerprint database is only 3 Mbytes
and can store a maximum of 48 fingerprints. If we expand the non-volatile memory, e.g., with
another flash device, we can theoretically expand the fingerprint database to any size.

Nios II Processor Functions in the Design
As the core of this system, the Nios II soft-core processor has the following functions:

■ The Nios II processor contains two types of peripherals: standard and custom. It is easy to add
standard peripherals. Additionally, Altera and some third-party corporations are providing more
and more intellectual property (IP) cores for standard peripherals. Custom peripherals greatly
accelerate system operation and save CPU resources. The design’s fingerprint image
preprocessing normalization module improves the processing speed over 20 times.

■ Custom instructions are a unique feature of the Nios II processor. They can dramatically improve
the system performance. The system’s Gabor filter takes full advantage of the custom instruction
feature and improves the processing speed over 30 times.

■ The C2H hardware acceleration is efficient and easy for designers to use to accelerate system
development. Additionally, it highly improves system performance. In this design, we only apply
C2H hardware acceleration to some orientation extraction algorithms, which improves the
processing speed more than 6 times.

Hardware Resource Usage and Performance Improvement
Table 1 shows the hardware resource usage and Table 2 shows the performance improvement.

Table 1. Resources Used

Resource Logic Elements (LEs) Memory Bits
Gate % Bits %

Normalization (custom module) 1,394 5 24 <1

Gabor filter (custom instruction) 1,832 6 4,096 1

LCD 470 1 0 0

Orientation extraction (C2H) 5,314 16 512 <1

Cos, exp, and fpoint (custom instruction) 6,937 21 16,386 4

Total 15,947 49 21,018 5
255

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Design Architecture
This design considers two schemes. The first scheme is a simple fingerprint authentication service
system (see Figure 4) that integrates a database server and web server into the embedded fingerprint
identification system to provide a simple web-based network service. The second scheme is a complex
fingerprint authentication service system (see Figure 5) that targets mass users who have strict system
requirements. We began with the simple fingerprint authentication service system, and if we had
enough time in the final stage, we would have expanded the system into a complex fingerprint
authentication service system. However, due to time limitations and other constraints, we only
implemented the simple fingerprint authentication service system.

Figure 4. Simple Fingerprint Authentication Service System

Table 2. Performance Improvement

Operation Software
Operation Time (s)

Hardware Improvement Operation Time after
Improvement (s)

Normalization 16.9491 Hardware module 0.8326

Gabor filter 458.0213 Custom instruction 12.5535

Orientation extraction 9.490 C2H 1.3586

Frequency extraction 31.7303 Floating point, multiplication shift,
and cos table look-up

2.8262

Terminal

Terminal

Embedded
fingerprint

identification
system

Terminal

Network
256

Nios II Processor-Based Fingerprint Identification System
Figure 5. Complex Fingerprint Authentication Service System

Figures 6 through 8 show various block diagrams of the system.

Figure 6. Hardware System Block Diagram

Figure 7. High-Level Block Diagram

Database server

Administration server

WEB server

Embedded
fingerprint

identification
system

Terminal

Network

Embedded
fingerprint

identification
system

Terminal
Terminal

Fingerprint
Collector

LCD

SDRAM

Flash

Keyboard

SPI
Interface

LCD PIO

SDRAM
Interface

Flash
Interface

Keyboard
PIO

Nios II

C
ache

Hardware
Acceleration

SRAM Interface

Normalization
User-defined Module

On-Chip
ROM

Timer

Altera FPGA

System
Clock

Off-Chip
SRAM

LCD

Avalon
Bus

Embedded
Fingerprint

Minutia
Acquisition

System

Middleware

Minutia
Linked List

Minutia
Matching

Database
Processing

Flash
Fingerprint

Minutia
Database
257

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 8. Structural Block Diagram

Figures 9 and 10 show the system flow charts.

Figure 9. Fingerprint Identification System Flow Chart

Fingerprint Register Module

Biometric
Sensor

Preprocessing Minutia
Extraction

Identification
Output

Biometric
Sensor

Preprocessing Minutia
Extraction

Minutia
Matching

Fingerprint Identification Module

Waiting State

SW170

Fingerprint
Collection

Fingerprint Image
Preprocessing

System
States and

Storage
Matching

Result
Information

Minutia
Extraction

Minutia
Storage

Minutia
Matching

Initialize
LCD

Display
Information

LCD Module

SRAM

LCD Display

LCD Display

N

Y

SW16 SW15

Master Module of Fingerprint
Identification System
258

Nios II Processor-Based Fingerprint Identification System
Figure 10. Fingerprint Minutia Preprocessing Algorithm Flow Chart

Figures 11 and 12 show the system in SOPC Builder.

Figure 11. SOPC Builder

Raw FIngerprint
Grayscale Graph

Normalization

Orientation
Extraction

Frequency
Extraction

Valid Mask
Extraction

Gabor Directional
Filter

Binarization

Thinning

Output Result
259

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 12. Custom Instructions

Figure 13 shows the hardware resource usage.

Figure 13. Hardware Resource Usage

Design Methodology
The system’s hardware is based on the DE2 development board. The hardware design fully utilizes the
board’s existing interfaces, e.g., we used the LCD to facilitate the user interface. By combining the LCD
and fingerprint collector, the system displays information promptly. The system software development
is based on the Nios II embedded soft-core processor and leverages custom instructions, modules, and
the C2H Compiler, which accelerates some software in hardware.
260

Nios II Processor-Based Fingerprint Identification System
System Hardware Design
The following sections describe the hardware design.

Fingerprint Image Collection
Each column of the capacitor array is connected with two sampling/hold circuits to capture only one
row of fingerprint images one time. The capture procedures include two stages:

■ Capacitors in the chosen row are charged to UDD and store the charge voltage in the first sampling/
hold circuit.

■ The capacitors discharge to the current source at a speed proportional to the discharged current.

After a discharge period, the second sampling/hold circuit stores the final capacitor discharge voltage.
By measuring the difference (ΔU) between the charging and discharging voltages, we can obtain the
capacity (C) of each capacitor. The analog signals representing the unit capacities of the row go through
A/D conversion to generate the digital fingerprint image information for the row. The system places the
information in a register and captures the next row’s fingerprint images.

We added an SPI bus module and button interrupt module with SOPC Builder. The SPI module has a
12-MHz clock. A fingerprint image is 256 x 300, therefore, a fingerprint image can be transmitted
within 0.1 second. The button interrupt has a double-edge trigger and the button is a slide switch. On
power-up, the initialized fingerprint collects the module register values. When the button is interrupted,
the fingerprint collection chip transforms the collected signals into digital information and stores them
in the register. The CPU sends the digital image data in the fingerprint collector register to the specified
memory space in the DE2 board’s SDRAM via the SPI bus. After all fingerprint image data is collected,
it is normalized and assigned in SRAM. The initial SRAM address is 0 and the data occupies the
0x12c00 address space. In the final stage, only the normalized fingerprint images are processed.

Custom Instructions
In this design, custom instructions target complex mathematical operations and some time-consuming
algorithms during fingerprint image preprocessing. Because the embedded Nios II system consumes a
lot of time performing complex mathematical operations, the system instead uses hardware to
implement the operations and uses custom instructions in the CPU. Figure 12 on page 260 shows three
custom instructions we added during CPU customization that accelerate the math_cos, floating
operation fPoint, and exponential function math_exp trigonometric functions.

The Gabor directional filter consumes the most time in this design. Because it is very complex, there
would not be enough FPGA logic resources if we only used custom modules. Our design implements
some of the time-consuming algorithms through custom instructions. The main formula of Gabor
directional filtration is:

N(x - u, y - v) is the grayscale value of the normalized fingerprint image. We use custom instructions
to implement g’(x, y) x N(x - u, y - v), and implemented the accumulation summarization in software.
After the CPU is generated, these functions generate the corresponding function interfaces. We invoke
the programs in the same way as common function sub-programs.

/ 2 / 2

/ 2 / 2

(,) '(,) (,)
W W

u W v W

G x y g u v N x u y v
= − = −

= − −∑ ∑

2 2

2 2

1 ' ''(,) exp() cos(2 ')
2 2

x yg x y fxπ
πσ σ

+= −
261

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Custom Modules
Our design contains many image processing algorithms, which require a lot of processing time. To
shorten the processing time as much as possible, we convert normalization (the first part of image
preprocessing) into hardware, which does not affect software processing. Figure 14 shows the
normalization preprocessing hardware schematic.

Figure 14. Hardware Normalization Schematic

Because normalization compares the images and then normalizes them, we read the image using
different methods, that is, we obtain the information using three main control modules and the Avalon®
bus interface, and then generate the normalized image. Figure 15 shows the image processing result.

Figure 15. Image Preprocessing Before and After Normalization

Before After
262

Nios II Processor-Based Fingerprint Identification System
C2H Compiler
In this design, we used the C2H Compiler for integer algorithms with many loops and single operations.
Because most of the algorithms use floating-point numbers, we translate them into integers before using
the C2H Compiler to convert them into hardware. We used the C2H Compiler to optimize the Sobel
operator for orientation extraction, which has 4 loops and integer accumulation algorithms. Figure 16
shows the Sobel operator C2H function.

Figure 16. Sobel Operator C2H Function

Figure 17 shows the C2H Compiler settings in SOPC Builder.
263

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 17. C2H Compiler Settings

After using C2H hardware acceleration, although the algorithm uses 5,314 logic resources, 512
memory bits, one M4K block, 22 DSP elements. and 11 18 x 18 DSP blocks (including 3 masters and
5 multipliers), the Sobel operator’s operation speed increases 35 times and the speed of the whole
orientation extraction process increases 6 times.

C2H hardware acceleration satisfies the system’s speed requirements and saves the time in hardware
module design by occupying some hardware resources. A system can use up to five C2H hardware
accelerations, therefore if there are enough hardware resources, multiple C2H accelerations can be
used.

LCD
The LCD module is a separate hardware module and is only connected to the SRAM. When the CPU
is not accessing the SRAM, the LCD module displays fingerprint image data in the SRAM. During the
fingerprint collection stage, the image is dumped to the SRAM by memory; then, the CPU releases
SRAM control and the LCD module accesses SRAM and displays the image. When fingerprint
preprocessing and minutia point extraction are complete, the CPU controls SRAM again, covering the
original fingerprint image with the processed fingerprint minutia image and releasing the SRAM
control to display the fingerprint minutia image.

In our system, when the CPU writes the fingerprint information data, it conflicts with the LCD reading
the SRAM. To resolve this problem, we added an enabled programmable I/O (PIO) in SOPC Builder
that allows the LCD to read the SRAM when the CPU is not accessing it. This design ensures that the
CPU can access the SRAM at any time and the LCD can provide a stable display. Having the LCD read
the SRAM relieves the CPU through the designed hardware module without CPU interference. When
users implement mass and single-domain peripheral interaction functions during SOPC system design,
they should use custom master peripherals because they can operate the storage area directly while
interacting with off-chip devices; the CPU does not need to use a special process for storage area. These
modules can be added as necessary if there are enough logic resources. This flexibility is one advantage
of SOPC system design over system-on-chip (SOC) design.
264

Nios II Processor-Based Fingerprint Identification System
System Software Design
The most important part of the software design is the control function, image preprocessing, minutia
point extraction, and minutia matching.

Control Function
The control function mainly controls interrupts. It informs the system of specific operating instructions,
including collecting the fingerprint, matching it, and storing it using button interrupts.

■ Collect fingerprint—SPI communicates with the CPU to notify it when fingerprint collection
ends, at which point, service function fps_Irq_In() is interrupted. When the collection
finishes, the CPU automatically processes the fingerprints, extracts the minutia points using
FingerImgEnhance(pImgSrc,pImgSrc), and stores collected fingerprint information into the
current finger information linked list CurrentMinutia (custom linked list structure) in the
SDRAM.

■ Match fingerprint—If the system determines that there is a match, it performs
matchFigMinutia(&CurrentMinutia).

■ Store fingerprint—To store the information, the system uses the wOneFigMinutiaToFlash()
function. The current fingerprint information is stored in the flash device’s fingerprint linked list.

Image Preprocessing
Image preprocessing enhances the fingerprint image, and includes the functions shown in Figure 18.

Figure 18. Image Preprocessing Functions
265

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
The functions are described as follows:

■ Normalization—The system performs normalization in hardware. After the image is collected,
the hardware normalizes the image. The resulting image is put into the 0 address of the SRAM.
The software can read the image directly without interface problems.

■ Orientation extraction—The GetBlockOrientation function calculates the fingerprint image
block orientation and invokes Soborcore. C2H hardware acceleration implements hardware
instructions to calculate the gradients of each pixel point in the x and y orientations. Then
GetGradIndex() is invoked, and orientation extraction is performed. Figure 19 shows the
pattern.

Figure 19. Orientation Extraction Pattern

■ Frequency extraction—The GetBlockFrequency function calculates the fingerprint image
block frequency. The changes of fingerprint ridges and valleys constitute a 2-D sine wave. To
obtain the frequency, the system invokes GetImgInfo(ImgSrc) as described previously. It gets
the fingerprint information and frequency interpolating function
InsertFrequency(pOut,pOut,iWindow,ImgSrc.size), and invokes the orientation filter,
OrientationLowPass(pOut,pOut,iWindow), to smooth the image.

■ Valid mask extraction—A full mask fingerprint image cannot usually be generated during
collection. This function, GetValidMask, generates the foreground mask (the fingerprint image,
which is the part of the finger touching the sensor) and background mask (hash). Valid mask
extraction distinguishes the foreground from the background. It invokes
GetGradIndex(*(pOrient + iOffSetAddr)) to get the orientation. The if(abs(xDelta
- yDelta) > QNios) function sets the threshold to compare image contrast. A valid mask
dramatically changes the image as shown in Figure 20.
266

Nios II Processor-Based Fingerprint Identification System
Figure 20. Valid Mask

■ Gabor filter—To improve the fingerprint image quality, we use an orientation filter enhancement
method. In noise removal and maintaining the fingerprint ridge structure, like a bandpass filter
feature, we optimized an important operation with custom instructions and implement the formula

with software. Figure 21 shows the effect.

Figure 21. Gabor Filter Effect

■ Binarization and noise removal—The GetBinarizeImg() function performs binarization and
removes noise. During binarization, the Gabor-filtered grayscale image of a specific fingerprint
generates another monochrome fingerprint image. The adopted adaptive local threshold scheme
adjusts the threshold by the global grayscale of a block in the image. Implementing binarization
in software is comparatively easy, but the loops consume a lot of processing time. Figure 22 shows
the result.

G x y(,) 1
2πσxσx
----------------- 1

2
--- x2

σx
2

----- y2

σx
2

-----+
⎝ ⎠
⎜ ⎟
⎛ ⎞

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

2πifx–()expexp=
267

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 22. Binarization and Noise Removal Result

■ Thinning—The ThingDib(Img ImgDst, Img ImgSrc) function extracts minutia points by
thinning the binarization image to a single-pixel fringe central point and thread image. See
Figure 23.

Figure 23. Thinning Result

Minutia Point Extraction
After a raw fingerprint image goes through orientation filtering, binarization, and thinning, it becomes
a thinned image. We then determine the endpoints and bifurcation according to the crossing of each
point on the thinned image, and extract the useful information of the two minutia points such as
coordinate position, type, and orientation. Figure 24 shows the minutia point extraction functions.
268

Nios II Processor-Based Fingerprint Identification System
Figure 24. Minutia Point Extraction Functions

The main function, GetMunutia(UINT8 *pDst,float *pOrient,UINT8 *pSrc), extracts
minutia points by:

■ Getting all possible minutia points:
GetMinutiaInfo(&CurrentMinutia,pOrient,ImgSrc)

■ Deleting false minutia points: DeleteInvalidCharacter(&CurrentMinutia,
&pBreakMunutia,&pBurrMunutia,&pCrossMunutia), which includes:

● Deleting the false minutiae caused by image obscurity:
DeleteFaitnessCharacter(&CurrentMinutia,2,3,3,10,size)

● Deleting the false minutia points caused by broken lines:
DeleteBreakCharacter(&pBreakMunutia,5,20)

● Deleting burrs: DeleteBurrCharacter(&pBurrMunutia,6,12)

● Deleting holes and bridges: DeleteCrossCharacter(&pCrossMunutia,6,15)

● Deleting margin minutia points:
DeleteMarginCharacther(&CurrentMinutia,ImgSrc)

■ Output the image: GetMunutiaImg(ImgDst,&CurrentMinutia)
269

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Operations related to the linked list:

● Add minutiae to the information linked list: void AddMunutiaPoint(Minutia
*pMinutia, CPoint point, float fOrient, enum MinutiaPointType
pointType)

● Delete the designated minutia points: void DeleteMunutiaPoint(Minutia
pMinutia,MinutiaInfo pPoint)

● Delete the minutia points of the designated index: void
DeleteMunutiaPointIndex(Minutia *pMinutia,int index)

● Take statistics of Ne and Nb: void StaticMunutiaInfo(Minutia *pMinutia,CSize
size, int iWindow)

● Calculate the distance of two minutia points: int GetDistance(CPoint
cpPoint1,CPoint cpPoint2)

● Copy the template: void CopyMunutia(Minutia *pFromMunutia, Minutia
*pToMunutia)

● Get minutia points: int GetMinutiaInfo(Minutia* pMunutia, float* pOrient,
Img ImgSrc //thinned image)

● Draw the rectangle: void DrawRect(Img ImgSrc, CPoint cpPoint, int iWindow),
etc.

Figure 25 shows the effect after processing.

Figure 25. Before and After Minutia Point Extraction

The fingerprint minutia data structure includes the minutia point structure and fingerprint minutia set.

After ProcessingBefore Processing
270

Nios II Processor-Based Fingerprint Identification System
Minutia Point Structure
A complete description of minutia points includes the coordinate point, orientation, and type of minutia
on the image. We designed the following data structure to describe the minutia point.

Minutia point information in the rectangular coordinate system:

typedef strut MunutiaPointInfo_st{
int x; //horizontal coordinate value
int y; //Vertical coordinate value
float index; //orientation
enum MunutiaPointType{END,CROSS} type; //minutia point type

}MunutiaPointInfo, *pMunutiaPoint;

Minutia point information in the polar coordinate system:

typedef strut MunutiaPolarInfo_st{
int iRadius; //polar radius
float fTheta; //polar angle
float index; //orientation
enum MunutiaPointType{END,CROSS} type; //minutia point type

}MunutiaPolarInfo,*pMunutiaPolar;

Fingerprint Minutia Set
The minutia set is the set of all minutia points of a fingerprint. Because the design uses a deletion
operation to remove false minutia points, we use a two-way linked list design with the following data
structure:

typedef struct Munutia_st{
MunutiaPointInfo Info; //information of current minutia point under rectangular coordinate system
MunutiaPloarInfo polarInfo;//information of current minutia point under polar coordinate system
struct Munutia_st *pPrev; //direct to previous minutia point information
struct Munutia_st *pNext; //direct to next minutia point information

}Munutia,*pMunutia;

Minutia Matching
In this design, we:

■ Use typical point mode matching algorithm based on a minutia point coordinate mode.

■ Use a triangle structure composed of three neighboring minutia points to locate a datum point and
evaluate the conversion parameter.

■ Conduct matching in the polar coordinate system after coordinate translation.

■ Introduce multiple judgement conditions and a variable limit box matching algorithm to improve
the recognition rate.

The main content is the matching function matchFigMinutia(Minutia *CurrMa). If the current
fingerprint matches, the fingerprint minutia set and the matching nodes are returned. Minutia matching
functions include:

■ Determine whether the triangles are similar: float TriangleLikness(MinutiaPointInfo*
PPointInfo, MinutiaPointInfo* QPointInfo, int iDelta /*= 5*/)

■ Get two coordinate points near to a datum: mark bool GetTriAnglePoint(char* pSrc,
MinutiaPointInfo* pointInfo,CSize size)

■ Rotate polar coordinate: void CircurotatePolarCoor(float rotateAngle)

■ Get limit box size: AmBitInfo GetAmBitInfo(int iRadius)
271

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Match two minutia points: int Match2Minutia(MinutiaPointPoolInfo PInfo,
MinutiaPointPoolInfo QInfo)

■ Match current minutia set with template minutia set pQMunutia and roll back matching node
number: int MatchMinutia(Minutia *pQMunutia)

■ Display minutia point on graph psr and the displayed grayscale value is the position of the
minutia point in the linked list: void GetMunutiaGraphy(char* pSrc, CSize size)

Design Features
Our design has the following main features:

■ Highly integrated SOPC technology and embedded custom modules—If we implemented the
image preprocessing, including image normalization, frequency extraction, orientation extraction,
and filtering, directly in the embedded Nios II processor, it would take too much processing time.
Therefore, the system uses an FPGA hardware algorithm to implement preprocessing.
Binarization and thinning of the image consume less time and are directly implemented in the
Nios II processor.

■ Custom instructions—The fingerprint identification system involves many floating-point,
multiplication, evolution, and rotation operations. If we implemented them in the embedded
Nios II system, it would consume too many resources. Therefore, this design uses custom
instructions to add the custom functions directly into the arithmetic logic units of the Nios II CPU,
allowing these complex, time-consuming operations to operate in hardware. As a result, the data
processing time increases dramatically and the design’s real-time requirements are met. Our
system uses five custom logic instructions.

■ C2H Compiler—This system uses hardware acceleration with the C2H Compiler to accelerate
software sub-programs that need high performance for image preprocessing. This acceleration
dramatically improves the system’s general performance. This system uses one C2H module.

■ Two fingerprint identification system architecture schemes—According to practical production
and actual requirements, we developed two feasible fingerprint identification system architecture
schemes: complex and simple. Based on database technology, FPGA technology, and embedded
technology, we propose a valid implementation. This system implements the simple fingerprint
authentication service system.

■ Improved minutia matching algorithm—In this design, we used a triangle structure composed of
three neighboring minutia points to locate the datum point and evaluate conversion parameters,
conducted polar coordinate system matching after coordinate translation, and introduced multiple
judgement conditions and a variable limit box matching algorithm to improve the recognition rate.

■ Floating-point shift—Because many multiplication algorithms in floating-point operations
consume a lot of processing time, we shift floating-point numbers to integers, thereby improving
the system’s algorithm speed three to four times.

■ Convenient product design and development—The FPGA-based Nios II soft-core processor and
its SOPC solution have tailor-made, reconfigurable advantages over hard-core processors. It is
easy to develop the software and hardware products with the Nios II processor. Additionally, the
Nios II processor facilitates collaborative system design and permits system maintenance and
upgrades. By using an FPGA with abundant resources, we can implement a multi-CPU system
and simplify the hardware circuit using a design control module, satisfying the system’s
functional requirements and cutting the design cost. Moreover, we can upgrade the system
hardware by loading an updated soft-core system without affecting the peripheral circuit.
272

Nios II Processor-Based Fingerprint Identification System
Conclusion
With this design contest, we learned about the power and convenience of the Nios II processor, while
improving our engineering ability. The advantages of the Nios II processor are as follows:

■ Few resources are used. One Nios II CPU only occupies thousands of LEs.

■ Constructing an SOPC system is flexible and convenient. We can create the desired system
quickly and customize the peripheral modules required by the system, significantly reducing the
difficulty of the hardware design and development period.

■ FPGAs are flexibly designed for DSP. Users can design completely arithmetic circuits according
to their needs. An FPGA can perform operation functions more efficiently at lower frequencies
than CPU co-processors. For example, because this design uses a 100-MHz system clock, some
algorithm operations are much faster than a 2-GHz Pentium 4 processor.

■ The Nios II C2H Compiler and custom instructions help users implement algorithms and logic
controls. With the C2H Compiler, users can input pointer parameters. However, floating-point
numbers cannot be processed internally and users cannot modify the acceleration logic circuits
generated by the compiler. Therefore, users have to first quantify the floating-point numbers and
then transform them into floats after output during digital signal processing. This method is not
as efficient as using the CPU’s internal floating-point operation acceleration instructions. Custom
instructions allow users to design hardware logic, but their input and output parameters are not as
flexible as those of the C2H Compiler because common users seldom add single or double
operand instructions but often process a lot of data. When we experienced this kind of problem,
we had to replace the C2H Compiler and custom instruction implementation with a custom
module and interrupt (or query), which destroys the system software flow to some extent. If the
C2H Compiler and custom instruction advantages could be combined to create a universal
function interface and allow an internal hardware implementation of a flexible design, the Nios II
development platform would benefit users more.

■ The FPGA-based flexible embedded design supports interfaces per the user’s specific
requirements. It can represent users’ design ideas better than a hard-core processor design.
However, FPGAs require users to plan and design the SOPC system comprehensively; in
particular, the final adaptation of the hardware netlist in the Quartus® II software consumes too
much time.

The following areas of the design could be improved:

■ Due to the limitations of the hardware system and the small-sized volatile and non-volatile
memory, the fingerprint database is small. If we had enough time to design a hardware system
according to the practical requirements, abandon unnecessary hardware such as the Ethernet chip
and video collection chip, and expand the memory, we could have improved the real-time
performance and addressing properties of the design while lowering the development cost.
Additionally, if required, we could add a network to the system so that users identify a fingerprint
using a remote log-in, making the system more convenient for use in a civil access control system.

■ As the scheme became clear with the progress of the design, we improved the real-time processing
operations, hardware acceleration, and algorithms for the most time-consuming area of the
design: fingerprint image preprocessing. As a result, fingerprint image preprocessing consumes
30 seconds instead of the original 10 minutes. Additionally, because the algorithms are too
complex, we could only convert some time-consuming modules into hardware and instructions
for image normalization, orientation and frequency extraction, valid mask extraction, Gabor
filtering, thinning, binarization, image expansion and corrosion, etc. If we had more time for
optimization, we could design the system to complete minutia extraction in 1 second.
273

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ We evaluated the design effect for processing time and fingerprint matching accuracy. To save
time, we appropriately adjusted the accuracy requirements for some areas, and then chose the
proper parameters after weighing.

■ We used the Cyclone® II EP2C35 FPGA in this design, which has sufficient logic units but was
deficient in supporting the required hardware arithmetic logic units. If the FPGA has fewer
hardware arithmetic logic units than required by the algorithms, a system signal processing
bottleneck will occur. Similarly, the CPU clock is hard to improve because of the FPGA features.
In the future, we plan to leverage the abundant hardware arithmetic units in the Stratix FPGAs to
accelerate operations and improve operation accuracy and speed.

During this contest, we deeply studied SOPC technology, mastered its elementary design concepts, and
achieved our target. We thank our instructor, colleagues in the lab, and all the other participants. The
joint effort paved the way for the success of our system.

Appendix: C2H Compiler Usage
Our system is a Nios II fingerprint identification system that performs image processing. We used the
C2H Compiler for integer algorithms with many loops and simple operations. Because most algorithms
in the system use floating-point numbers, we translated them into integers before using the C2H
Compiler to optimize them into hardware.

The part of the design we optimized with the C2H Compiler is the Sobel operator, which we used for
orientation extraction. This part included 4 loops and an integer accumulation algorithm. Addresses are
stored as pointers. With the optimization, the algorithm speed of the Sobel operator increased 35 times.

Algorithm Description
We used the Sobel operator to obtain the fingerprint orientation. The Sobel operator calculates the
gradients Gx(U,v) and Gy(U,v) and of each pixel point (i,j) in the X and Y directions. Figure 26 shows
the Sobel operator’s template coefficient.

Figure 26. Sobel Operator Template Coefficient

Figure 27 shows the Sobel operator C2H function.

1

0

2 1

-1

0

-2

0

-1

1

2

0 -1

-1

0

0

-2

1

X Axis Direction Y Axis Direction
274

Nios II Processor-Based Fingerprint Identification System
Figure 27. Sobel Operator C2H Compiler Function

Performance Comparison
The Sobel operator’s algorithm speed increased 35 times, which is only one step in orientation
processing. The whole orientation extraction speed increased 6 times, and the effect was remarkable.
Figure 28 shows the speed with a software-only implementation.

Figure 28. Consumed Time with Software-Only Implementation

Time Consumed
275

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
After C2H optimization, the consumed time is only 1 second (see Figure 29).

Figure 29. Consumed Time After Optimization

The processor’s clock frequency is 100 MHz.

Figure 30 shows other logic that we accelerated and optimized.

Figure 30. Other Accelerated and Optimized Logic

Master Port
As with the algorithm, the SDRAM information is read in software through pointers. Because the C2H
Compiler uses the master port to read and write SRAM and SDRAM and there are three different
software pointer operations, we used three master ports for optimization. The optimization had

Time Consumed
276

Nios II Processor-Based Fingerprint Identification System
remarkable advantages and was very convenient to compile. The C2H Compiler freed us from
developing complicated custom instructions or modules, compiling the master port operation, creating
the hard-to-control working sequence of three master ports, and combining the operation with the
algorithm. It also eliminated the need to implement a difficult algorithm sequence control for loading
three master ports in a hardware description language. Figures 31 and 32 show the master port
hardware and software, respectively.

Figure 31. Master Port Hardware
277

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 32. Master Port Software

Hardware Multiplier
There are five multiplication operations in software that are automatically transformed into five
hardware multipliers during C2H optimization. This implementation greatly shortens the processing
time.

Loop
The effect of the loop optimization was remarkable. After being transformed into hardware, for, loop,
while, etc. are just conditions. The loop algorithms are all transformed into hardware, increasing their
speed. Therefore, using C2H optimization for image processing provides significant advantages.

Figure 33 shows the hardware in SOPC Builder.
278

Nios II Processor-Based Fingerprint Identification System
Figure 33. Hardware In SOPC Builder

Accelerated with the C2H Compiler, the algorithm occupies 5,314 gates of logic resources, 512
memory bits, one M4K block, 22 DSP elements, and 11 18 x 18 DSP blocks (including three master
ports and five multipliers). The operation speed of the Sobel operator increased 35 times and the speed
of the orientation extraction process increased 6 times.

Conclusion
C2H hardware acceleration satisfied the system’s time requirements and saved development time in the
hardware module in exchange for using some hardware resources. A system can employ C2H hardware
acceleration five times or more provided there are enough hardware resources.

During the design process, we tried to optimize the Gabor operator algorithm with the C2H Compiler
because the algorithm contains so many pointer operations and complicated loop operations. Upon
optimization, however, it required five master ports and 13 multipliers without giving a significant
speed increase. Therefore, we gave up using the C2H Compiler for optimization and instead we
optimized one operation in the loop using hardware. To optimize another area (and improve our skills),
we used custom instructions instead of the Sobel operator.

To conclude, the C2H Compiler offers a sound optimization effect for algorithms that have many
complicated loops, pointer operations, and master ports provided that the C2H conditions are met, that
is, the operation does not have floating-point operations and the designer transfers arrays into pointers.
The C2H Compiler is an excellent optimization tool. We believe it will become better and more flexible
in the future.
279

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
280

Fingerprint Identification System Based on the Nios II Processor
Third Prize

Fingerprint Identification System
Based on the Nios II Processor

Institution: Huazhong University of Science and Technology

Participants: Linchuan Li, Yao Zhang, Chengdong Ge

Instructor: Xiao Kan

Design Introduction
With the advent of fast-growing digital, information, and network technologies and the desire for a
more convenient lifestyle in recent years, users have higher security expectations for electronic systems.
Additionally, e-Business, ATM, access control, and intelligent cards all require a safe and easy-to-use
identification technology. The traditional identification method, user ID plus password, cannot satisfy
users’ needs due to various defects such as forgotten passwords, hacker attacks, and theft. Fortunately,
identification technology based on biometric characteristics of the human body offers an efficient
solution.

This technology uses human physiological features and behaviors to identify a user’s ID, and it is more
secure, reliable, and human-oriented. Common biometric characteristics used for identification include
fingerprint, palm print, iris, face image, voice, handwriting, DNA, etc. Considering the accuracy,
durability, convenience, and cost, fingerprint identification technology features a high benefit/cost ratio,
security, maturity, and widespread applications. Statistically, fingerprint identification products account
for over 90% of the total biometric identification systems in China.

As microelectronics technology advances, programmable logical controllers are becoming more
diversified, faster, and more powerful. Today, many FPGA devices support embedded soft-core
processors to facilitate the development of FPGA-based hardware. For example, Altera’s Nios® II
processor, a RISC CPU soft core, features pipelining and a single instruction flow. Designers can embed
it in an FPGA and leverage custom logic to build a FPGA-based system. Compared to an embedded
hard core, a soft core is more flexible. Additionally, the fast FPGA meets the speed requirements of a
fingerprint identification system.
281

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Based on a separated identification system in verification mode, this design authenticates or registers
users after they state their ID (i.e., by inputting an ID) and input their fingerprint at a terminal. It also
allows a host to manage multiple terminals via the network, and allows an administrator to administrate
the system.

Target Users
By integrating other functional service modules, the system can serve as a public service system where
the fingerprint becomes the key ID authentication tool. Additionally, the system can be used as an HR
management tool or security protection product. The design could be used in the following applications:

■ e-Business—Credit card consumption, e-buying network

■ Banking—ATM

■ Enterprises and institutions—HR management

■ Security administration—Access control system

■ Qualification—Examinations

The system’s host/slave network mode efficiently implements separated authentication and centralized
management, making it suitable for partial authentication. If we improved the communication
efficiency and security, it could be extended into a larger system.

Nios II Advantages
Most traditional fingerprint identification technologies depend on a PC or digital signal processor.
However, image processing on PCs is expensive, has low speed, and requires a large storage space.
Digital signal processors are not flexible enough due to the function and parameter limitations. FPGAs
are advantageous for use in fingerprint identification because they feature high processing speed,
flexibility, low cost, and embedded system portability. As a high-performance and configurable soft
core, the Nios II processor has unique features. Designers can use the C language with short
development cycles and portable code. Combined with custom hardware logic, they can conduct
complex parallel image processing without losing the advantages of using an FPGA. For our system, it
is easy to integrate the relevant components and we can easily adjust the relevant image processing
parameters. As a result, the system satisfies various performance indicators and users in different
conditions.

Function Description
This section describes the functionality of our design.

Scalable Authentication Network
With a host plus terminals mode and a bus-type local area network (LAN), the system can be centrally
managed and extended. By adding terminals into the Terminal Management tab, the host administrator
can conveniently add new terminals.

Excellent User Interface
We use an LCD and keyboard to facilitate operation.

Fingerprint Collection
The fingerprint collector collects the user’s fingerprint and a driver accesses the serial peripheral
interface (SPI) to get data. The program has an automatic finger detection function. Three sets of
parameters are allocated to account for the skin moisture level when fingerprints are collected. The
282

Fingerprint Identification System Based on the Nios II Processor
system picks best image of the three. Additionally, the fingerprint collector stays in sleep mode and is
only activated during fingerprint collection, minimizing power consumption.

ID Verification
The terminal collector collects fingerprint signals, processes images, and extracts fingerprint minutiae
information. After registration, the host acquires the fingerprint and corresponding ID information from
the terminal and stores them in a fingerprint database. Upon login, the host returns the corresponding
fingerprint information based on the ID, and the slave compares and displays the corresponding login
information.

Information Management
The host is a powerful PC that operates a set of management programs, including:

■ User account management—View or modify registered users.

■ Terminal management—Add new terminals or modify the terminal priority.

■ Log review—Review the system access log.

■ Password change—Change the administrator’s login password.

Performance Parameters
Performance parameters include the fingerprint image processing speed and accuracy.

Fingerprint Image Processing Speed
Table 1 shows the time used by the main processes and the total time required for fingerprint image
processing before and after hardware acceleration (for the configuration and hardware acceleration
principles, see “Design Methodology” on page 288). We use a 256 x 300 8-bit grayscale image as the
object that is processed. Using hardware acceleration for image processing greatly improves the
processing speed.

Fingerprint Identification Accuracy
Because the system’s fingerprint image processing and comparison algorithm are designed for a special
fingerprint collector, we do not use a universal fingerprint database in the test. Instead, we chose about
40 fingerprints of 10 people at random to test the system’s fingerprint identification accuracy.

The statistics show that the system’s false accept rate (FAR), i.e., the probability of mistaking non-
identical fingerprints as identical fingerprints, is less than 5%. The false reject rate (FRR), i.e., the
probability of mistaking identical fingerprints as non-identical fingerprints, is less than 20%.

Identification accuracy is greatly influenced by the skin’s cleanliness and moisture, these results are the
system’s comprehensive fingerprint identification performance and are not from a separate algorithm
performance test.

Table 1. Image Processing Speed

Operation Time Required before Hardware
Acceleration (Seconds)

Time Required after Hardware
Acceleration (Seconds)

Image filtering 36.40 4.77

Ridge thinning 13.54 2.67

Total 54.93 11.57
283

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Design Architecture
This section describes the design architecture, including the network topology, modules, hardware, and
software design.

Network Topology
Figure 1 shows the network topology. In the system, a switch is the central node that connects the
terminals and the host.

Figure 1. Network Topology

Module Division
Figure 2 shows the modules in the design.

Figure 2. Modules

Hardware Design
Figure 3 shows the hardware design.

Host

Switch

Terminal TerminalTerminal

User Service Module

Fingerprint Collection &
Processing

Communication
Module

Slave

Administrative
Module

Communication
Module

Host
284

Fingerprint Identification System Based on the Nios II Processor
Figure 3. Hardware Design

Software Design
Figures 4 through 7 show the flow charts for the system.

Nios II CPU

JTAG
Interface

Custom
Instruction

On-Chip RAM

User Logic

TImer

SPI
Controller

PIO

10/100 Mbyte
Ethernet

Tri-State
Bridge

Fingerprint
Collector

User Interface

Host-Slave
Communication

SRAM

Flash

Av
al

on
 B

us
285

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 4. Slave Software Flow Chart

Start

Is the Host
Available

No

Yes

Wait for the User to
Login/Register

Input ID and Fingerprint

Login/Register

Acquire User Information

Compare ID/Fingerprint
Features

Register

Login

Extract Fingerprint
Features

Return Processing Result

Return

Equipment
Initialization

Apply to the Host

Deliver User Information

Prompt the System
Login Stops
286

Fingerprint Identification System Based on the Nios II Processor
Figure 5. PC Host Flow Chart

Figure 6. Operation Module Flow Chart

Start

Password Authentication
and Login

Administration
Module

Operation
Module

Forbid Administration
Module Function

Broadcast Starting
Terminal

Wait for Slave
Information

Register

Is Registration Correct?

Verify ID Validity

Acqure Data on Feature,
Update Database

Login

Verify Whether the ID is
Registered

Return Relative Data of
ID Features

Update Operation Log

Slave Connection
Request

Answer the Slave

Choose Operation
Function

Operation Module
287

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 7. Administration Module Flow Chart

Design Methodology
This section describes our design methodology.

System Development Flow
Most of design’s functions are implemented using the Development and Education (DE2) board and a
peripheral fingerprint collection circuit. We implemented the system’s functional modules, assembled
the modules, and debugged the system as described below:

■ Referring to examples and test documents provided with the DE2 development board, we
implemented the Nios II processor, performed C language programming in the Nios II Integrated
Development Environment (IDE), performed on-line program debugging, and loaded the program
onto the board.

■ Using SOPC Builder, we created access to the peripheral memory, RS-232 serial port, DM9000A
network interface, and programmable I/O (PIO) interface on the DE2 board.

■ We implemented access to the 4 x 4 keyboard using the expanded PIO interface on the DE2 board.

■ We used SPI on the DE2 board to read the fingerprint collection data.

■ We used custom peripherals and instruction hardware acceleration on the DE2 board to complete
the fingerprint processing algorithm.

■ We purchased a fingerprint collection chip, which we used to design and implement the
fingerprint collection circuit, automating the finger detection function.

■ We developed the administrator program for the PC, and debugged the system.

Hardware
The following sections describe the method we used to create the hardware system.

Choose Administration
Option

Terminal
Administration

Choose Administration
Function

Administration Module

View the Log Change the Login
Password

Register Person
Administration

System Option

Stop Terminal Work

Update the Log
288

Fingerprint Identification System Based on the Nios II Processor
Nios II Soft Core Configuration
We configured the Nios II processor as described below:

■ The Cyclone® II EP2C35 FPGA on the DE2 board is the control chip, and we designed all
functions based on it. The hardware represents highly-integrated system-on-a-programmable-
chip (SOPC) design ideas and principles.

■ We used the 50-MHz Nios II/f fast CPU to support JTAG level 3.

■ We used a 12.5-MHz SPI core to transfer fingerprint data.

■ We added the DM9000A Ethernet control chip and implemented an Ethernet physical layer.

■ We added the JTAG debug module to facilitate on-line system debugging.

■ We used a 38,400 bps serial port communication module. With a UART, we can transfer data
between the Nios II system and the PC before fully implementing network communication and
monitor the fingerprint image processing procedures on the PC.

■ SRAM, SDRAM, and flash memory are used to implement the program operation memory, data
distribution space, and program writing space, respectively.

■ The design has a tri-state bridge connection between memories.

■ Two timers implement the system’s delay requirements and test the time that the Nios II system
requires to process the fingerprint data.

■ Keys, nixie tubes, an LED, and a 16 x 2-character LCD interface facilitate the user interface.

Using SOPC Builder, we conveniently built a tailor-made, configurable system that met our
requirements.

Making the Fingerprint Collector
We designed the fingerprint collector as described below:

■ Functional design—We used the fps200 fingerprint collection chip to collect the original
fingerprint image data. The circuit has an automatic finger detection function and only instructs
the CPU to accept data when a finger is detected. The image data is transferred to the Nios II
processor via the SPI.

■ Schematic diagrams—After studying the fingerprint collection chip data sheet, we designed the
schematic diagram to implement the SPI and preserve the microcontroller (MCU) and USB
interfaces.

■ PCB schematics—We used a two-side PCB for the final circuit board.

■ Circuit board welding and debugging—Our experiments verified the functions of the fingerprint
collector, data collection, and data transfer. We adjusted the parameters related to fingerprint
collection as needed.

Fingerprint Image Processing Hardware Acceleration
When the Nios II CPU is configured as fast and the fpoint operation instruction is added, the image
processing algorithm using C requires 50 seconds (see “Performance Parameters” on page 283 for more
details). This speed is acceptable for a real-time processing system.
289

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Two methods can improve the image processing efficiency: implement a digital signal processing
(DSP) module on the FPGA or use hardware acceleration. DSP can process images more efficiently
without depending on the CPU operation speed, but it is difficult to implement. In contrast, it is easy to
use hardware acceleration for image processing. Therefore, we decided to use hardware acceleration,
which greatly improved the algorithm performance efficiency.

The fingerprint image processing algorithm has unique features: it requires a large number of repeat
operations and identical pixel processing procedures. Therefore, if we improved the performance
efficiency of the most fundamental operations, we could improve the performance efficiency as a
whole. We divided the fingerprint processing procedures into pattern finding, image filtering,
binarization, ridge thinning, minutiae location, etc. (see “Software” on page 290 for more details), and
calculated the time required for each procedure. We determined that two procedures should be
accelerated: image filtering (36.4 seconds) and ridge thinning (13.5 seconds).

To perform image filtering, we take the data of 52 pixels around the target pixel, multiply the data with
corresponding filtering coefficients, and accumulate the results to use as the new value of the target
point. In the procedure, the filtering coefficient is taken from a coefficient array with relevant directions.
The complete software procedure requires 52 multiplication accumulations. We designed a custom
instruction CI_multi_accumilate, to complete one multiplication accumulation in three clock
cycles. After the acceleration, the image filtering procedure uses only 4.77 seconds.

To perform ridge thinning, we take the data of the target pixel and 15 pixels around the target pixel and
compare them with 16 templates to decide whether the target pixel should be removed. After scanning
the whole image many times, the fingerprint ridge is thinned into a single pixel width. The complete
software procedure requires 16 comparisons. We designed two custom peripherals, prematch and
user_delete, to complete the 16 comparisons in six clock cycles. After acceleration, the ridge
thinning procedure uses only 2.67 seconds.

Ethernet Implementation
In the system, a switch is the central node that connects the terminals and the host. Because there is not
a large volume of data and no complex routing in the communication between the terminals and the
host, the system does not have a physical connection with the public network. However, an embedded
real-time operating system (RTOS) must implement a good IP protocol. It is unnecessary for our slave
system to use an operating system for dispatching; therefore, we did not use the TCP/IP protocol to
build the network. Instead, we used a MAC-to-MAC method for physical addressing, that is, the system
directly sends an original data packet that adds source and target MAC addresses as headers.

Software
The software design includes the Nios II program and PC program. The PC program is the fingerprint
authentication administrator program that fulfills functions such as responding to login/register requests
and system administration.

The Nios II program includes the initialization, fingerprint collection, image processing, host-slave
communication, user interface, etc. modules. By organically combining the modules, we created a
simple, client fingerprint authentication program as described below:

■ System initialization—After the system is powered-on, all modules must be initialized. In
particular, the network adapter must be initialized to connect the Nios II processor to the PC.
Initialization makes the fingerprint collector go into a low-power mode and it does not wake up
until a fingerprint needs to be collected.

■ Fingerprint collection—Based on a driver, the fingerprint collector obtains images through the
SPI. The procedure must perform automatic finger detection and skin moisture adaptation.

■ Fingerprint processing—This module provides fingerprint data processing and comparison. It
includes two sub-modules: fingerprint image processing and fingerprint comparison.
290

Fingerprint Identification System Based on the Nios II Processor
■ Host-slave communication—This module implements communication between the Nios II slave
and the PC. Its primary transmitting function is to request commands such as register and log-in
requests, fingerprint minutiae information, ID information, etc. Its primary receiving function is
to obtain the PC’s reply, the Nios II control information sent by the PC, the fingerprint template
information that the PC returns to the Nios II processor, etc.

■ User interface module—This module consists of a 4 x 4 keyboard, 16 x 2 LCD, LED, and nixie
tube. The LED indicates the current working status of the Nios II system as well as information
such as success, failure, and timeout. The nixie tube displays the input ID information, and the
LCD displays real-time system information such as the system status and operation prompt.

The LAN transfers original data packets that use source and target MAC addresses as headers;
therefore, we use the winpcap (windows packet capture) protocol on the LAN. winpcap is a free public
network access system for Windows platforms, and it gives win32 applications the ability to access the
network infrastructure. It provides the following functions:

■ Captures the original datagram, including the datagram that hosts send/receive and exchanges
them on a shared network.

■ Filters special datagrams according to user-defined rules before they are sent to the application.

■ Sends the original datagram over the network.

■ Collects the statistical information in network communication. Our tests and final design
demonstrate that winpcap conveniently receives/sends data packets between the PC and Nios II
processor and also satisfies our functional requirements.

Fingerprint Image Processing Module
Figure 8 graphically shows the fingerprint processing procedure (see references [1] and [2] for more
details).
291

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 8. Fingerprint Processing Procedure

The procedure includes the following elements:

■ Pattern finding—This process includes two steps: first, it calculates the direction of single points
based on the grayscale value of the points around the target point. For simplification, we divide
180° into 8 directions. Next, it obtains a 5 x 5 block pattern using a statistical method and marks
the blocks without clear direction about the background. Pattern finding lays a foundation for the
direction-based image filtering.

■ Image filtering—We designed filtering coefficient templates for 8 directions in advance, took 52
pixels of data around the target pixel, multiplied the data with the corresponding filtering
coefficient, and accumulated the result, which is used as the new value of the target point. Filtering
enhances the image continuity along ridges and improves the image contrast perpendicular to the
ridges to segment neighboring ridges.

■ Binarization—After filtering, the image ridges are distinct. Therefore, we only need to use fixed
threshold binarization, i.e., to segment the image into black and white images by taking a fixed
gray value as the standard. After binarization, the image can be completely thinned.

Original Image Pattern Finding Image Filtering

Binarization Ridge Thinning Locating Minutiae
292

Fingerprint Identification System Based on the Nios II Processor
■ Ridge thinning—We use an OPTA (or parallel thinning) method to corrode the ridges gradually
until the ridges are thinned into a single pixel width. Ridge thinning facilitates minutiae location.

■ Locating minutiae—First, we scanned the pattern to locate the central point of the fingerprint.
Then, we located the tip points and the split points in the thinned ridge image. To find the points,
we assumed that the tip points are black and surrounded by only one black point and spit points
are surrounded by three black points.

Fingerprint Comparison
Through many tests, we improved the central point-based fingerprint comparison method into three
steps: coarse matching, coordinate transformation, and precise matching.

■ Coarse matching—The system makes a coarse match for two fingerprint images by taking their
central point as the original point and ±30° as the range for the angle of rotation. Then, we
ascertain the most matched angle of rotation and some minutiae pairs.

■ Coordinate transformation—Based on obtained minutiae pairs, we calculate the precise
coordinate translation and rotation parameters of the two images.

■ Precise matching—Based on the obtained coordinate translation and rotation parameters, we
precisely match the minutiae a second time and evaluate the degree of matching. The system gives
three points to point pairs matched in type (tip or splitting) and location, and gives two points to
those matched in location only. If the total score is more than the threshold value, there is a match.
If any step fails, it is not a match.

The central point-based fingerprint comparison method efficiently resists the interference caused by
image translation. That is, the combination of the final precise matching with the point-to-point
comparison method partially resists interference caused by central point location errors. Considering
that the minutiae type (tip or splitting) is usually incorrect, we regard cases where the fingerprints have
unmatching types but matched location as matching, improving the comparison accuracy.

Design Features
Our design has the following features:

■ Bus topology between hosts and slaves—Because organizations or institutions may identify
fingerprints in different locations and it is impossible to configure a system at each location, we
use hosts and slaves to fulfill the task. Slaves collect and process fingerprints and transfer the
processed results to the hosts over the network. The hosts provide management and storage. In
this way, hosts and slaves have clear duties to leverage their own advantages.

■ Custom instructions to acceleration of key algorithms in hardware—Extracting fingerprint
minutiae is a complex DSP function, and it greatly slows the system speed if software is used for
extraction. Fortunately, Altera’s SOPC Builder software allows users to create and deploy their
own Nios II system as well as add custom instructions. Therefore, the system uses a hardware
description language to implement the minutiae extraction algorithm. We used custom
instructions to define the IP algorithm as a special instruction that directly invokes processing,
implements hardware acceleration, and greatly improves system speed.

■ Ethernet transmission—We used Ethernet to transmit requests from the slave to the host for
processing. Additionally, we used a competitive terminal access mechanism that provides high
efficiency when the system load is light. Ethernet ensures the application of the system and allows
terminals to be added conveniently in the future.

■ Easy hardware and software upgrades—It is impossible for an application to fully meet the
requirements of each user in a huge user base. However, Altera’s SOPC system design solution
293

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
can solve the problem, allowing different users to modify the hardware and software easily based
on the original system. They can develop new products and improve competitiveness by utilizing
FPGA programmability. In the system, we can put the fingerprint minutiae extraction module at
terminals or hosts based on the number of user terminals, balancing the communication traffic and
host load. In this way, we dramatically improved the adaptability of the system.

■ Benefits in cost, power consumption, portability, and integration—The FPGA-based system
design integrates processor, peripherals, memory, and I/O interface into a single FPGA, reducing
the system’s costs, complexity, and power consumption. Additionally, because the Nios II
processor is superior to hard cores in terms of cost, the system has higher integration and is more
cost-effective.

Conclusion
The two-month contest was a process of SOPC development, learning, and application, as well as
learning about Nios II embedded processor design. By using the development and design technology,
we now understand the technology more. We learned the following things during the contest:

■ Easy-to-use design environment—It was a challenge for us to gain basic knowledge about
software and hardware development and conduct systematic design, implementation, and
verification within two months. However, SOPC Builder and the Quartus® II software provided a
visual, fast methodology and the Nios II IDE, which helped us achieve our goal in a short time
with a fast learning curve.

■ Software/hardware co-design and verification—Parallel hardware/software design is a crucial
task for embedded system design. During the design, the major challenge is synchronizing and
integrating software and hardware design. During the contest, we used SOPC Builder to conduct
comparatively independent software and hardware implementation with comprehensive system
design and the reasonable division of software and hardware. Independent functional verification
shortens the development cycle.

■ Innovative Nios II system hardware acceleration—Compared with traditional DSP solutions,
custom instructions or peripherals can be better integrated into the Nios II system, ensuring a fast
processing speed and flexible controls. Compared with an ASIC solution, the Nios II processor is
more cost-effective because it can provide the same function using internal FPGA resources
without adding other devices.

■ Improving Nios II stability—The issue may not be apparent for small system designs but can
occur during complex system designs. For example, random software operation errors occurred
during same hardware deployment. The system handled the fault after we recompiled the wiring.
The error was often due to an infrastructure I/O driver. In our opinion, the Avalon® bus is not a
fixed connection wire but is a set of connection wires generated in the FPGA after Quartus II
compilation, so the random wiring leads to bus instability. We did not verify our guesswork, but
the problem was a big challenge.

■ Problem solving—Although many problems are simple now, they seemed insurmountable
barriers when we first met them and did not have enough information. We had to consider and
collect various data, dare to practice, be persistent, and consequently find a way out of
desperation. We made arduous efforts to discover solutions and tackle problems, but we gained
knowledge and the methodologies to solve problems in the process, which will aid us in our future
study and life.
294

Fingerprint Identification System Based on the Nios II Processor
References
Lingli, Liu, Preprocessing and Minutiae Extraction of Fingerprint Image, Master degree thesis of
Hunan University, December 2005.

Chunlei, Li, Research on Fingerprint Identification Algorithm and FPGA-based Hardware Realization,
Master degree thesis of Shandong University, April 2005.
295

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
296

Medical Applications
Medical Applications

This section includes projects that can be used as medical applications, including:

MRI Spinal Segmentation Based on the Nios II Processor... 299

Nios II Processor-Based Self-Adaptive QRS Detection System... 319

Portable Telemedicine Monitoring Equipment ... 333

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Soft-Core
Processor .. 373
297

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
298

MRI Spinal Segmentation Based on the Nios II Processor
First Prize

MRI Spinal Segmentation Based on the
Nios II Processor

Institution: Information Science Institute, College of Computer and Information
Technology, Beijing Jiaotong University

Participants: Weiming Li, Ruiqiong Shi, Bo Li

Instructor: Xiaoming Ding

Design Introduction
As fast-developing medical imaging technology promotes modern medicine, computed tomography
(CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) are becoming
widely used in clinical diagnosis and analysis. These systems have developed from tools for non-
invasive examination and anatomical structure visualization to operation planning and simulation,
operation navigation, and radiotherapeutic planning and focus change tracking, as well as segmenting
the anatomical structure from medical images and forming shapes.

Magnetic resonance (MR) spinal image segmentation research plays a critical role in medical imaging-
related computer-aided recognition and neuropathology clinical research. If the acantha cannot be
segmented and recognized accurately and clearly, computer technology will provide little to medical
clinical research. Additionally, it is not enough to complete this task by hand. Traditional acantha
fracture assessment involves manually marking the acantha with six points (on the four corners and the
centers of the top and bottom edge), and then measuring the height of the acantha on the front, middle,
and back, which is a time-consuming task. According to some documents, using a mouse to locate a
single patient’s vertebra takes more than 15 minutes, and locating the entire acantha takes an extremely
long time. In these circumstances, there is an urgent need of a clinical method that automatically
segments the MR spinal image. Locating vertebra and intervertebral disks automatically via computer
is important for diagnosis during clinical treatment.

Our design implements a feasible, robust algorithm running on the Nios® II processor platform. The
design locates intervertebral disks automatically and quantitatively marks acantha nuclear magnetic
resonance (NMR) sagittal views using an MRI spine segmentation algorithm in our lab. Fully using the
299

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Altera® FPGA and Nios II resources makes the system small and portable. This algorithm improves the
automatic assessment of vertebra fractures derived from osteoporosis, and enables quantitative analysis
of the intervertebral disk to facilitate image alignment with other imaging (e.g., CT scans) and image-
guided vertebra operation.

Application Scope and Targeted Users
This design is applicable to medical institutions possessing NMR instruments. Because the Nios II
design is easy to use, it is also applicable to the average person, who can learn the patient’s situation
and remind him or her about acantha diseases in daily life. Additionally, the design’s network
transmission function facilitates telemedicine.

Nios II Design Advantages
The Nios II processor provides several advantages for our design, including:

■ Innovative system-on-a-programmable-chip (SOPC) design concept—We can adjust the Nios II
soft-core system’s performance according to the application to satisfy specific user demands.
Compared to a fixed processor, the Nios II soft core system achieves higher performance at lower
clock rates. The abundant intellectual property (IP) core library helps users create designs and
effectively improve the system’s computation capability. Moreover, its user logic functions and
custom instructions highlight Nios II technologies, allowing optimized, accelerated computation,
increasing processing speeds, and facilitating algorithm commercialization.

■ Development environment—The Nios II Integrated Development Environment (IDE) integrates
the μC/OS-II real-time operating system (RTOS), which has been ported for the Nios II processor.
We can use the operating system (OS) directly for functional design and system expansion.

■ DSP Builder—DSP Builder provides a variety of functional modules and IP cores. With DSP
Builder, we can perform algorithm-level system development in the Simulink software. Then, we
can design the algorithm as a custom user instruction, and integrate it into the Nios II system using
SOPC Builder and the Quartus® II software. We access the DSP algorithm by activating the
custom instruction via software.

■ C-to-Hardware Acceleration (C2H) Compiler support—The Nios II C2H Compiler can
automatically convert a C language program that requires high performance into a hardware
accelerator, and integrate it into the FPGA-based Nios II subsystem. In this way, the program
shares the Nios II processor data computation and memory access and helps the processor perform
other tasks better. Because the Avalon® interconnection architecture has no limit on the number
of hosts and slaves in a system, the Nios II C2H Compiler can generate multiple memory self-
governing hardware accelerators according to the target code conversion requirement. This
process helps embedded system developers improve efficiency and implement successful designs.

Function Description
MRI spinal segmentation research is an integral step to providing qualitative and quantitative analysis
of body tissue with MRI devices. The introduction of computer-aided MRI spinal segmentation
technology will make clinical diagnosis more accurate and timely, lower medical expenses, and
alleviate doctors’ pressure. Therefore, this technology has a bright future.

The design’s hardware module consists of the Development and Education (DE1) development
platform, an MRI LCD panel, and the network interface panel for the MR device and PC. The system’s
functional modules include the MRI image preprocessing module, spinal cord extraction module,
acantha detection segmentation module, LCD image display and human-machine interaction module,
MRI image data access module, and the network transmission module.

■ MRI image preprocessing, spinal cord extraction, and acantha detection segmentation modules—
These modules are part of the design’s algorithm and core functionality. Because of the Nios II
300

MRI Spinal Segmentation Based on the Nios II Processor
processor’s computational capabilities, we implemented most algorithms using C programs. The
C2H Compiler accelerates the most time-consuming part of the algorithm to shorten the
development cycle.

■ LCD image display and human-machine interaction module—We implemented the image display
and human-machine interaction using an LCD display and mouse, which are connected to the
Nios II processor as an Avalon slave using a compiled IP core. In the design, we used μC/OS-II
in the IDE to deploy the system’s task management and algorithms. We adopted the μC/GUI
corresponding to the TCB8000C LCD controller chip to enable the system’s human-machine
interaction.

■ MRI image data accessing module—Generally the images obtained directly from the imaging
device comply with the standard medical image format, i.e., dicom format. Images in this format
are not commonly used by ordinary users, and must be read using special software or medical
instruments. To allow the images to be read conveniently in most circumstances, we convert them
from dicom to bitmap (bmp) before the processing. The images downloaded from the network to
the hardware platform’s storage devices are in bmp format, and are uploaded to the PC after
processing. The images require a large storage space. Therefore, we use a secure digital (SD) card
to store the data and migrate the μC/FS file system corresponding to the card to enhance the
system’s expandability and data management capability.

■ Network transmission module—We implemented data interaction using an Ethernet interface.
The Ethernet interface allows the system to obtain images from the MR device. We developed the
network interface panel using the extensive DE1 interface and used the DM9000A chip as the
core. Using Ethernet makes the system more scalable.

With the Nios II processor features and SOPC design concepts, our design became a process of
optimizing an algorithm, improving the design, and accelerating system operation. We implemented the
design in two steps:

■ Established the Nios II system to run the algorithm in software and implement the fundamental
system functions.

■ Accelerated the algorithm operation using a custom instruction and peripherals.

Performance Parameters
Spinal NMR imaging plays a critical role in diagnosing spinal diseases. For example, it is more effective
than other imaging methods in describing degenerating intervertebral disks and can assess the curative
effect of acantha operation. Analyzing and processing spinal NMR images will make the diagnosis
more accurate, and save time and cost. Therefore, for this system, the most important thing is to segment
and recognize the acantha accurately and clearly from the image. Additionally, we need to accelerate
the calculation speed by optimizing code, employing C2H tools, and creating custom user peripherals.

Figure 1 shows the system’s resource usage after compilation.
301

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 1. Resources Used

After code optimization, the time required for all algorithm steps to operate is:

■ Image preprocessing: 4,128.77 ms

■ Spinal cord extraction: 24,208.14 ms

■ Disk detection: 6.03 ms

■ Image storage on the SD card: 15,881.59 ms

■ Image reading from the SD card: 5,730.02 ms

The algorithm segmentation accuracy can be seen in the final processing image that is generated after
the system operation. It proves that the system can mark the acantha by the number on the platform
precisely. The medical instrument performance can be verified through long-term clinical experiments,
during which we can improve our algorithm.

Figure 2 shows the processing effect of a design. Figure 3 shows the image that the system transmits to
the computer via the network.
302

MRI Spinal Segmentation Based on the Nios II Processor
Figure 2. Design Processing

Figure 3. Image Transmitted to Computer
303

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Design Architecture
Figure 4 shows the hardware block diagram of the MRI spinal segmentation system.

Figure 4. MRI Spinal Segmentation System Block Diagram

Figure 5 shows the software flow chart when the system initialization receives MRI spine image
clusters from the Ethernet.

TFT LCD Display

SDRAM

Altera FPGA

SRAM

USB Interface
with Devices

UART

Ethernet

Flash

Avalon Bus &
Tri-State Bridge

User Button

Nios II

Self-Defined Instruction:
CRC16 Operation
304

MRI Spinal Segmentation Based on the Nios II Processor
Figure 5. Software Flow Chart

Design Methodology
This section describes the system hardware and implementation method.

System Hardware
Figure 6 shows the design in SOPC Builder.

System Initialization

Receive MRI Spine
Image Clusters from

Ethernet

Detect or Not
No

Yes

Select an Image
of a Patient

Image Preprocessing

Spinal Cord Extraction

Acantha Detection Segmentation

End of Image Processing

Browse

Store Image

Store Image

Store Image

SD Card Functional Options

Exit

LCD Display

Upload to PC
via Network for
Telemedicine

LCD Display

LCD Display

Browse
305

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 6. SOPC Builder

Figure 7 shows the Quartus II schematic diagram.
306

MRI Spinal Segmentation Based on the Nios II Processor
Figure 7. Quartus II Schematic Diagram

Implementation Method
This section describes the implementation for the various design modules.

LCD Image Display and Human-Machine Interaction Module
The following sections describe the LCD and mouse hardware implementation as well as migration
using μC/GUI.

LCD and Mouse Hardware
We used the TCB8000C device as the LCD controller chip to control a 5.7-inch TFT65000 LCD
display. Figure 8 shows the controller and microcontroller (MCU) interfaces. The controller is
connected to the Avalon bus as a slave, and the Nios II processor directly accesses the LCD controller.
Therefore, the driver can be compiled easily and driving the LCD after GUI migration is simplified.
307

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 8. LCD Controller

The system employs a PS/2 interface mouse, which has a two-way synchronous serial protocol, i.e., a
pulse on the clock line is followed by one-byte data to the data line. For connection with the Nios II
processor, we used Verilog HDL to compile the Avalon slave implementing the PS/2 mouse
transmission protocol. The Verilog HDL programs include:

■ mouse_avalon_interface.v is the Avalon bus slave interface.

■ mouse_register_file.v and mouse_avalon_interface.v convert the data and transmit the PS/2
mouse protocol, compile the corresponding driver in the GUI, and implement the GUI mouse
operation.

μC/GUI Migration
μC/GUI is an excellent graphic software for embedded systems. It features open source code,
portability, clipping, stability, and reliability. μC/GUI provides rich interface elements, such as buttons,
edit boxes, sliders, etc., and also supports an efficient window deployment mechanism for providing
connectivity between interfaces and applications. The human-machine interaction interface of the small
multi-functional digital photo frame system is developed using this tool. Figure 9 shows the μC/GUI
software system structure.

TCB8000A

LCD Data[23...0]

HSYNC.VSYNC.DCLK

LCD RESET CTRL.

DATA MODE CTRL

POL

VCOM

VGL, VGH

VBL+, VBL-

VCOM Circuit

LM
T0

35
D

N
A

FW
U

/L
M

T0
57

D
N

A
FW

U
 I.

F.
(F

FC
-5

4)

LCD BAIS Supply

Backlight Power Supply

VDD

D[7...0]

/WRO

A1

/Reset

/CS

VSS

Data

5V
308

MRI Spinal Segmentation Based on the Nios II Processor
Figure 9. µC/GUI Software System Structure

The μC/GUI functions library provides a GUI interface for user programs, including text, value, 2-
dimensional (2-D) view, input device, and various window objects. The input device can be a keyboard,
mouse, or touch screen. The 2-D view contains pictures, beelines, polygons, circles, ellipses, arcs, etc.
Window objects include buttons, edit boxes, progress bars, check boxes, etc.

The user can configure the μC/GUI functions library with the GUIConf.h file, including whether to use
a memory or window management device, whether to support an OS or touch screen, selecting the
dynamic memory size, etc. Additionally, the GUIConf.h file defines various hardware-related
attributes, such as LCD size, color, and interface functions. The LCD driver interprets μC/GUI
functions into the liquid crystal interface function defined in the GUIConf.h file, and is not dependent
on the hardware connection. Using a driver, the μC/GUI-LCD hardware interface converts the hardware
interface function into an LCD read/write function defined in the GUIConf.h file.

Migrating μC/GUI involves:

■ Migrating the configuration file—First we migrated the GUIConf.h file and then the LCDConf.h
file. We configured the relevant configuration file parameters according to the digital album
system’s display module requirements.

■ Migrating the LCD driver—μC/GUI provides drivers for different LCD controllers. For example,
the KS0713, SED1335, and T6963 controllers have corresponding LCD drivers. However, our
system’s display module is the TOPWAY TCB8000A LCD controller with a TFT 65,000 color
LCD screen, and μC/GUI does not provide a driver for it. Furthermore, unlike the LCD controllers
for which μC/GUI provides drivers, the TCB8000A controller has an independent screen control
instruction system. These factors made it difficult to migrate the controller for μC/GUI.

During migration, we first used the TCB8000A instruction system to let μC/GUI provide the most
application program interface (API) functions for the upper application function. Then, for API
functions that the TCB8000A controller does not support in hardware, we repaired the drivers using
software. Last, by testing a large quantity of controls, we adjusted the TCB8000A display instruction
parameters used in the LCD drivers, optimizing the LCD driver performance and seamlessly migrating
μC/GUI for the TCB8000A controller.

Font

μC/GUI User
Application Program

μC/GUI Function Library

Text Value Image
Input Device

Mouse Keyboard
Window

LCD Driving File

μC/GUI API Interface Function

LCD

GUIConf.h

Window
Manager

LCDConf.h
309

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
MRI Image Data Access Module
SD card technology was co-developed by Panasonic, Toshiba, and SANDISK. As a totally open
standard (or system), SD cards are used in MP3 players, digital video cameras, digital cameras,
e-books, audio visual (AV) appliances, etc., and particularly in ultra-slim digital cameras. SD cards are
the same as multimedia cards (MMC) in shape, but are a little thicker than MMCs and have more
capacity. Additionally, SD cards are compatible with MMC interface specifications. The nine-pin SD
card can change the transmission mode from serial to parallel, improving the transmission speed. It
reads/writes faster than MMCs in a more secure mode. To make the system more applicable and
compatible, we decide to use an SD card as the primary storage media to store photos, music, material,
etc.

μC/OS-II is contained in the Nios II software IDE, and users can apply it easily in their own software
engineering. To facilitate concurrent task processing and CPU sharing, we used μC/OS-II with a file
system. At the beginning, we selected the zlg file system, but its speed was unsatisfactory during testing.
Reading/writing 1 Mbyte data into the SD card required 37 and 57 seconds, respectively. When we
analyzed the situation we found that the DE1 board’s one-line SD card (i.e., it only has one data line)
reading functionality is significantly limited in speed. We added data lines, changing the read/write
mode to four lines, which makes it more compliant with the system demands.

Testing showed that the speeds were improved to 17 and 27 seconds, respectively. However, these
improvements were not quadruple the original speed as we expected. After performing an Internet
search, we found that zlg/fs was low performance and consumed too much time. Therefore, we decided
to use Micrium’s μC/FS, which has excellent compatibility with μC/OS-II and high performance. After
several weeks, we successfully migrated μC/FS version 1.34 to the DE2 platform to establish the file
system for the four-line SD card. According to our comparison test, the read/write speeds were greatly
increased, requiring only 3.6 and 11 seconds, respectively for 1 Mbyte of data. Therefore, this
implementation essentially satisfied our speed requirement for accessing data files. Writing required
more time because when data is written into the SD card, each block calculated a 16-bit cyclic
redundancy code (CRC), which takes some delivery time. To improve write speeds, we accelerated the
CRC16 computation with a Nios II custom instruction. With this method, we reduced the time it took
to write an MR image (about 1.5 Mbytes) to the SD card from 21.7 to 15.8 seconds. With a higher speed
SD card, the write times will be even faster. Figure 10 shows the custom instruction in SOPC Builder.
310

MRI Spinal Segmentation Based on the Nios II Processor
Figure 10. CRC 16 Custom Instruction in SOPC Builder

We used the following signals:

■ CLK—Host to card clock signal.

■ CMD—Bidirectional command/response signal.

■ DAT0 through DAT3—4 bidirectional data signals.

■ VDD, VSS1, and VSS2—Power and ground signals.

Figure 11 shows the data packet formats for one-line and four-line SD card read/writes. Figures 12 and
13 show the single block read and write, respectively.
311

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 11. Data Packet Format

Figure 12. Single Block Read Timing

Table 1. Timing Diagram Symbols

Abbreviation Definition
S Start bit (= 0)

T Transmitter bit (host = 1, card = 0)

P Single-cycle pull-up (=1)

E End bit (= 1)

Z High impedance state (-> - 1)

D Data bits

X Don’t care data bits (from card)

+ Repetition

CRC Cyclic redundancy check bits (7 bits)

Card active

Host active

Standard Bus (Only DAT0 Used):

Wide Bus (All Four Data Lines Used):

Start Bit:
Always '0'

MSN

MSB (4095)

Start Bit:
Always '0'

Dat3

Dat2

Dat1

Dat0 0

0

0

0

4095

4094

4093

4092

Block Length

(Block Length) / 4

0 CRC

CRC

CRC

CRC

CRC

1

1

1

1

1

1

2

3

0

LSN

End Bit:
Always '1'

End Bit:
Always '1'

LSB (0)

Host Command NCR Cycles Response

S T Content CRC E Z Z P P S T Content CRC E* * *CMD

Z Z Z Z Z P P S* * * * * * * * * *DAT * * * * ZZZ * * *

NAC Cycles

Z

Read Data

D DD
312

MRI Spinal Segmentation Based on the Nios II Processor
Figure 13. Single Block Write Timing

Network Interface
Because the DE1board does not have a network interface, we designed a network interface board that
connects to the DE1 interface to enhance the system’s scalability and add network capabilities. Because
the board’s I/O interface is limited and we also needed to connect the LCD display through I/O, we used
a DM9000A network chip that has fewer I/O. Additionally, the DE1 board transmits data at a fixed time
while the PC receives data upon inquiry. To use the network, a μC/OS-II driver implements data
transmission and data is received with interrupts on the second network layer.

Image Processing Algorithm Implementation
Typically, bodily acantha contain 24 pre-sacral acanthae, including 7 cervical acanthae, 12 thoracic
acanthae, and 5 lumbar acanthae. Therefore, in our acantha sagittal views, 23 intervertebral disks are
visible in typical images, specifically, C2-3, C3-4, C4-5, C5-6, C6-7, C7-T1, T1-2, T2-3, T3-4, T4-5,
T5-6, T6-7, T7-8, T8-9, T9-10, T10-11, T11-12, T12-L1, L1-2, L2-3, L3-4, L4-5, and L5-S1.

The image processing algorithm quantitatively marks the visible intervertebral disks, as well as
predicting and marking unclear intervertebral disks. We implemented the algorithm using a C program
compiled under μC/OS-II and using μC/GUI and μC/FS, we implemented the MRI acantha image
segmentation system with good human-machine interaction and facilitated the system operation.

The algorithm has three steps:

■ Image preprocessing

■ Spinal cord extraction

■ Disk detection

Image Preprocessing
Because the original NMR images have low contrast with unclear visual effect, we first improved the
image quality and the visibility of the intervertebral disks. Figure 14 shows the contrast before and after
preprocessing.

The image median filtering is time-consuming, but we were able to speed it up using the C2H Compiler
to accelerate the algorithm. Table 2 compares the image processing time requirements.

Table 2. Image Processing Time Requirements

Requirement Before C2H Acceleration After C2H Acceleration
Time for median filtering 10,077.35 ms 2,811.41 ms

Total time for image preprocessing 11,394.71 ms 4,128.77 ms

Logic resources used 5,446/18,752 (29%) 8,593/18,752 (46%)

CMD

Z Z Z P * P SDAT0 * * * * * * ZZZ * * * Z SZ

Z Z CRC Z Z P P P* * * * * * * * * * * * * * * * * **P TS PZ P PP

Content CRC E EStatus L *L ES
Z Z Z P * P S* * * * * * ZZZ * * * Z XZContent CRC X XX X XX

ZZZ
ZZZ X X Z

Z
EDAT1-3

P Content E P P

Card ResponseNCRHost Cmnd

NWR Write Data CRC Status Busy
313

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 14. Sample Image Before and After Preprocessing

Spinal Cord Extraction
The spinal cord is conspicuous in the spinal NMR image, and provides directional information for the
location of the intervertebral disks. We can extract the spinal cord using fuzzy match in statistical mode
recognition. In our design, we only extract the spinal cord for the upper body because this curve is
relatively complicated. We can then predict the lower body curve accordingly. The red line in the left
image in Figure 15 is the spinal cord extracted from the upper body. Compared with other parts of the
algorithm, this part is time-consuming. Given the current algorithm structure, we cannot use C2H
acceleration. We expect to further optimize the algorithm, so we did not use other methods to accelerate
the algorithm. In the future we will improve the system functions in terms of the algorithm structure
and acceleration.

Before After
314

MRI Spinal Segmentation Based on the Nios II Processor
Figure 15. Spinal Cord and Disk Location

Disk Detection
In the right image in Figure 15, the red points represent the located disks, which the system marks with
yellow lines.

SOPC Concepts Used in the Design
Using SOPC concepts, we completed the design successfully. In the system design, SOPC concepts are
embodied in the following aspects:

■ System reconfigurability—As a soft-core processor, the Nios II processor can be clipped.
Therefore, the system we design has huge potential for scalability. For example, due to time
limitations, we used C programs (with limited speed) to implement some algorithms that are
actually suitable for implementation in the FPGA hardware. But, we can upgrade the system later
without changing the hardware platform. Additionally, because of resolution limitations, we can

Spinal Cord Extraction Intervertebral Disk Location
315

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
compile different LCD controllers for use with other LCD displays. These types of changes are
advantages of the system reconfigurability provided by SOPC-based designs.

■ Modular system design—System design is a process of labor division and teamwork. A typical
embedded processor platform is designed according to the specified processor, and software
debugging can only be conducted upon completion of the hardware. But designing with the
Nios II processor is different: as long as we use an FPGA the supports the Nios II processor, we
can later debug the program on other FPGA-based platforms without any differences. This
method allows the designer to conduct the hardware and software design synchronously. In actual
designs, designers can initiate market expansion and product research and development
simultaneously, shortening the product’s time-to-market and bringing significant benefits.

■ Diversified implementation modes—In a SOPC-based system design based, there are various
implementation modes. For example, to accelerate an algorithm, you can use a custom instruction,
custom peripheral, or C2H acceleration and compare them to find the best method.

Design Features
The Nios II-based MRI spinal image segmentation system features fast computation, small size, and
simple operation. It can be integrated easily with the original MRI devices to form a new system, and
facilitate consultation using the segmented images.

■ With the introduction of Nios II-based μC/OS-II, this operating system has been widely applied
in many fields worldwide, such as mobile phones, routers, hubs, aerocrafts, medical instruments,
etc. μC/OS-II is suited to a small control system, and features high efficiency, small size, excellent
real-time performance, good scalability, etc. The operating system has been integrated into the
Nios II IDE, avoiding the need for additional migration. Using the system we found that the
Nios II-based μC/OS-II and tasks are very stable. We completed all system software development
using the Nios II-integrated μC/OS-II RTOS.

■ With μC/GUI, the system gains good human-machine interaction. All system functions can be
accessed using a mouse. This feature is very helpful for promoting the system.

■ In the system design, a large quantity of MRI images are stored in a high-capacity SD card. Taking
advantage of the Nios II processor, we easily added in the four-line SD card controller to improve
its read speed. We also migrated the μC/FS file system for the SD card to facilitate the file access
operations.

■ The μC/OS-II-based network interface enables strong scalability. Additionally, network support
allows image updating and supports telemedicine.

■ The Nios II processor includes several CPUs, and users can create a perfect solution by using
processor, peripherals, storage, and I/O interfaces according to the system demands. In this way,
designers build a reasonable performance combination and save system development cost,
enhancing cost competitiveness.

■ The Nios II C2H Compiler can automatically convert a C language program that requires high
performance into a hardware accelerator and integrate it into the FPGA-based Nios II subsystem,
which improves system operation speeds.

Conclusion
We completed our MRI spinal segmentation system based on the Nios II processor design for this
contest, and implemented the system functions as scheduled. However, we still need to improve some
areas. During the contest, we learned many new things about the Nios II processor and it was the first
time we tried to implement an algorithm in the Nios II processor for medical imaging. Our experience
demonstrated the Nios II processor’s strong processing capability and reliable operation. Additionally,
316

MRI Spinal Segmentation Based on the Nios II Processor
we became experienced with using μC/OS-II, μC/GUI, and μC/FS with the Nios II processor and solved
many debugging problems with teamwork.

Nios II system performance can be adjusted according to the application requirements to satisfy specific
user demands, which gives Nios II systems strong advantages over fixed processors. User logic function
and custom instructions are highlights of the Nios II processor, and provide a variety of methods to
implement systems. SOPC concepts bring creative design thought and enlighten students’ creativity.

Thanks to Altera for providing us a good opportunity to combine theory with practice. The contest
verified the feasibility of our algorithm in hardware and promoted our theoretical research.
317

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
318

Nios II Processor-Based Self-Adaptive QRS Detection System
Second Prize

Nios II Processor-Based Self-Adaptive
QRS Detection System

Institution: Indian Institute of Technology, Kharagpur

Participants: Sai Prashanth, Prashant Agrawal

Instructor: Professor Agit Pal

Design Introduction
For our project, we designed and implemented a cardiac arrhythmia electrocardiogram (ECG)
monitoring system that can adaptively modify and change the components of its processing chain to
carry out the best treatment on electrocardiogram signals. We investigated and provided a solution to a
fundamental problem in the area of biomedical signal processing: accurate QRS complex detection for
varying environmental and patient conditions. We implemented the ECG monitoring system in an
Altera® Cyclone® II FPGA.

Background
The QRS complex is the most striking waveform within the ECG. Because it reflects the electrical
activity within the heart during the ventricular contraction, the time of its occurrence and its shape
provide a wealth of information about the current state of the heart. Due to its characteristic shape (see
Figure 1), it is the basis for automated determination of the heart rate, an entry point for classification
schemes of the cardiac cycle, and often used in ECG data compression algorithms. Therefore, QRS
detection provides the fundamentals for almost all ECG analysis algorithms.
319

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 1. QRS Complex within the ECG signal

Software QRS detection has been a research topic for more than 30 years. However, experience
gathered over the years shows that the proposed strategies for ECG analysis [2], and particularly QRS
complex detection based on signal processing techniques, have reached an asymptotic detection
performance. This situation exists is because most algorithms operate optimally in a given set of
contexts (environmental and/or patient-related), and produce increasing error rates when the contexts
are not matched. Therefore, choosing the QRS detection algorithm best suited to the current context is
an essential step in the development of a real-time ECG analysis system. Our implementation adopts
the real-time piloting system proposed by F. Portet and G. Carrault, in “Piloting Real-Time QRS
Detection Algorithms in Variable Contexts” (see “References” on page 332), however, we adapted the
system for optimal performance using the Altera Nios® II processor.

Project Outline
In medical monitoring, reducing false alarms and missed detections is crucial, and its importance
cannot be overemphasized. Our novel adaptive, algorithm-bank-based solution reduces the number of
errors by performing a periodic sampling of the input ECG signal and making a dynamic decision to
find the most appropriate algorithm for QRS detection under the current context. Figure 2 shows the
design overview of our ECG monitoring system. The gray area represents sub-units within the scope of
this project, and is implemented using the Altera Cyclone II FPGA.

Figure 2. ECG Medical Monitoring System

Our ECG monitoring system has two distinct components: an analyzer that performs the actual QRS
complex detection and medical diagnosis, and a sampler that performs acquisition, context analysis,
and piloting of the analyzer. When a change occurs in the input data, the sampler should react to adapt
itself to the new context. Otherwise, the analyzer transmits erroneous data and causes false alarms and
low-quality diagnosis.

SAMPLER

Altera Nios Processor (CPU0)

Altera Nios II Procesor (CPU1)

ANALYZER

Patient Context

ADC
ECG

Arrhythmia
320

Nios II Processor-Based Self-Adaptive QRS Detection System
FPGA Design Significance
The trend in embedded system design is towards implementing the entire functional system on a single
chip. The advent of high-density FPGAs with high-capacity RAM blocks and support for soft-core
processors such as Altera’s Nios II processor have enabled designers to implement a complete system
on a chip. We use FPGAs, and in particular, the Altera Nios II soft-core processor to take advantage of
the following benefits:

■ Altera Cyclone II FPGA systems are portable, cost effective, and consume considerably less
power compared to PCs. This fact is important when the application is designed for battery-
operated devices. We can implement a complete system easily on a single chip because complex
integrated circuits (ICs) with millions of gates are now available.

■ SOPC Builder can trim months from a design cycle by simplifying and accelerating the design
process. It integrates complex system components such as intellectual property (IP) blocks,
memories, and interfaces to off-chip devices including application-specific standard products
(ASSPs) and ASICs onto Altera high-density FPGAs.

■ The Altera Nios II processor supports hardware/software co-design in which the time-critical
blocks are written in HDL and implemented as hardware units, while the remaining application
logic is written in C. The challenge is to find a good trade-off between the two. Both the processor
and the custom hardware must be optimally designed such that neither is idle or under-utilized.

■ FPGAs provide the best of both worlds: a microcontroller or RISC processor can efficiently
perform control and decision making operations while the FPGA can perform digital signal
processing (DSP) operations and other computationally intensive tasks.

■ The Altera Nios II processor supports multi-core processing, which enables off loading and time-
sharing critical mutually independent operations between two processor cores to offer real-time
response in crucial situations. The synchronization between the processors is easily facilitated by
the Avalon® bridge fabric.

Nios II-Based Design
We decided to use the Nios II processor after analyzing the various requirements for a real-time ECG
medical monitoring system. A handheld, battery-operated medical monitoring system requires that the
design be optimized for performance and energy efficiency. Altera offers easy customization of both
these features. A basic system requires application programs, running on a customizable processor that
can implement custom digital hardware for computationally intensive operations such as fast discrete
cosine transform (DCT) functions, matrix inverse calculations, etc. Using a soft-core processor, we can
implement and customize various interfaces, including serial and parallel. The Altera development
board, user-friendly Quartus® II software, SOPC Builder, Nios II Integrated Development Environment
(IDE), and associated documentation enable even a beginner to feel at ease with developing an SOPC
design. We can perform hardware design and simulation using the Quartus II software and use SOPC
Builder to create the system from readily available, easy-to-use components. With the Nios II IDE, we
easily created application software for the Nios II processor with the intuitive click-to-run IDE
interface. The development board's rich features and customization, SOPC Builder’s built-in support
for interfaces (such as serial, parallel, and USB), and the easy programming interface provided by the
Nios II hardware application layer (HAL) make the Nios II processor and an FPGA the ideal platform
for implementing our ECG medical monitoring system.

Application Scope and Target Users
Our design is customized for optimal real-time response, which is critical in a medical setting such as
an electrocardiogram monitoring system. The design is implemented on a Cyclone II FPGA, and is very
power efficient, which makes it suitable for handheld, battery-operated devices like the Holter ECG
monitoring systems. It can also be used as a stand-alone clinical system for accurate patient heartbeat
monitoring in hospitals and ambulances.
321

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Functional Description
Our ECG monitoring system is devoted to cardiac arrhythmia recognition. Arrhythmia can be
diagnosed from the morphology of the P and QRS waves and their temporal relationships. Our system
computes a diagnosis from an abstracted representation. Figure 2 shows a high-level overview of the
design. The analog electrocardiogram signals are first digitized using an external analog-to-digital
converter (ADC) and are fed into to the system through the serial port. The system is composed of two
on-line main modules: a sampler and an analyzer, each of which is implemented using a separate Nios II
processor. Figure 3 shows a detailed overview of the module.

Figure 3. ECG Medical Monitoring System

At a high level, the sampler module continuously samples the input ECG signals to analyze the line
context, and combines this information with the arrhythmia context of the higher-level patient context
information. The sampler is governed by a pilot, which uses a set of statistically obtained piloting rules
to determine the context. When a change of context is detected, it triggers the analyzer module to switch
the algorithm used for the temporal abstraction, i.e., the QRS detection algorithm. The analyzer module
consists of the signal processing algorithms that detect and classify the ECG events from the ECG
signal. The chronic recognition module analyzes the vents flow and computes the diagnosis. The ECG
monitoring system is piloted in three ways: the pilot activates and deactivates the temporal abstraction
tasks, chooses and tunes the signal processing algorithms, and selects the level of detail that the
arrhythmia recognition needs.

ECG
ADC Line Context

Analyzer

SAMPLER
(Nios Processor, CPU 0)

Arrhythmia
Context Analyzer

PILOT

Patient
Context Rule Base

Temporal Abstraction
ANALYZER

(Nios II Processor, CPU1)

Filtering QRS Classification

QRS Detection P-Wave Detection

Chronicle
Recognition

Algorithm Bank Chronicle Base

Arrhythmia
322

Nios II Processor-Based Self-Adaptive QRS Detection System
Arrhythmia Recognition Piloting
An arrhythmia can be diagnosed according to several ECG features. In our system, all features are
constantly extracted and sent to the arrhythmia recognition, but in some contexts, a reduced number of
features can be sufficient to recognize an arrhythmia. Thus, the arrhythmia recognition piloting involves
choosing the chronicle abstraction level to recognize by selecting corresponding chronicle models,
according to the current diagnosis hypotheses.

Temporal Abstraction Piloting
Temporal abstraction is composed of four linked tasks that extract four main features:

■ Filtering separates the actual ECG signal from the noisy part of the signal

■ QRS detection identifies QRS occurrence dates

■ QRS classification labels QRS morphologies

■ P wave detection identifies P wave occurrence dates

Depending on the context chosen by the arrhythmia recognition piloting system, a subset of the
temporal abstraction piloting unit is activated. To be more efficient and to base the recognition on
reliable information, the architecture enables the activation and deactivation of the temporal abstraction
tasks according to the needs and to specific contexts.

SP Algorithm Piloting
The temporal abstraction tasks are performed by shortest path (SP) algorithms. In our system, a unique
SP algorithm is devoted to a particular task. However, related literature describes several possible
algorithms, whose performance vary according to the context, to achieve these tasks. The preliminary
study, described in [2], showed that the performance of various QRS detection algorithms change with
the current context (line noise and QRS morphology). The new extended algorithm base contains
several SP algorithms for each task. Therefore, the pilot must choose the algorithm best suited for the
current context and then tune its parameters.

Pilot
Figure 4 shows the pilot architecture. It has three inference engines that deduce the actions to perform
on the system for the three piloting levels and a context manager that deduces the information needed
by the engines from the current context. The context manager instantiates and updates useful variables
from the raw information transmitted by the context analyzers. Its knowledge is represented by expert
rules stored as rules of thumb in the manager rule base. The system is piloted at three levels: the
arrhythmia recognition level, the temporal abstraction tasks level, and the SP algorithms level. From the
information transmitted by the context manager, the engines infer the actions to perform on the system.
Their piloting rules are mainly defined by an expert and are grouped: chronicle model choice rules, task
choice rules, and SP algorithm choice rules. The chronicle recognition adapts the abstraction level to
the context. The temporal abstraction tasks are activated according to the needs and to technical
constraints. The SP algorithm choice rules determine the algorithm best-suited to the task according to
the temporal abstraction tasks and tune it.
323

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 4. Pilot Architecture

We used four real-time QRS detectors:

■ pan—The Pan and Tompkins [3]

■ gritzali—The Gritzali’s detector [4]

■ df2—The Okada’s detector modified by [5]

■ af2—A derivative QRS detector modified by [5]

We obtained the QRS detection piloting rules by performing a statistical analysis. We inferred the
following rules:

IF <L and bw and SNR >= -5 dB>
THEN <choose Gritzali’s QRS detector>
IF <(L or F) and no noise>
THEN <choose Gritzali’s QRS detector>
IF <(F or P) and bw and SNR >= 0 dB>
THEN <choose Gritzali’s QRS detector>
IF <em and ((N or A or P or R) and SNR = -15 dB)>
THEN <choose df2 QRS detector>
IF <em and (SNR = -5 dB and P)>
THEN <choose df2 QRS detector>
IF <default>
THEN <choose PAN’s QRS detector>

The first rule means that if the line context has the value bw noise at -5 db and the arrhythmia context
informs that it has mainly QRS of form L, then the Gritzali’s detector is chosen.

Performance Parameters
For this system, accuracy and identification speed are the most important performance parameters;
therefore, we focused on these areas. Using the Altera Quartus II design platform, we were able to speed
up the design without lowering the design complexity. A single identification, including complex
preprocessing, context checking, accelerated C-to-hardware acceleration (C2H) preprocessing, and
hardware QRS complex detection, should be performed in real time to operate on the data streaming in.
According to the MIT-BIH database (from the Harvard-MIT Division of Health Sciences and

Current Context

Line Context

Patient Context

Arrhythmia
Context

Context
Manager

Arrhythmia
Recognition Level
Inference Engine

Temporal Abstraction
Tasks Level

Inference Engine

SP Algorithms
Level

Inference Engine

Tasks to
Activate and
Deactivate

SP Algorithms
to Tune

Manager
Rules

SP Piloting
Rules

Task Choice
Rules

Chronicle Model
Choice Rules

Chronicle
Models to Use
324

Nios II Processor-Based Self-Adaptive QRS Detection System
Technology) benchmark experiment data, the threshold gives a very low 10.6percent error rate, which
is considerably lower than the 14.3 percent error rate obtained when no sampler is used.

SOPC Builder allows the user to configure additional aspects of the microprocessor to improve
computation speed, at the expense of using more system memory and logic elements (LEs).
Specifically, the user can control the core type (Nios II/s, Nios II/f, etc.), pipelining, hardware multiply
and divide, and cache allocation. Pipelining allows multiple instructions to be fed into each stage of the
microprocessor execution cycle in parallel, enabling maximum execution performance of the
navigation system software. Larger caches provide more memory data storage, which makes code
execute faster. A large cache is particularly useful for the monitoring system software, which uses an
incremental iterative process (i.e., values in a discrete wavelet transform (DWT) matrix are updated in
a scanned incremental manner) to determine the DWT. However, larger caches also use more FPGA
LEs and memory, and the designer can inadvertently create a system that does not fit into the target
Cyclone device. Ultimately, we selected the cache size and pipelining based on trial and error, with the
goal of maximizing the cache size while still fitting the design into the Cyclone FPGA.

Performance is assessed by the number of errors (Ne), which reflects both false alarms and missed
beats. For each test, FN (the number of false negatives or missed QRSs) and FP (false positives or false
alarms) are computed to obtain Ne = FP + FN. The error rate is Er = Ne / NQRS, where NQRS is the
total number of actual QRSs. The study leads to 16,000 Ne values, and for this amount of data, we
performed a principal components analysis (PCA) to analyze the detector results graphically. To test the
piloting rules, five ECGs were generated from the MIT-BIH database. Each ECG lasted from 20 to 30
minutes for a total of about 2 hours. Three to four different contexts are introduced in each test ECG to
assess the system performances in the specific contexts as well as around the context transitions. Parts
of the original ECGs were corrupted with the three real clinical noise types defined previously (bw, ma,
and em). In each context, the pilot chooses the best algorithm with the aid of the piloting rules. In this
study, the algorithm thresholds are optimal in the sense that Ne is minimum. See Table 1.

C2H Compiler
The Nios II C2H Compiler can automatically integrate high-performance C programs into the hardware
accelerator, which is then integrated into the FPGA-based Nios II subsystem. The C2H Compiler
supports standard ANSI C code, accelerates multiple application programs, and improves operational
efficiency, including access to local and external memory and peripherals. We used SOPC Builder to
generate a broadband Avalon interconnected architecture, which processes the external memory and
peripherals, such as pointer dispersal and array access. The Nios II C2H Compiler accelerates
implementation of memory interfaces, and generates hardware accelerator logic and the correct Avalon
host and slave interface to match the memory delay. It shares the data computing and memory access
functions with the Nios II processor, and lets the processor perform other tasks. Because the Avalon
architecture does not limit the number of hosts and slaves in a system, the Nios II C2H Compiler can
generate multiple hardware accelerators according to the target code’s transfer requirements. The C2H
Compiler helps embedded system developers improve design efficiency. In our system, the signal
preprocessing function is implemented in software. Because we have high-speed identification
requirements and the C software code takes a long time to perform the task, we optimized the ECG
signal preprocessing module with the Nios II C2H Compiler to accelerate processing. We tested the
implementation speed. With this optimization, the design uses extra logic resources: 65% instead of
20% without optimization.

Table 1. QRS Detection Results for Different Detectors and Pilot

ECG
Score

Ne 1 Ne 2 Ne 3 Ne 4 Ne 5 Total
Ne Er (%)

Pan *20 *91 *240 *312 *367 1,030 14,3

Gritzali 20 *160 388 360 *295 1,223 17

df2 307 278 *174 *160 *302 1,221 17

Pilot 20 88 185 167 304 764 10,6
325

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Nios II Processor
The Nios II processor’s excellent performance facilitated our design. We chose the Nios II/f CPU
because of our high-speed processing requirements. We combined the processor, peripherals, memory,
and I/O interface with the Nios II processor and FPGA design. Because the Nios II processor is
configurable, we could modify the system performance requirements at any time. Furthermore, we were
able to improve the module performance with Nios II custom instructions.

Design Architecture
The Figure 5 shows an abstract hardware design block diagram of the ECG monitoring system.

Figure 5. ECG Hardware Block Diagram

The hardware system consists of two Nios II processors, which implement the sampler and analyzer
modules, a SRAM, an external keyboard for user input, and an LCD display for graphically displaying
the ECG signal. The input analog ECG signals are converted to digital format using an external ADC.
The Avalon tristate bridge provides seamless communication between the various components of the
system. Figure 6 shows the general software flow chart of the QRS detection algorithms. All QRS
detection algorithms used in our context follow this methodology for identifying the QRS complex.

Figure 7 shows the user interaction state transition diagram and is important to understand the system
operation. The user can interact with the ECG monitoring system via the keyboard and select the
required operation mode. Some important operation modes are acquire signal from patient, analyze
data, retrieve data, and transmit data.

ECG Data ADC

Keyboard ANALYZER
(Nios II Processor
Augmented with

Custom Instructions)

SAMPLER (Nios
Coprocessor)

RAM

Interrupt

LCD Display

LCD Data Buffer
326

Nios II Processor-Based Self-Adaptive QRS Detection System
Figure 6. Software QRS Detection Algorithm Flow Chart

Selection of Characteristic Scales

Determination of Modulus Maxima Lines
of R Waves

Calculation of Singular Degree

Elimination of Isolated Modulus Maxima
Lines

Elimination of Redundant Modulus
Maxima Lines

Detection of R Peak

QRS Onset & Offset Detection

T & P Wave Detection
327

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 7. User Interaction State Transition Diagram

Design Description
The design’s implementation steps are as follows:

1. Research and determine a set of complementary QRS detection algorithms that work effectively
in a mutually exclusive set of contexts, and develop software algorithms to support them.
Research Altera FPGAs using the Quartus II software, SOPC Builder, and Nios II IDE. Use the
web editions of the software and documentation available from the Altera web site.

2. Create a Quartus II project, selecting appropriate Nios II dual-core processors in SOPC Builder,
as shown in Figure 3 on page 322. Compile and debug the Quartus II design and review the
compilation report. Test the project, including testing the processor response, error rate, and
miniboard hardware (UART communications, etc.), with the simple hello world Nios II program.

3. Create an algorithm bank consisting of four different QRS complex detection algorithms
implemented in the Nios II processor. Test the performance in the Cyclone device with the
appropriate test input.

4. Update the SOPC Builder processor configuration to determine the fastest possible configuration
that fits in the device’s memory and available LEs. Optimize the processor until the desired
performance requirement is met.

Start
State

Configure
Configure
Settings

Configure_Done

Acquire
Signal

Start Key
Not Pressed

Acquire
Signal from

Patient

Start Key
Pressed

Change Lead

Change
Lead

Start Key
Not Pressed Start Key

Pressed

Retrieve
Data

Scroll

Scroll

Analyze

Analyze

Analyze Exit

Analyze Exit

Analyze
Data

Freeze

Freeze

Retrieve
Data from

Flash
Memory

Cancel Lead
Change

Store

Store
Over

Store
Data to Flash

Device Transmit

Transmit Data

USB
Transmit

USB
Transmission

Exit OR
Tx_Over

Packet Sent

START State Will Be
Reached from Any State on
RESET
328

Nios II Processor-Based Self-Adaptive QRS Detection System
5. Create interrupt-based interfaces using the Nios II IDE to control the appropriate input and output
to integrate the ECG medical monitoring system with other systems. Test these I/O interfaces.

6. Test the ECG medical monitoring system performance using standard available
electrocardiogram signals from the MIT-BIH database and determine the error rates of the QRS
complex detection.

Design Environment
We used the Altera Cyclone II development board for the initial code debugging and then used the
development and education (DE2) development platform for final implementation. The DE2 board has
a variety of integrated peripheral interfaces that were convenient to use in our design.

Software and Hardware Design
Figure 8 shows the SOPC Builder configuration.

Figure 8. SOPC Builder Configuration

The two important modules in the ECG monitoring system are the sampler module and the analyzer
module. We implemented them using separate Nios II processors to facilitate real-time response to the
streaming in electrocardiogram signal. The sampler module is implemented using cpu0, and it
incorporates the line context analyzer and the pilot. The line context analyzer analyzes the quality of
the incoming ECG signal and determines the decibel noise level. It also has an arrhythmia context
analyzer, which contains information about the QRS morphologies that occurred in the past. Using this
information, in addition to the high-level patient related context information, the pilot then uses
statistically determined piloting rules to decide which context is most suitable for the analyzer to use.
It makes a decision dynamically and interrupts the analyzer module to change its processing cycle.

The analyzer module consists of the temporal abstraction unit, which is composed of the signal
processing algorithms and the chronicle recognition unit. Depending on the interrupt received from the
sampler module, the analyzer uses the appropriate QRS detection algorithm for processing the ECG
signal, as outlined in “Functional Description” on page 322. Upon appropriate processing, the
morphologies are then passed to the chronicle recognition unit to determine any arrhythmia, which can
then be subject to medical diagnosis. Figure 9 shows the block diagram for system implementation
using the Quartus II software.

Applying SOPC Concepts
Altera introduced system-on-a-programmable-chip (SOPC) technology and its related development
platform, the Quartus II software. SOPC is the FPGA version of system-on-chip (SOC). Compared to
ASIC SOC, SOPC has many unique features. Our design uses SOPC concepts in the following ways:
329

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Modular system design—At the beginning of the system design, we partitioned the system into a
line context analyzer (preprocessing) and processing. The system is divided and simplified, which
makes it easier to implement. According to the module interfaces, we can accurately evaluate the
design’s application scope and future development at the initial design stage. We can perform
market exploration and product research and development simultaneously in the practical product
design, which shortens the time-to-market and accelerates enterprise development.

■ System integration—An embedded system shows its features with its size, power consumption,
and integrity. Except for the expanded 1-Mbyte SRAM front-end collection module, we could
implement all system functions on the development board. It is very difficult to implement such
a highly integrated design without lowering the design target or using a different FPGA.

■ Various modes—We can diversify the implementation. For example, the front-end module uses
an IP core, preprocessing is implemented with software, and key steps are fulfilled using the C2H
Compiler to transfer operations to hardware. The trademark checking module uses hardware,
software, or hardware/software with custom peripherals and instructions. Using SOPC concepts
and excellent design tools enabled us to use these various modes.

■ Final system can be upgraded—The design can be flexibly configured and updated during the
design process.

Figure 9 shows the Quartus II system implementation block diagram.

Figure 9. Quartus II System Implementation Block Diagram

Table 2 shows the percentage of execution time spent in each of the sub-functions that constitute the
QRS detection algorithm. The dwt_ecg function, which performs the DWT computation, consumes
the most time. The computationally intensive portions of the QRS complex detection algorithm are
implemented using custom instructions. The most time-consuming function computes the DWT, which
330

Nios II Processor-Based Self-Adaptive QRS Detection System
is implemented using custom instructions. Prior to this, loop unrolling was performed on the initial code
to reduce the number of iterations required to perform a single DWT calculation.

Design Features
Our ECG medical monitoring system has the following features:

■ It is a standalone system for detecting QRS complexes in an electrocardiogram for further medical
diagnosis without using a PC for recognition.

■ Performs accurate QRS complex detection under varying conditions, where any single algorithm
would fail to function effectively. These conditions include environmental disturbances (such as
noise due to electrical interference, muscular activity, or loss of contact) and patient
characteristics (i.e., varying heart beat classifications).

■ Custom instructions are optimized for area and energy using Nios II architectural features, such
as an extended custom instruction architecture (for resource sharing) and internal registers (to
reduce memory access latency). These features reduce the device cost.

■ Run-time electrocardiogram signal acquisition, processing, and morphology recognition makes
the system suitable for practical use in Holter ECG systems, clinical use, etc. Implementation is
optimized for minimal latency by exporting computationally intensive parts of QRS complex
detection algorithms to custom instructions, and using the periodic sampling subunit as a co-
processor. This technique enables the Nios II processor to exhibit real-time performance, which
is critical in biomedical signal processing applications such as heart beat monitoring.

■ The algorithm software is also optimized (using techniques such as loop unrolling) with the C2H
Compiler.

■ Overall energy-efficient system design enables use of the design in hand-held, battery-operated
devices, such as Holter systems.

■ SOPC design plays a central role in all design features, and enables easy optimization for minimal
latency, area, and energy consumption. Several Nios II architectural and support features ease the
process of system design and development.

■ Displaying the ECG signal on a liquid crystal display (LCD) aids a specialist in deducing
graphical conclusions from the morphologies.

■ The design uses a variety of features and components available for Nios II-based development,
such as PIO, UART, and RS- 232 communication. In the future, we would like to implement USB
communication as well so that we can provide a standalone ECG monitoring system that can
automatically log data in an auxiliary storage device for archiving.

Table 2. Execution Time for Various Functions

Function % of Total Time
dwt_ecg 69.2

detect_mm_R 9.99

detect_r 0.13

detect_qrs 0.16

detect_t 13.7

detect_p 6.7
331

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ The system has low cost and high performance. The single chip ECG monitoring system is small,
easy-to-carry, and cost effective, which satisfies the needs of most engineering technicians.
Compared to the expensive medical monitoring systems currently on the market, this system
provides excellent performance at a lower cost.

■ The system is portable: the single FPGA and Nios II processor can implement ECG signal
collection, analysis, storage, control, and transfer, which allows the ECG monitoring system to
migrate from large a desktop to small handsets. Additionally, it provides portable terminals
suitable for working outdoors.

Conclusion
The Altera Nios II design contest enabled us to develop a better understanding of the Nios II processor.
Using it, we were able to design our system easily, including dual-core embedded processors, on-chip
and off-chip memory, and high-speed I/O ports. Altera development tools let us develop our own multi-
functional custom instructions quickly. Additionally, we could modify the CPU hardware at any time
for multi-purpose development using SOPC Builder. We hope to use the Nios II IDE debug function in
future to shorten the software development time significantly. Altera’s ability to develop and update the
Nios II processor and functions was extremely important. For example, using custom instructions we
could accelerate the hardware computation speed, which improved our system’s efficiency. We thank
Altera for having the contest and acknowledge their support when we had design problems. On the
whole, using SOPC concepts allowed us to create a more flexible, dynamically reconfigurable, and
computationally intensive implementation.

References
[1] F. Portet and G. Carrault, “Piloting Real-Time QRS Detection Algorithms in Variable Contexts,”
IFMBE Proceedings, Volume 11, Prague/Czech Republic 2005.

[2] B.U. Kohler, C. Hennig and R. Orglmeister, “The Principles of Software QRS Detection,”
Engineering in Medicine and Biology Magazine, IEEE, Volume 21, Issue 1, pp 42-57, Jan./Feb. 2002.

[3] Pan, J. and Tompkins, W.J. “A real-time QRS detection algorithm”

[4] Gritzali, F. “Towards a generalized scheme for QRS detection in ECG waveforms”

[5] Friesen, G.M., Jannett, T.C., Jadallah, M.A., Yates, S.L., Quint, S.R., and Nagle, H.T. “A
comparison of the noise sensitivity of nine QRS detection algorithms”
332

Portable Telemedicine Monitoring Equipment
Second Prize

Portable Telemedicine Monitoring
Equipment

Institution: HuaQiao University

Participants: Huafeng Hong, Qianjiang, Yongjie Li

Instructor: Ling Chaodong

Design Introduction
For our design, we wanted to provide a specialized in-home medical monitoring system. The following
sections provide background information about health issues and telemedicine.

Background
Our project focuses on several issues, including:

■ Medical—In medicine today, the focus has shifted from disease treatment to prevention and
health care. People care more about their health, and while disease prevention and health care have
become an indispensable part of their lives, daily care for current physical conditions can
eliminate problems and pain that could result from untreated conditions.

■ Social—With increasing attention on health and technological progress both home and abroad,
home health care engineering (HHCE) is an emerging discipline. It advocates the concepts of
medical treatment at home, self health care, and remote diagnosis, and combines technology with
medical treatment. While addressing the trends of an aging society, soaring medical expenses, and
increasing health demands in the 21st century, HHCE enables medical resource sharing and
improves medical care in remote areas, making it well received by society.

■ Technological—Modern science and technology provides a technological basis for these designs.
Embedded technology provides a leap forward and enables a diverse array of electronic products.
Meanwhile, advancing network communications allows networked devices to share all kinds of
333

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
information easily. With improving manufacturing processes, chips are becoming more integrated
and the resulting products are more portable and simplified.

Telemedicine
Telemedicine, which integrates network and medical technology, generally comprises remote
diagnosis, expert consultation, information service, online checkups, remote communication, etc.
Based on computers and network communication, it implements remote transfer, storage, query,
comparison, display, and sharing of medical data, video, and audio information. See Figure 1.

Figure 1. Telemedicine Networking Structure

Telemedicine has the following benefits:

■ When used for home health care at the proper location, telemedicine can greatly reduce the time
and cost of transporting patients.

■ Medical centers, receiving photos, can perform management and home medical service
assignments.

■ Doctors can share medical records and diagnosis photos without geographical barriers,
contributing to clinical research development.

■ Medical staff in remote areas can receive better medical education.

Design Considerations
Our design accounts for the following considerations:

■ The existing medical, social, and technological background shows that medical monitoring is
moving towards personalized, portable, multi-functional systems. Systems and equipment are
needed to meet this trend, which is the starting point of this design.

■ Telemedicine will expand the network of existing HHCE equipment to every corner of the world.
Benefits of telemedicine prove that medical equipment will play a greater role in a networked
environment.

■ The research in China is still in its infancy; for example, the remote network simply stores and
transfers medical data in the database rather than truly combining the network with medical
equipment. In other countries, although many funds have been invested in research, medical data

Traveling

Remote
Hospital

Community
Clinic

PSTN/ADSL

Computer Network

First-Aid
Center

Central
Hospital

Monitoring
Center

Specialized
Hospital

Other
Central

Hospitals

GSM/ADSL

PSTN/ADSL

Home

Satellite/ADSL/PSTN

GSM = Global System for Mobile Communications
ADSL = Asymmetric digital subscriber line
PSTN = Public switched telephone network
334

Portable Telemedicine Monitoring Equipment
is still collected by expensive equipment, and data acquisition and network diagnosis are
completed based on a PC and the Internet. Our design will provide a breakthrough in this respect.

■ Many design solutions exist today. Systems based on embedded processors such as monolithic,
digital signal processors (DSPs), ARM processors, and the Nios® II processor are good solutions.
We decided to use the Nios II soft-core processor for the following reasons:

● Altera’s flexible, efficient system-on-a-programmable-chip (SOPC) solution integrates the
Nios II processor, memory, I/O interface, and other functional modules onto a single FPGA to
form a programmable system-on-chip. It boasts a flexible design, many available intellectual
property (IP) cores, as well as clipping, expansion, and upgrading.

● As an embedded soft-core processor, the Nios II processor features flexibility, high
performance, low cost, and a long life cycle. Additionally, it comes with technical
documentation and examples. Combined with an FPGA, you can develop anything that you
can imagine, which is the key benefit of the Nios II processor and other soft-core CPUs. The
Nios II processor supports μC/OS-II, μClinux, and many other real-time operating systems
(RTOS), a light-weight TCP/IP (LwIP) stack, and zip file system, allowing users to add custom
instructions and custom hardware accelerators, and to migrate customized peripherals and
interface logic seamlessly. These features facilitate user designs while improving
performance.

● Altera is at the forefront of FPGA embedded system development. As soft-core embedded
technology evolves, we will have a competitive edge in this field by mastering it early.

Based on these considerations, we decided to focus our design on user terminals that provide
convenient, appropriate, operable, and Internet-enabled home telemedicine monitoring equipment for
the aging population, young people, and children whose lives rely on technology (e.g., those suffering
from accidents, disabilities, and congenital diseases), chronic disease patients, terminal cancer or AIDS
patients, and special people (e.g., newborn babies or pregnant women).

Function Description
The design offers an effective, convenient medical monitoring solution for home, community, and
home-care doctors. Designed mainly for user terminals, the monitoring equipment allows individuals
to easily check and analyze their health conditions by themselves and obtain physical information (e.g.,
biomedical signals such as ECG, EEG, EMG, respiration, temperature, etc). The equipment displays
these signals in graphics or waveforms so that individuals know intuitively whether their health
indicators are normal. Additionally, the caretaker can make preliminary pathological diagnosis using
the equipment’s analysis function. The system stores the physical information for subsequent data
analysis and processing. With the development of telemedicine, the system can connect patients to
medical service (e.g., a hospital, private practitioner, or monitoring center) and deliver the physical
information in real time to a remote database or doctor through the network. This feature helps manage
medical information databases and provides remote monitoring and diagnosis, allowing individuals to
enjoy timely and effective diagnosis without leaving home. See Figure 2.
335

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 2. Functional Diagram

The design in Figure 2 has the following functionality:

■ Multi-way acquisition of biomedical signals—Simulated biomedical signals are collected
modularly, e.g., a medical sensor and signal filtering/amplification modulation circuit and
separate regulating cards collect different parameters. Because the physical signals frequency
bands are below 2 K, we use an analog-to-digital (A/D) conversion chip with a 40 K sampling rate
A/D conversion, and reserve a data port for card access.

■ Real-time display of physical information (graphics and data)—The design uses serial input for
data acquisition, saving I/O interface resources and eliminating the synchronization problems
caused by parallel input. The collected data is transferred to SDRAM cache by direct memory
access (DMA), reducing the CPU load. A display cache is created in SDRAM, while DMA
technology transfers data to the liquid crystal display (LCD) for viewing. We designed the A/D
acquisition and LCD interface control IP ourselves.

■ User-friendly operating interface and diversified processing and analysis functions—We used a
320 x 240 thin-film transistor (TFT) LCD; migrating μC/GUI makes the interface more friendly
and attractive. We provide four functional areas: monitoring, analysis, storage, and detection, and

Monitoring Interface

Channel 1
Channel 2
Channel 3
Channel 4

Monitoring Interface

Fast Fourier
Transform

(FFT)

Waveform
Analysis

Waveform
Magnification/

Reduction

Send Interface

Window Displaying
Remote Diagnosis

Information

Connect to
Network

Hub

Keyboard

Network
Interface

A/D Conversion Plate

RTD
Grabbing Card

ECG
Grabbing Card

EEG
Grabbing Card

EMG
Grabbing Card

SD Card
Interface

User
Interface

Storage Interface

Save as:
Length:
Channel:
Device:

Save

RTOS
Multitask

Multi-Way
Acquisition

Remote
Monitoring
336

Portable Telemedicine Monitoring Equipment
multiple sub-functions simplify the operations. We compiled algorithms for detection, analysis,
and processing to the signal characteristics, ensuring high accuracy.

■ Multiple functional interfaces (e.g. for network, compact flash (CF) or secure digital (SD) card)
to facilitate data storage and transfer—We used an SD card as the storage device and
implemented an SD mode. We used the FAT16 file system for data access. A PS/2 interface
enables interaction with the monitoring equipment.

■ Scalable interface and software upgrades—For hardware, we provided a USB port, serial port,
Integrated Development Environment (IDE) interface, and drivers for platform updates. The
design adopts a RTOS to support application installation and upgrading.

■ Embedded web server allows the monitoring equipment to access and receive data via Ethernet—
We used the DM9000A network interface chip that has chip control IP that allows us to access the
network easily. In the protocol layer, Altera provides a LwIP software component that comprises
all protocols required by the network. We used a socket application programming interface (API)
to write web server programs that made network communication easy. The design allocates an IP
block for the monitoring equipment or uses DHCP. DHCP allows a remote PC to access the
monitoring equipment through the Internet to obtain real-time data and parameters and send
diagnosis information to local monitoring equipment through the web page’s input area,
implementing remote monitoring. Additionally, data can be saved to a remote database for
management.

Performance Parameters
The following sections provide the design’s resource usage and performance parameters.

Resource Usage
Figure 3 shows the design’s system resource utilization given by the Quartus® II software. The system
has 109.90-MHz fMAX performance.

Figure 3. System Resource Utilization

The one-way A/D sampling controller uses 203 logic elements (LEs) and 8,192 memory bits
(corresponding to a 512 bytes x 2 cache). It has a sampling frequency in the range of 0 to 1.667 MHz
because the TLC549 sampling controller’s maximum frequency is 40 kHz and the system’s sampling
frequency must be 0 to 40 kHz. If the sampling frequency set in software is 1,000 Hz, the output
sampling frequency is 999.98 Hz. Figure 4 shows the A/D chip sampling rate.
337

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 4. A/D Chip Sampling Rate

The system software uses 3,046 Kbytes for storage.

Design Performance Parameters
The following sections describe the performance parameters of the design.

Front-End Acquisition Board
Table 1 shows the pre-amplifier channel bandwidth test. The pre-amplifier gain is stable between
frequency bands of 1 to 1 kHz, i.e., the channel bandwidth is ≥ 1 kHz.

Table 2 shows the amplifying power of the amplifier for different signals. At 20- and 50-Hz frequencies,
the amplifier gains are stable when the input signal amplitude changes.

Table 3 shows the trapper’s trap feature test. The attenuation degree is increased by compromising trap
impedance, i.e., a proper point is adjusted to obtain the attenuation and trap impedance.

Table 1. Pre-Amplifier Gain Changes with Frequency

f (Hz) 1 5 10 20 50 100 200 500 1,000

G (Vpp = 10 mV) 12.1 12.4 12.3 12.4 12.0 12.1 12.1 12.1 12.1

Table 2. Pre-Amplifier Gain Changes with Input Signal

Vpp (mV) 40 60 80 100 120 150 300 400 800

G f = 20 Hz 11.9 12.3 12.4 12.6 12.5 12.7 12.5 13.0 13.3

f = 50 Hz 11.9 12.3 12.4 12.9 12.7 12.9 12.4 13.1 13.3

Table 3. Change of 50-Hz Trapper with Frequency

f (Hz) 1 10 20 40 45 47 48 49 50 51 52 53 55 60 80

G (Vpp = 50 mV) 6.4 6.4 6.8 4.5 2.8 2.0 1.5 1.0 0.6 0.9 1.3 1.6 2.4 4.3 6.1
338

Portable Telemedicine Monitoring Equipment
SD Card Parameter Test
The test uses 100 16-bit data for reading/writing text files, which takes 40 ms. Assuming that the front-
end data sampling is 2 kHz and 2,000 data points are collected every second, the storage time would be
(2,000/100) x 40 ms = 800 ms. The test result shows that the collected data is not lost. See Table 4.

Network Speed Test
We set the monitoring equipment’s IP address to 192.168.220.236 in the test using the Linkwan.com
web site test tool. Figure 5 shows the test result.

Figure 5. IP Address Test

We tested the operation of the built-in ping command as shown in Figure 6.

Figure 6. Ping Command Test

ECG Signal Detection Result
Table 5 shows the R-wave detection results and Table 6 shows the data compression result. The data
source is the MIT/BIT ECG database, with 250-Hz sampling, 8-bit quantification, and four signal
groups collected for detection. The ECG detection algorithm’s average R-wave false detection rate is

Table 4. SD Card File Operation Functions

Operation Function
File system start/exit FS_EXIT(), FS_INIT

Open/close file FS_FCLOSE(), FS_FOPEN()

Read/write file data FS_FREAD(), FS_FWRITE()

Locate file FS_FSEEK(), FS_FTELL()

Remove file/file directory FS_REMOVE()

Create/close file directory FS_MKDIR(), FS--_CLOSEDIR()

Open/read/locate directory FS_OPENDIR(), FS_READDIR(), FS_REWINDDIR()
339

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
0.58%, the data compression ratio is as high as 13.75 times, and the correlation coefficient (CC) reaches
98.9%. The indicators are generally at a high level.

Design Architecture
The monitoring equipment mainly consists of three modules (see Figure 7):

■ Front-end collection and modulation

■ Signal processing, storage, and transfer platform

■ Remote monitoring

Figure 7. System Structure

Table 5. R-wave Detection Result

Signal Total Heart
Rate

False Accept
Rate

Undetected False
Detected

Heart Rate

False
Detection
Rate (%)

Sddb-30 1,545 4 1 5 0.32

Sddb-32 2,013 6 7 13 0.66

Sddb-35 3,326 15 14 29 0.87

Sddb-37 2,111 4 6 10 0.47

Table 6. Data Compression Result

Signal CR Compression Ratio (%) PRD (%) Correlation Coefficient (%)
Sddb-30 19 7.3 99.7

Sddb-32 11 16 98.8

Sddb-35 12 23 97.9

Sddb-37 13 13 99.2

ECG

EEG

EMG

RTD

Grabbing
Card

A/D General-Purpose
I/O (GPIO)

Nios II Processor
& Operating System

Remote Monitoring

Ethernet Network
Control

Chip
SDRAM

DE2 Processing Platform

LCD

PS2P Mouse
Touch Screen

SD Card
340

Portable Telemedicine Monitoring Equipment
The hardware platform is the Development and Education (DE2) board, which contains the Altera®
Cyclone® II EP2C35F672C6 FPGA. The hardware integrates the Nios II soft-core processor, memory,
IP functions, and I/O ports on a single FPGA via SOPC technology. Peripheral hardware, including the
data acquisition module, network, LCD screen, touch screen/keyboard, USB/SD memory, etc., are
extended with a scalable I/O interface to facilitate system upgrades. Figure 8 shows the hardware
platform.

Figure 8. SOPC Hardware Platform

Because our hardware platform is designed using SOPC concepts, the Nios II system is written using a
hardware abstraction layer (HAL) driver, including the A/D conversion control IP core, LCD control
core, network control IP, SD card control core, PS2 IP, etc. For multi-tasking, we used μC/OS-II for
system dispatching. Additionally, we migrated μC/GUI and μC/FS as our graphical interface and file
system, respectively. The LwIP protocol stack is a part of the software layer, and performs TCP/IP
network communication. Other applications include a web server, operating interface, signal
processing, fast Fourier transform (FFT) algorithm, and data compression. Figure 9 shows the software
layer structure.

JTAG
Debugging Module

Nios II
Processor

SDRAM Controller

On-Chip ROM

Tri-State Bridge

DMA

GPIO

SDRAM
Memory

SRAM
Memory

SDRAM
Memory

Software Debugging
Reset Clock

FPGA

DSP Module

Timer

A/D
Interface Module

LCD
Interface Module

Network
Interface Module

SD
Interface Module

USB
Interface Module

Power
Management

Module

A/D
Equipment

LCD Screen

LAN91C111

SD Memory
Card

USB
Equipment

AV
A

LO
N

 S
w

itc
h

B
us

Completion of Data
Collection, Display,

Processing, Storage
and Transport
341

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 9. Software Layer Structure

Design Methodology
This section describes our design methodology.

Biomedical Signal Regulation Card Design
The biomedical signals are collected modularly, including the medical sensor, signal filtering
amplifying modulation circuit, and A/D sampling circuit. The modulation circuit selects different filters
and the amplified circuit according to the spectrum and scope of different biomedical signals. Using
ECG as an example, the signal is amplified via the pre-amplification block, including a right leg driver
to suppress common mode interference, a shield wire driver to eliminate lead wire interference, and the
tenfold set gains.

We designed the pre-amplification block using the Analog Devices AD620 medical amplifier. The
AD620 device is based on a modification of the classic three operational amplifier approach and is
integrated using a co-phase differential amplifier in parallel. The AD620 device has a wide power
supply range (± 2.3 V to ± 18 V), small size, and low power (it uses only a 1.3 mA maximum supply
current), making it a good fit for low-voltage, low-power applications. Other advantages include a high
common-mode rejection ratio, sound temperature stability, amplified bandwidth, and low noise. The
amplified signal is further magnified using filtering and a 50-Hz trap filter. The post gain is set as 1 to
100. Because the maximum ECG signal is several mV and the A/D conversion input signal is over 1 V,
the total gain is set as 1 to 1,000. Filtering uses a voltage-controlled voltage source second-order high
(low) pass filter to eliminate signals interference such as myoelectricity beyond 0.05 to 100 Hz, as well
as other high-order industrial frequency harmonics. Additionally, we used an active twin-T band-stop
filtering circuit to curb the 50-Hz industrial frequency interference.

The A/D sampling chip is the Texas Instruments (TI) 8-bit serial TLC549 device. It uses a serial
peripheral interface (SPI) to provide collection control and data transmission using three wires. It
provides an on-chip system clock that typically operates at 4 MHz, as well as a software/hardware
controlled circuit with a conversion time of less than 17 μs and a sampling rate of 40 kilosamples per
second (KSPS). With a differential voltage reference, the TLC549 device can measure a minimum
value of 1,000 mv/256, i.e., 8-bit resolution can be obtained without amplifying the 0- to 1-V signal.
Figure 10 shows the ECG signal regulating card structure and Figure 11 shows the circuit diagram.

LCD Operating Interface
Application

Data Compression/Signal Processing
Data Analysis/Data Access

Web Server
Application

LCD Driver AD Conversion
Control Driver

SD Card Driver Network Driver Input Device
Driver

LwIP Network
Protocol Stack

μC/GUI μC/FS

μC/OS-II RT0S

HAL API
342

Portable Telemedicine Monitoring Equipment
Figure 10. ECG Signal Regulating Card Structure

Figure 11. ECG Collection Circuit Diagram

SOPC Hardware Platform Design
We designed the hardware platform based on the Nios II processor. For our work, we first implemented
the IP design, such as the A/D conversion control, LCD control, and data storage/transfer using a
custom peripheral.

A/D Conversion Control IP Design
The A/D module design prevents the front-end signals from distortion and loss and deal synchronizes
the data because of the multi-channel acquisition.

A/D Sequence Control Module
The system’s A/D conversion chip is the TI TLC549 (TLC548) device, which is a low-cost, high-
performance, 8-bit A/D converter. It implements A/D conversion using an 8-bit switched-capacitor
successive-approximation approach. With a conversion speed of less than 17 μs, the TLC549 device can
easily connect to various microprocessors using a three-wire serial interface to form various low-cost

Right Leg Driver

Amplify Bandpass Filtering A/D Conversion

Low-Pass
Filter (LPF)

NOTCH
ADC

50-Hz Industrial
Frequency Filtering

High-Pass
Filter (HPF)
343

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
test and control application systems. With a differential voltage reference, the TLC549 device can
measure the minimum value of 1,000 mv/256, i.e., we can obtain 8-bit resolution without amplifying
the 0- to 1-V signal. Sequence control is generated according to the sequence diagram shown in
Figure 12.

Figure 12. TLC549 Sequence Diagram

According to the sequence, the following tasks are performed when eight external clock signals are
input at the TLC549 device’s I/O clock: read the previous A/D conversion result, sample and reserve
the input analog signal converted currently, and initiate A/D conversion.

To implement the TLC549 analog controller in the FPGA, we designed the simulation with a
Verilog HDL control state machine as shown in Figure 13:

Figure 13. State Machine Sequence

din is the serial input of data collected, and the clock is obtained through frequency division coefficient.
fsm is the sampling control clock to adjust sampling speed as required.

Double-Buffered Operating Technology
Because A/D sampling is short, it is impractical to query or read data with interrupts. Therefore, the
buffer design must reduce the interruption time by temporarily storing the converted data for N times
in the buffer memory. To collect data continuously and correctly implement a seamless buffer, we use
a ping-pong operation structure with double-buffer storage that takes advantage of the FPGA’s design
flexibility. The ping-pong operation is a handling technique for the data stream (see Figure 14). The
data buffer module can be any storage unit and in this design we use dual-port RAM (DPRAM).
344

Portable Telemedicine Monitoring Equipment
Figure 14. Ping-Pong Operation

During ping-pong operation, the input data streams are distributed to two data buffer areas through the
input data selection unit. The data buffer module can be any storage module, and the common storage
units include DPRAM, single-port RAM (SPRAM), FIFO, etc. In the first buffer period, the input data
stream is cached into data buffer module 1. In the second buffer period, the input data stream is cached
into data buffer module 2 using the input data selection unit switch while the first period data in data
buffer module 1 is output through the output port and the output data selection unit. In the third buffer
period, the input data stream is cached into data buffer module 1 with the input data selection unit while
the second period data in data buffer module 2 is switched by the output data selection unit and output
via the output port for operation. The process repeats as required.

The ping-pong operation’s unique feature is the collaborative switching of the input and output data
selection units according to a meter, which sends the buffered data streams to the data stream processing
unit for operation without pausing. The ping-pong operation module is an independent function and the
input and output data streams are continuous at the sides of the module; therefore, the design can
process data streams in the form of a pipeline. Ping-pong operation is usually applied in a pipeline
algorithm for seamless data buffering and processing.

This design implements a data cache by alternatively storing an A/D sampling sequence controller into
two 512-byte DPRAM blocks. When DPRAM1 is full, the data is stored in DPRAM2 with one interrupt
so that the system has enough time to move the data out of DPRAM1 when the controller writes data
into DPRAM2. Figure 15 shows the DPRAM buffer system timing diagram.

Figure 15. DPRAM Buffer System Timing Diagram

IP Design
The final IP core in the A/D sampling module includes an A/D conversion sequence controller, a
double-buffer ping-pong operation module, a control register such as a sampling clock frequency
division controller, and a bus control signal. Figure 16 shows the A/D conversion control IP core
structure, which can connect directly to the Avalon® bus and can be added to the system if necessary.
Four cores are added to the system.

Input
Data

Selection
Unit

Data Buffer
Module 1

Data Buffer
Module 1

Output
Data

Selection
Unit
345

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 16. AD Conversion Control IP

Each IP core has an independent double buffer and control register, which work in parallel. Control
registers include a sampling clock controller (FSAMPLE), A/D-enabled control (EN_AD), etc. The
sampling speed is controlled by setting the value of the sampling clock controller. For example, if we
want to perform 10-kHz sampling for the analog signal with a 5-MHz control clock, the core just writes
10,000 in FSAMPLE and then a 1 in EN_AD to initiate the A/D conversion.

DMA Transmission
Our design uses the DAM core to move data blocks from DPRAM to SDRAM in the A/D conversion
IP core. This process needs to write control instructions into the DMA control register to initiate the
data transmission process. The status, read address, write address, length, and control registers require
initialization. The DAM operation is initiated using the system’s DAM subprogram. In the HAL API,
the party with an auto-incremental address opens a receiving or sending channel and configuration
address; the fixed-address party sets the alt_dma_rxchan_ioctl() parameters (using
ALT_DMA_RX_ONLY_ON or ALT_DMA_TX_ONLY_ON) and the configuration address. For data
transmission from DPRAM to the SDRAM, that is, when both source and destination are in auto-
incremental address mode, we use the following DMA data transmission code:

tx = alt_dma_txchan_open(“/dev/dma_0”);
dma_res = alt_dma_txchan_send(tx, ad_buf, 32, NULL, NULL);
// ad_buf is the source address

rx = alt_dma_rxchan_open(“/dev/dma_0”);
dma_res = alt_dma_rxchan_prepare(rx, ad_buf, 32, dma_done, NULL);
// ad_buf is the destination address, dma_done() is the call back function
// employed upon the completion of DMA.

LCD IP Design
Our design requires a display device to show the collected signals and data waveforms in a format that
is easy to understand. We used an LCD screen with the Terasic TRDB_LCM expansion board. The
board has a Toppoly TD036THEA1 compact LCD module, can process an 8-bit (RGB or YUV) digital
signal, and supports TSC and PAL sequences. It has a three-wire register control for display and
function selection as well as embedded contrast, brightness, and rectification modules. It supports band
color filtering 960 x 240 (TH mode, three primaries (red, green, and blue) virtualization, and YUV
input). The expansion board is connected to the DE2 board’s GPIO_0 expansion port.

We use progressive scanning, and the LCD clock is 25.175 MHz. The design uses a three-wire LCM to
configure the IP. The IP core’s main function is to compile the state machine according to the control
sequence in the data sheet and deliver configuration data. Figure 17 shows the TRDB_LCM block.
346

Portable Telemedicine Monitoring Equipment
Figure 17. I2S_LCM Block

The LCD module does not have a display controller, so we designed it independently with Verilog HDL.
The controller supports multiple color modes, including 18, 16, and 8 bpp, and self-defined mode. The
image memory uses an on-chip FIFO buffer, which is adjustable according to design needs. A 256-color
look-up table also adopts on-chip RAM. The image information can be read automatically from
memory with DAM using the Avalon bus’s main module transmission port. Figures 18 and 19 show the
system.

Figure 18. LCD IP Core Structure

Main Device
Signal

Interrupt

Communication
with Memory

Avalon
Master Port

Control Register

State Register

DMA Address Register

Interrupt Register

Color Pallet

Color Processing
Module

DMA State
Machine

Sequence
Control
Module

LCD
Clock

Horizontal
Synchronization

Vertical
Synchronization

Valid DataAvalon
Slave
Port

RGB
On-Chip

FIFO

R (5:0)

B (5:0)

G (5:0)
347

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 19. LCD IP Core RTL

The LCD core has four modules: the interface module, memory module, color conversion module, and
sequence module.

The interface module operates the controller and reads the state. It contains a control register, state
register, DMA address register, and interrupt register. See Table 7.

The control register’s EDMA initiates the DMA, PMODE selects the color pallet mode (18, 16, and
8 bpp, and self-defined), and EIRQ enables interrupts. The state register queries the interrupt state. The
DMA address register sets and queries the DMA start address. The interrupt register clears interrupts.

The memory module reads the SDRAM’s FRAMEBUFFER data independently into an on-chip FIFO in
DMA mode using a state machine that reads/writes the Avalon master port. Based on the sequence, the
state machine has three states: idle, address, and data. In idle state, it waits for the DMA start-up signal
and initializes the module transmission and DMA start address number. When the DMA enable signal
is initiated and the on-chip FIFO buffer is idle, it jumps to the address state. In address state, the wait
signal on the wait bus is cancelled to enter a data read state. In data read state, the read signal begins to

Table 7. LCD Controller Registers

A1-A0 Register Read/write Description/Register Bit
31…5 4 3 2 1 0

0 Control register Read & write EIRQ PMODE EDMA

1 State register Read & write Status Inquiry

2 DMA address register Read & write Write the start address of DMA transmission

3 Interrupt register Read Clear interrupt
348

Portable Telemedicine Monitoring Equipment
read the SDRAM address data, and the module counter reduces by 1 for each consecutive data block.
It returns to address state after reading a data block and adds the address automatically. It returns to idle
state after reading a frame of data and waits for the transmission of the next frame. See Figure 20.

Figure 20. DMA State Machine

The color conversion module converts the read data according to four color modes. The 8 bpp and self-
defined modes require a color look-up table because they have insufficient colors. The self-defined
mode can preset the color pallet’s address manually to define the color output.

The sequence module is compiled strictly according to the sequence of the LCD. The LCD clock is
25 MHz. The FIFO data output is initiated by controlling the data enable signal, and is displayed with
a progressive scan. Meanwhile, the design must check whether there is data in the FIFO buffer before
the data effective signal arrives to decide whether to read and transmit data. The color pallet mode is set
and locked during frame transmission to avoid errors. Different read time periods are determined
according to the bpp mode: BPP_18 must be read every time, BPP_16 is read every two times, and
BPP_8 is read every five times.

We verified that the core outputs data and synchronous signals are stable, and sets display mode and
RGB data bits through the register. Figure 21 shows the LCM analog sequence signal output to the DE2
board’s GPIO_0 expansion port.

current_burst_count - 0
end_of_displaysize = 1

current_burst_count = 0 &
end_of_displaysize = '0' &
fifo_ready_for_data = '1'

enable_data = '1' &
fifo_ready_for_data = '1'

wait_request = '0'
Idle

data_phase

address_phase
349

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 21. Analog Sequence of LCM Signal Output to GPIO_0 of DE2 Expansion Port

SD Card Interface Design
One of the design’s functions is to store the monitoring data. We use the DE2 board’s SD card interface
for large-volume data storage. The highly integrated SD card flash memory has serial and random
access capabilities. It allows access through the specified serial interface with optimized speed and
reliable data transmission, and we can stack several externally connected cards together. The interface
completely complies with the SD card system standard defined by the SD card system specification,
which is the latest consumer standard. The SD card clock is generated by the internal clock generator,
and the interface driver unit synchronizes the external clock’s DAT and CMD signals with the internal
clock. The SD card has two communication protocols: SD and SPI. Comparing the two protocols, the
biggest advantage of SD is that it has fast reads/writes, up to a theoretical 25 Mbytes/second for a single
data line. The SD card interface in our system uses a single data line, DATA0. Three parallel I/O (PIO)
IP blocks are used in the SOPC design as SDATA, SCLK, and SCMD SD card single data lines.

We compiled the SD card protocol in software and migrated the file system to save FPGA resources
without any impact on the read/write speed. See “Software Platform Design” on page 356 for details.

HAL Network Driver-Based Design
The Nios II system takes HAL as a BSP to provide a unified peripheral interface in the embedded
system. The HAL device driver abstraction, the main service provided by the HAL system library, is
highly integrated into the SOPC design, allowing later software development to facilitate development
and updates without hardware impact. The DM9000A-based HAL device driver development has two
steps: designing the DM9000A read/write driver and migrating the DM9000A driver in HAL-based
driver mode.

DM9000A Read/Write Driver
The DM9000A device is an integrated 10/100 Mbyte adaptive Ethernet control chip on the DE2 board.
It has low cost and fast speeds, and features a common processor interface, 10/100 Mbyte adaptive, and
16 Kbit static access memory. Its simple design allows easy development of software drivers for
different systems.

The DM9000A device cannot directly access the in-chip registers, but it can read/write using the data
and index ports, which are controlled by the CMD pin. When CMD is high, it is a data port, and when CMD
is low, it is a control port. The process to read/write any register is as follows:

1. Enable the DM9000A device by setting AEN and SA7 low, and SA8 and SA9 high (this step is
generally done in hardware without setting it in software).

2. Set the CMD pin low using software.
350

Portable Telemedicine Monitoring Equipment
3. Input the register location to be read/written on the index port.

4. Set CMD pin high.

5. Input/output the register data to be read/written at the material port. See Figures 22 and 23.

Figure 22. DM9000 Read Process

Figure 23. DM9000 Write Process

Develop DM9000A HAL Network Device Driver
Because the DM9000A device provides a complete bus interface, we need the Avalon bus and
DM9000A interface logic in SOPC Builder. The DM9000A device communicate with the Nios II
processor as an Avalon slave. Creating a HAL device driver includes creating device instances and
registering the character device.

By referring to the HAL device driver development documentation and focusing on the lightweight IP
(LwIP) driver structure, we defined the following structure DM9000A alt_dev structure:

typedef struct
{

alt_lwip_dev_list lwip_dev_list;
int base_addr;
int irq;

[7:6]=01: PHY addtess
[7:6]=00: EEPROM address

Read EEPROM: Write in 04H
Read PHY: Write in 0CH

During Accessing EEPROM or
PHY Register, bit[0]=1, and
Turns to 0 Automatically upon
Completion

PHY Address [4:0]
EEPROM Address [5:0]

Read EEPROM > 40 μs
Read Phy < 5 μs

Clear Read:
EEPROM: Write in 00H
Phy: Write in 08H

Write Address in EPAR

Set Control Bits of EPCR

Wait for Addressing and Write
Read Data in EPDR_H & EPDR_L

Clear EPCR Control Bits

Read Data from EPDR_H & EPDR_L

[7:6]=01: PHY addtess
[7:6]=00: EEPROM address

Write EEPROM: Write in 124H
Write PHY: Write in 0AH

During Accessing EEPROM or
PHY Register, bit[0]=1, and
Turns to 0 Automatically upon
Completion

PHY Address [4:0]
EEPROM Address [5:0]

Read EEPROM > 5000 μs
Read Phy < 5 μs

Clear Read:
EEPROM: Write in 00H
Phy: Write in 08H

Write Address in EPAR

Set Control Bits of EPCR

Wait for Addressing and Write Data

Clear Control Bits of EPCR

Write Data from EPDR_H & EPDR_L
351

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
u_char hwaddr[6];
int index_offset;
int data_offset;
int dm9k_tx_space;
int dm9k_linked;
sys_sem_t arp_semaphore;
sys_sem_t tx_semaphore;

} alt_avalon_dm9k_if;

When the Nios II processor starts running, the device is initialized in alt_sys_init(), allowing the
program to identify the driver.

#define ALTERA_AVALON_DM9K_INSTANCE(name, dev) \ /*instantiate device*/
alt_avalon_dm9k_if dev = \
{\

{\
ALT_LLIST_ENTRY,\
{\

0,\
name##_NAME,\
alt_avalon_dm9k_init, \
alt_avalon_dm9k_rx,\

},\
},\
name##_BASE, \
name##_IRQ,\
{ 0x00, 0x90, 0x00, 0xAE, 0x00, 0x01}, \
0, 1, 2\

}

#define ALTERA_AVALON_DM9K_INIT(dev)alt_lwip_dev_reg(dev) //initialize
//devices, register in HAL.

SOPC Builder
The Quartus II software’s SOPC Builder integrates a hardware system in an FPGA, including writing
the CPU, memory, interface IP blocks, timer, and Avalon bus in a hardware description language, and
presenting it in the form of an IP block. Using the DE2 development board and considering the design
functionality, we created the SOPC system.See Figures 24 and 25.
352

Portable Telemedicine Monitoring Equipment
Figure 24. Nios II CPU Customization

Figure 25. 4-Mbyte Flash and 8-Mbyte SDRAM Controller Customization

The custom peripheral includes the A/D conversion control IP block, LCD control IP block, DM9000A
bridge IP block, PS2 protocol resolution IP block, etc. See Figure 26.

Flash Control IP Customized Interface SDRAM Control IP Customized Interface
353

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 26. Custom Peripheral Interface

Figure 27 shows the system in SOPC Builder. The system clock is 100 MHz and peripheral clock is
50 MHz. The clock is derived from an external phase-locked loop (PLL) that generates a double
frequency clock. Designing our embedded system with SOPC Builder minimized our development
time.

Figure 27. SOPC Builder Interface

Figure 28 shows the SOPC Builder-generated schematic diagrams in the Quartus II software.
354

Portable Telemedicine Monitoring Equipment
Figure 28. SOPC Builder-Generated Modules

355

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
We added a PLL in the Quartus II software to distribute pins, and we generated the hardware SRAM
Object File (.sof) after compilation. This step completed our project’s hardware platform, and we next
entered the software phase.

Software Platform Design
This section describes the software development for our design.

μc/OS-II Multi-Tasking Design
Because our system involves many tasks, such as collection, display, networking, storage, etc., we used
the real-time μC/OS-II operating system to manage the entire system, resulting in smooth operation of
the hardware modules and application program. μC/OS-II has already been migrated to the Nios II
Integrated Development Environment (IDE), so we only needed to select it in the IDE. We divided the
main tasks as:

■ Display

■ Collection

■ Data storage

■ Network tasks

■ Signal processing

■ Input device

Display is the highest priority task. All main tasks have other relative subtasks. Figure 29 shows the
relationship of the main tasks.
356

Portable Telemedicine Monitoring Equipment
Figure 29. System Task Relationships

The GUI display update task is the highest priority. An input device interrupt sends messages in the
interrupt program. Then, the boot input device task and input device task judge messages. The system
sends a semaphore to different operations, including the data storage, network, and A/D conversion
tasks. The storing task stores data in the SD card and then the file system’s internal task begins. The
Ethernet task performs web server functions; it receives and sends messages to a remote PC and
executes HTTP internal tasks to finish sending and reading web page data. The signal processing task
implements data acquisition detection and analysis as well as data compression.

μC/GUI Migration
μC/GUI, a graphic support software for embedded applications, provides an application that has one
graphic LCD with an effective graphical user interface (GUI) independent of processor and LCD
controller. It can operate in a single-task or multi-task environment and works with any size physical or
virtual display that uses an LCD controller or CPU. The modular design consists of layers of varied
modules. One layer, called the LCD driver, contains all accesses to the LCD. Additionally, μC/GUI
works for all CPUs because it is compiled purely in the ANSI C language.

In past projects, we wrote data into the LCD display memory (with starting address 0x00f00000) to
display graphics on the LCD. But this method had many problems—such as unstable graphics display,
monotone color, only simple images, and difficult design—because the algorithm between the display
memory data address and LCD display is complicated. In this project, we wanted to solve those issues
by migrating μC/GUI to the Nios II processor.

Successful migration means that the public GUI source code can operate on the hardware platform we
design, i.e., it acts according to our commands. Once we migrate μC/GUI, we can display images and
graphics directly on the LCD by invoking functions from within application programs, such as an API

System Boot

Display
Storage
Progress

Task

Storing
Data Task

GUI Display
Update Task

Input
Device
Task

Ethernet
Task

DSP
Task

Activating
AD Conversion

Task

Input Device
Interrupt

Remote Data
Arrival or

Transmission

Semaphore Mailbox Message Task Switching
357

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
drawing function. We can create fascinating, innovative images and graphics, implement a multi-
tasking LCD, e.g., multiple windows, controls, anti-aliasing, etc., and be free from basic tasks such as
the graphic data location in the LCD display memory. Undoubtedly, this method will greatly facilitate
our future LCD development.

Figure 30 shows the μC/GUI software system.

Figure 30. μC/GUI Software System

Modifying the GUIconf.h and LCDconf.h files is an important migration step (see Figure 31). Some
of the files we modify are described below.

■ GUICONF.h—In this file, we configure the GUI migration options for different operating
systems. In our design, we configure migration to μC/OS-II and allow multi-tasking to invoke μC/
GUI functions.

■ LCDconf.h—In this file, we define various attributes related to hardware, such as the LCD size,
color, and interface function. The LCD driver interprets μC/GUI functions into the LCD interface
function defined in the LCDConf.h file, which is not applicable to the hardware connection.
Using the driver, the μC/GUI and LCD hardware interface converts the hardware interface
function into an LCD read/write function as defined in the LCDConf.h file.

■ LCDDDummy.c (LCD drivers)—These two functions, LCD-L0-SetPixelIndex(int x, int
y, int PixelIndex) and LCD-L0-GetPixelIndex(int x, int y), constitute the basic
low-level LCD drive function and connect directly with the hardware. Some basic functions such
as LCD-L0-DrawHLine, LCD-L0-DrawVLine and LCD-L0-FillRect are also defined in
driver. They are invoked from LCD-L0-SetPixelIndex(int x, int y, int PixelIndex)
and LCD-L0-GetPixelIndex(int x, int y).

Font Style

User Program

Text
Numeric

Value 2-D Graphics
Input

Device
Window
Object

Memory
Device

LCDConf.h LCD

LCD Driver

μC/GUI Hardware
Interface Function

μC/GUI
Function Library GUIConf.h

Window
Manager
358

Portable Telemedicine Monitoring Equipment
Figure 31. LCD Configuration
#ifndef LCD-BUSWIDTH
#define LCD-BUSWIDTH (32)—LCD data line is 32 digits.
#endif
#define LCD-READ-MEM (off) IORD-32DIRECT (0X01F40000, (Off<<2))-for operating hardware
#define LCD-WRITE/MEM (Off, data) IOWR-32DIRECT (0X01F40000, Off*4, data)--- for operating hardware
#define LCD_WRITE_REG0(data)
IOWR_altera_AVALON_LG_LCD_CONTROLLER_CR(LG_TFT_LCD_CONTROLLER_0_BASE,data)
#define LCD_WRITE_REG2(data)
IOWR_altera_AVALON_LG_LCD_CONTROLLER_NBAR(LG_TFT_LCD_CONTROLLER_0_BASE,data)
#define LCD_READ_REG1
IORD_altera_AVALON_LG_LCD_CONTROLLER_SR(LG_TFT_LCD_CONTROLLER_0_BASE) #define LCD_READ_REG3
IORD_altera_AVALON_LG_LCD_CONTROLLER_ISR(LG_TFT_LCD_CONTROLLER_0_BASE)

----Four #defines above are operation over four registers of LCD.
Initialize LCD controller
#define LCD_INIT_CONTROLLER() LCD_WRITE_REG2(0X01F40000);\

LCD_WRITE_REG0(000001);
#endif

SD Card-Based File System Migration
Figure 32 shows the μC/FS structure, which, like μC/GUI, is public source code. Figure 33 shows the
card-based layers.

Figure 32. μC/FS Structure

API Layer

File System Layer

Logical Block Layer

Device Driver

<stdio.h> like functions, such as
FS_fopen, FS_fread, etc.

Translation of File Operations to
Sector Operations

Synchronization od Device Operations
for Different File Operations

Low Level Routines to Access Sectors
of a Device and to Check Status
359

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 33. SD Card-Based FS Layer

Some key points when migrating the file system (FS) are:

■ Because of μC/OS-II, we reduced unnecessary operating system (OS) source code in the FS to
conserve storage space.

■ We modified the fs-port.h file to implement a data type that the Nios II processor can recognize.
For the fs-conf.h file, we modified the relevant FS configuration, such as the number of opened
files, names of supported devices, etc.

■ We determined the lowest level FS device driving function and added the SD card device-driven
function.

In the SD card protocol, the host sends CMD first and then the card sends RES. If there is data to be
transferred, it is transferred on the DATA line. Except for copyright protection commands, the SD
protocol has 34 total commands. For users, configuring SD card means that the system reads/writes the
register. The main registers include CID, CSD, and OCR. We used the C language to compile an SD driver
in the Nios II IDE, i.e., one that performs initialization and data read/write functions.

In μC/FS, a low-level device driver invokes functions directly as shown in the following code and our
SD card driver is implemented in the four functions listed.

const FS__device_type FS__SDdevice_driver=
{
"SD",
_GENDEV_DevStatus,
_GENDEV_DevRead,
_GENDEV_DevWrite,
_GENDEV_DevIoCtl,
};

We defined the card initialization process as SD-card-init() in μC/FS; GENDEV-DevStatus()
invokes the process to perform the following functions:

1. Reset the card and its control module, and keep card frequency at no more than 25 MHz during
the reset process. The card can be reset using the CMD method (CMD0.CMD52).

2. Determine whether the input card is an SD card or MMC using CMD55.

Application

Embedded File System

SD Memory Card Driver

SD Memory Card

File System Layer

Device Driver Layer

Hardware
360

Portable Telemedicine Monitoring Equipment
3. Obtain the card ID (CID) by transmitting CMD2. The CID is integrated in the card and each card
has only one CID. Once CID is obtained, the card can enter certification status.

4. The relative card address (RCA) is the unique symbol that controller uses to access the card.
Dynamic distribution is available using CMD3.

5. Set the read/write block size. According to the FAT and FS settings, we can set a read/write block
as 512 bytes.

We enable the card reading/writing using the data block and every read/write is an integral multiple of
the block. CMD17/CMD18 and CMD24/CMD25 read/write one or many data blocks over the card,
respectively. In μC/FS, we implemented reading/writing in SD-read-Iba(Unit, Sector,
pBuffer) and SD-write-Iba(Unit, Sector, pBuffer).

Data always has an attached cyclical redundancy check (CRC) code. In μC/FS, CRC codes are
implemented with the GetCRC16() function.

Operating Interface Design
All main monitor operations are merged onto the LCD; therefore, a user-friendly operating interface is
key to the design. When we migrate the GUI, developing GUI-based operating interfaces will become
faster and more efficient. Figure 34 shows the operating interface process.
361

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 34. Operating Interface Process

Web Server Design
The network communications design is based on the TCP/IP protocol. The key to successful
communication is to embed the protocol into the system and migrate the network interface control chip
driver to implement communication at the physical layer. At the application layer, we can implement
communication by writing different applications according to the required services.

The LwIP protocol stack, is already integrated into the Nios II processor, accelerating the network
development. Therefore, we only needed to focus on designing the network interface driver and
developing the application.

Start
Interface

Main
Interface

Monitoring
Interface

Analysis
Interface

Storage
Interface

Transmission
Interface

Choose
Monitoring
Channel

Choose Abnormal
Data Segment for

Analysis

Input Name and Size
of Storage File and

Name of Device

Activate Connection
Network and Choose

Channel for Sending Data

Begin
to Store

Send Data
to Long

Distance and
Wait for Remote

Message

D
isplay of C

hannel 1 S
tartup

D
isplay of A

bnorm
ality 1 S

tartup

Analyze
Spectrum?

Spectrum
Display

Waveform
Zooming

Yes No

D
isplay of A

bnorm
ality 3 S

tartup

D
isplay of A

bnorm
ality 2 S

tartup

D
isplay of A

bnorm
ality 4 S

tartup

D
isplay of C

hannel 1 S
tartup

D
isplay of C

hannel 1 S
tartup

D
isplay of C

hannel 1 S
tartup
362

Portable Telemedicine Monitoring Equipment
LwIP Overview
LwIP was originally written for embedded system by Adam Dunkels of the Swedish Institute of
Computer Science. It can be migrated to an OS or operated independently. LwIP has the following
features:

■ Supports IP forwarding with multiple network interfaces.

■ Supports the Internet control message protocol (ICMP).

■ Includes an experimental user datagram protocol (UDP).

■ Includes congestion control, round-trip time (RTT) estimation, TCP of fast recovery, and fast
retransmission.

■ Provides a dedicated raw API for improving application performance.

■ Includes an optional Berkeley interface, an API (in case of multi-threading).

■ Supports the point-to-point protocol (PPP) in the latest version.

■ Has increased IP fragment support in the latest version.

■ Supports the DHCP protocol and dynamic IP address allocation.

To adapt to different operating systems, LwIP adds an OS-encapsulated layer between LwIP and the
OS instead of using system calls and data structures relating to a certain OS. The layer provides a
unified interface for OS service (timing, process synchronization, and messaging), uses semaphone for
process synchronization, and mbox for messaging. The following code shows the OS encapsulated
layer’s main functions:

void sys_init(void)//system initialization
sys_thread_t sys_thread_new(void (* function)(void *arg), void *arg,int prio

)//create a new process
sys_mbox_t sys_mbox_new(void)//create a new mailbox
void sys_mbox_free(sys_mbox_t mbox)//release and delete a mailbox
void sys_mbox_post(sys_mbox_t mbox, void *data) //send a message to the mailbox
void sys_mbox_fetch(sys_mbox_t mbox, void **msg)//wait for a message in the mailbox
sys_sem_t sys_sem_new(u8_t count)//create a new semaphore
void sys_sem_free(sys_sem_t sem)//release and delete a semaphore
void sys_sem_signal(sys_sem_t sem)//send a semaphore
void sys_sem_wait(sys_sem_t sem)//wait for a semaphore
void sys_timeout(u32_t msecs, sys_timeout_handler h, void *arg)//set a timeout event
void sys_untimeout(sys_timeout_handler h, void *arg)//delete a timeout event

The Nios II processor includes LwIP, including the source code and corresponding design environment
(EDS). Using LwIP with the Nios II processor is based on the μC/OS-II multi-threading environment;
therefore, we must implement μC/OS-II before using LwIP. The Nios II variant of LwIP is based on
HAL, which includes a socket API function.

Connection between DM9000A Driver and LwIP
LwIP functions are invoked using the netif structure (see Figure 35).
363

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 35. netif Structure

After the DM9000A device driver is encapsulated into the HAL library, the initialization function
registers functions related to the device driver in the netif structure. This process allows LwIP to
recognize the DM9000A driver while invoking the network interface layer after system start-up,
invoking the chip at the physical layer. See Figure 36.

Figure 36. Hierarchy Chart for Migration of Drivers to LwIP

HTTP Services Application Development
After successfully migrating LwIP, we can use the socket API to design applications. The socket is
made up of interfaces that forms the middleware abstraction layer for communication between the
application layer and TCP/IP protocol suite. In design mode, a socket is a facade that hides the complex
TCP/IP protocol suite: the user only deals with a simple set of interfaces while the socket organizes the
data to adapt to the specified protocol.

μC/OS II

LwIP
Source Code

Migrated LwIP

Network Interface Netif

HAL-Based Devices
Are Instantiated &
Registered before
System Start-Up

Development
Driver

Integrated as HAL
Device Driver

Nios II Processor

Network Chip

Bus Interface

Function Set
Provided by
Nios II LwIP

Software
Layer

Hardware
Layer

Filling
364

Portable Telemedicine Monitoring Equipment
For network communication with a socket, the system initializes the socket, binds it to a port, listens on
the port, invokes congestion acceptance, and waits for a client connection. If a socket is initiated and
the server successfully connects to at least one client, the client/server connection is established. The
client sends a data request while the server accepts and processes the request and sends response data
to the client. The client reads the data, closes the connection, and the interaction ends. See Figure 37.

Figure 37. Client/Server Socket Communication Process

To allow remote PCs to obtain the monitoring equipment data and communicate with the equipment via
a web page, we designed a simplified web server that provides services for web browser requests. We
wrote our web page in HTML; therefore, the request-response transfer is based on HTTP. The client
runs programs on the browser, connects to the server, and sends a request. The server responds with a
status line (including the message’s protocol version), a success or error code, and a message that
consists of server information, entity information, and other possible content. The web uses client/
server mode, so our design establishes socket connection. The monitoring equipment waits for a remote
connection, analyzes HTTP upon connection, and starts HTTP tasks, including analyzing the HTTP
request, executing requests, sending responses, closing the HTTP communication, etc. Figure 38 shows
the HTTP application software process.

TCP Client

Socket()

Connect()

Write()

Read()

Close()

Connect

Request Data

Response Data

Close Connection

TCP Server

Socket()

Bind()

Listen()

Accept()

Write()

Read()

Read()

Close()

Close Until a
Client is

Connected

Process
Request
365

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 38. HTTP Application Software Process

ECG Signal Detection and Compression Algorithm
During real-time acquisition and signal display, the monitoring equipment can automatically detect and
store abnormal signals, allowing the user to analyze the situation and make an initial diagnosis. The
following sections describe the detection, analysis, and compression of ECG signals.

Waveform Detection
ECG signal pre-processing is followed by detection of ECG characteristics, which is essential because
the characteristic waveform directly reflects the heart’s health status. A normal ECG waveform consists
of a group of characteristic waves and its transition period. Each cardiac cycle includes a P-wave, PR
interval, QRS combination waves, ST segment, T-wave, and QT interval as shown in Figure 39.

Web Server

Socket () Connect

Bind () Bind Port and Address

Listen () Listen on Waiting Request Queue
Then Accept () Wait for Accept

Select () Non-Congestion Waiting Request
Tell LwIP that Events We are

Interested in Occur

Events Interested: Data Readable,
Connect Accept();

HYYP Socket () Create
Data Read/Write Socket

Send Data
Program

Receive Data
Program

Send HTML
Program

Receive HTTP
Command

Code Analysis
Validate HTTP

Version

Error & Exit

Process HTTP
Header Command

Process Request

Post Get

Execute
Interactive

Information from
the Webpage

Search our
Webpage
According

to URL

Send HTTP
File Header

Other Tasks

Semaphone/
Message/Mailbox

JPEG
Data Update

TXT
Data Update

GIF
Data Update

Signal
Processing

Medical
Information
Update of
Monitoring
Equipment

Webpage Update Tasks

N

N

Y

Y

366

Portable Telemedicine Monitoring Equipment
Figure 39. ECG Waveform

Detection of ECG characteristic points is the basis and key to automatic ECG detection and diagnosis.
With this method the system must find various parameters, including the starting/ending points and
voltages of each waveform in the ECG, the vertex and voltage of each characteristic waveform, the ST
segment, etc. Then, the system analyzes each characteristic segment and performs a diagnosis of the
monitored patient’s heart status.

QRS waves are different from other ECG signals, accounting for a large proportion of energy. They are
distributed in medium-high frequency compared to the other ECG signals, with a peak value between
10 and 20 Hz and distinct amplitude characteristics. Therefore, QRS waves are always located first
when detecting ECG characteristic waveforms, and analysis of other waveforms are based on the R
peak value, i.e., QRS detection is the premise for detecting all waveforms. The primary methods for
waveform detection currently include:

■ Difference threshold—Determine the QRS wave’s negative edge by combining the first/second
difference of the filtered signal application with the threshold. The system then locates the QRS
wave vertex using a window and threshold.

■ Template matching—Separate the QRS wave into a series of templates (segment or peak); the
characteristic parameter of each template is indicated by a series of characteristic factors. The
QRS wave is confirmed if the detection signal symbol sequence characteristics comply with those
of the QRS template sequence. This method prevents recognition errors in the difference threshold
method for a QRS wave with a lot of waveform variation and few parameter changes; however,
the analysis is slow.

■ Wavelet analysis—Wavelet transformation, a time-frequency local analysis method that has
“micro” capability in areas with high signal frequencies, is particularly suitable for detecting the
characteristic points of ECG signals. Singular points of a transient signal always contain
important information. Detecting the location of the signal’s singular points and determining the
singularity is a concern and is a key part of a wavelet transformation application.

Our design uses a discrete dyadic wavelet transformation, which can be calculated using the following
formula:

(1)

(2)

s
2jf n() h0ks2j 1–

f n 2j 1– k–()
k n∈
∑=

sw
2jf n() h1ks2j 1–

f n 2j 1– k–()
k n∈
∑=
367

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
QRS wave detection is a primary concern in ECG waveform detection as well as an important reference
for arrhythmia diagnosis. The other ECG details are not analyzed until the QRS wave is confirmed.
Based on further analysis of the detection principle for the singularity of wavelet transformation,
comprehensive analysis, and comparison of the detection methods already discussed, we chose a
quadratic differential wavelet to detect the ECG waveform. We designed the wavelet filter by taking the
second derivative of a Gaussian function (i.e., Marr wavelet) as the generating function.

We created a Marr wavelet decomposition filter based on a scaling function and a wavelet function
according to a two-scale equation. Table 8 shows the filter coefficients.

The process for the whole R-wave detection algorithm is summarized as follows:

1. The discrete dyadic wavelet transformation is performed on ECG digital signal f(n) with a Marr
filter coefficient according to the Mallat algorithm presented in the discrete dyadic wavelet
transformation formula, and and (for j = 0, 1, 2, 3, and 4) are acquired.

2. Based on a signal segment with a clear waveform, the system determines the initial threshold
of the modulus maxima at different scales.

3. In the wavelet transformation with scale a = 24, find all modulus maxima with a higher

threshold, and obtain a set of locations (for k = 0, 1, 2, 3, ... N).

4. In the wavelet transformation with scale a = 23, find the modulus maximum in the neighborhood

of (for k = 1, 2, ... N) with a threshold greater than and with the same symbol as the wavelet

transformation at , and define its position as . If there is more than one modulus maxima near

 at the scale a = 23, choose the one with the largest amplitude value; however, if the largest
modulus maximum is smaller than 1.2 times other modulus maxima, choose the maximum point

nearest to . If no modulus maximum is found in the neighborhood, define , , and

as zero. Then acquire a set of locations (where k = 0, 1, 2, 3, ... N). According to our
experience, we take 10 ms as the neighborhood scope, i.e., if the signal sampling frequency is

360 Hz, a neighborhood of 10 ms around will be .

5. Similar to the process in step 4 above, find the modulus maxima locations at scale a = 22 and

a = 21, respectively and obtain two sets (for k = 0, 1, 2, 3, ... N) and (for k = 0,1, 2, 3, ... N).

6. According to the modulus maxima location set for a characteristic scale, the set of modulus

maximum series { , , , (for k = 0, 1, 2, 3, ... N)} is acquired; excluding the modulus

maximum series with value = 0, the rest series set is { , , , (for k = 0, 1, 2, 3, ... N) }.

Table 8. Filter Coefficients

k -5 -4 -3 -2 -1 0 1 2 3 4 5
h0 k 0.0032 -0.0132 0.0393 0.0450 0.2864 0.4317 0.2864 0.0450 0.0393 -0.0132 0.0032

h1 k 0.0039 0.0062 -0.0226 -0.1120 -0.2309 0.7118 -0.2309 -0.1120 -0.0226 0.0062 0.0039

s2j
n() w2j

n()

Rth
j

w
24 n()

nk
4

nk
4 ε th

3

nk
4 nk

3

nk
4

nk
4 nk

4 nk
3 nk

2 nk
1

nk
3

nk
4 0.01 f1× 0.01 360× 3.6 4≈= =

nk
2 nk

1

nk
1 nk

2 nk
3 nk

4

nk
1 nk

2 nk
3 nk

4

368

Portable Telemedicine Monitoring Equipment
7. Determine whether the time interval of two adjacent modulus maxima at scale a = 21 is larger than
1.7 times the average RR interval. If yes, halve the threshold in this time period and search for the
R peak again.

8. Amend the modulus maxima according to refractory period and L.E. index to remove some

pseudo R peaks. After steps 7 and 8, the set of rest modulus maximum series is { , , ,
(for k = 0, 1, 2, 3, ... N) }.

9. Determine the location of the R wave in the original signal according to the set (for k = 0, 1,
2, 3, ... N).

Compression Processing
The ECG data compression methods include a direct method, transformation, and parameter extraction.
The first two methods apply in the case of waveform restructuring. Compared to the direct method, the
discrete cosine transformation (DCT) we used in this design features high quality, noise reduction,
simple restructuring, and a smooth waveform. The main reason DCTs are used widely in ECG data
compression today is the low compression ratio (typically 3 times) during application. Signals can be
processed by segments according to the ECG characteristics to improve the compression effect.

To implement ECG data compression, we first adopted DCT compression data sequences and divided
them into shorter sequences by frames. Considering the waveform completeness and data processing
timeliness, the system takes the sampling data sequence of each cardiac cycle waveform as a data
sequence frame. In actual data processing, the central point of two adjacent R peaks is the preferred
frames break point. Because there are many proven QRS wave detection methods available, it makes
sense to choose the QRS waveform as high frequency. After extracting the high frequency, the system
uses linear difference (usually inserting 2 to 4 points) to connect the low-frequency waveforms at both
ends into one segment through a smooth migration.

As the distribution of signal energy in the DCT domain features low frequency, high amplitude and high
frequency, low amplitude while maintaining a certain fidelity of the restructured waveform, only M
times the DCT components with low frequency need to be kept: C(0), C(1), ... C(M-1). We can then set
a threshold Eth and require that the total energy of the M times components accounts for >= Eth of the
total energy, i.e., Ef(M-1) x 100 >= Eth. The threshold Eth is determined according to the required fidelity
of the restructured waveform. C(0), representing the direct current video component in the time domain
waveform, only decides the horizontal baseline value of the restructured waveform, and can be rejected.
Each DCT component that is kept should be converted to 8-bit integer data (7-bit integer data plus1-bit
symbol data). Then we set the transformation scale factor of low frequency as 1 (which can be rejected)
while keeping the ratio (two bytes) between the high frequency and low frequency scale factors.

Compared to other data compression methods, segmented DCT compression provides a high data
compression ratio, high-fidelity waveform restructuring, and significant noise reduction.

System Integration and Effect
Because the system involves many software and hardware modules, we used software/hardware
codesign. The following points are worth noting:

■ We used IP design for hardware, all drivers are based on the HAL layer, the system clock is unified
as 100 MHz, and the peripheral clock is 50 MHz.

■ The OS tasks are prioritized according to different module weights.

■ For the file system and GUI in the IDE, we defined the header file path using compiler options.

■ We simulated the software algorithm in the MATLAB software before completing the
implementation.

nk
1 nk

2 nk
3 nk

4

nk
1

369

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figures 40 through 42 illustrate the system operation after software/hardware integration.

Figure 40. Demo

Figure 41. Remote Web Page Logon

Figure 42. Human-Machine Interface Operation

370

Portable Telemedicine Monitoring Equipment
Design Features
Our design has the following features:

■ Conception—While HHCE is becoming part of our lives, real home medical monitoring
equipment is not available. HHCE is not effectively implemented because the existing portable
monitoring equipment provides functions that are too simple or too expensive. Seeing this
opportunity and feasibility, we chose to do the design. The Nios II processor gives our product
superiority over its competitors in terms of size and price.

■ Function—The product is modern with competitive features, such as the simultaneous
measurement of multiple parameters, high-capacity data storage, network communication, more
signal processing algorithms to support more functions, etc. Meanwhile, its diversified functions
prove the flexibility and high performance of the Nios II system.

■ Hardware design—SOPC techniques make our design simple and clear. We can complete each
module independently and integrate them easily to form a system. We can embed several main
devices (including the A/D converter and LCD IP blocks) for data transfer to reduce the CPU load
while updating hardware modules rapidly. We can easily connect an IP block to the bus at the
touch of a button, which was impossible for previous chip-based SOC systems. All IP blocks use
the Avalon bus architecture and a unified synchronous clock.

■ Software algorithm—Our design is complex, including many modules and complicated
algorithms. These difficulties are also features of our design. Algorithms such as waveform
detection, data compression, and spectrum conversion are not fully applied in existing monitoring
equipment. With these algorithms, our product will be more specialized, providing users more
medical diagnosis methods and allowing them to enjoy medical treatment at home.

■ Upgrades—According to the requirements of different hospitals, communities, and homes, the
multi-function, portable, medical monitoring system can be configured or upgraded quickly by
selecting different front-end data acquisition modules and corresponding data processing CF
cards without replacing the whole system platform.

■ Remote monitoring—The networking function enables more comprehensive monitoring. With the
Internet, users can communicate remotely at any time. Doctors can monitor patients remotely
through the network to determine the monitored patient’s health status while updating software or
managing a database in real time. The Nios II protocol stack eased network development.

Conclusion
With this project, we gained a broader understanding of SOPC concepts and learned how to perform
embedded development with the Nios II CPU. Altera’s SOPC solution provides a powerful design
platform that allows us to develop hardware, drivers, and applications to develop systems rapidly and
efficiently.

The two-month effort we put into the contest brought us the final design as well as more experience.
We found the “real sense” of the design process, including IP cores, pre-simulation, post-simulation,
and application optimization. Embedded development requires developers to have a systematic view
and patience; program debugging is time-consuming but beneficial.

We found that design tools such as the embedded logic analyzer, SOPC Builder, C-to-Hardware
Acceleration (C2H) Compiler, IDE, and DSP Builder accelerated our development. Although tasks
differ, we learned how things relate and felt the power of teamwork.

After participating in the Nios II design contest several times, we are impressed with the Nios II
processor’s flexibility and transparency, which distinguishes it from other embedded systems. We can
371

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
see the full transparency from the bottom layer implementation to the application layer design,
supporting better system design than any other embedded system.

Until now, we have had many problems to solve, for example, how to accelerate an interface switch,
how to truly connect databases, how to improve the system’s DSP performance, and how to implement
a more accurate biomedical signal waveform detection algorithm. These areas need our continuous
efforts.

Finally, we would like to express our appreciation to all our teachers and classmates who helped us with
the design, as well as our sincere gratitude to the host and judges of this contest. We will move ahead
on our road of SOPC development.
372

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
Third Prize

FPGA-Based Clinical Diagnostic
System using Pipelined Architectures
in the Nios II Soft-Core Processor

Institution: Jadavpur University, Calcutta

Participants: Shubhajit Roy Chowdhury

Instructor: Professor Hiranmay Saha

Design Introduction
Clinical decision making is a complicated process. It is based on medical knowledge derived from
medical books and literature and on data obtained from various clinical trials and diagnostic tests;
however, it is also dependent on experience, judgment, and reasoning, which are functions of the human
brain. In many situations, human decision making is not available, and in these situations, instruments
play a major role in helping reduce human suffering.

In third-world countries, very few doctors are available in rural areas. For example, in India, 75% of
qualified consulting doctors are in urban areas and 23% are in semi-urban areas, which leaves only 2%
in rural areas where, unfortunately, nearly 78% of Indians reside. This imbalance has created a patient-
doctor ratio of more than 10,000 patients for each doctor in rural India. Therefore, equipment that can
predict imminent health hazards and can red-alert patients to contact a doctor for necessary care is
urgently needed. Each doctor must handle a large number of patients; therefore, it would be useful for
a doctor to be able to track patient data, especially because data and document preservation, such as
investigation reports, is poor in rural areas. It would be useful to have a system that can be used
effectively for a variety of chronic disease conditions such as renal dystrophy and diabetes mellitus.
These types of diagnostic decision making can be performed with fuzzy logic. Initiated by Zadeh in
1965, fuzzy logic and fuzzy set theory are being used more and more in medical expert system
applications.

The current research focuses on an FPGA-based smart processing system that can predict the patient’s
physiological state given the patient’s past physiological data. The scheme can provide an alarm to the
373

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
relevant personnel, who would contact a physician at a remote site before the patient reaches a critical
state. The physician would take the necessary actions to provide medical support to the patient. The
smart processing system consists of blocks for fuzzification, inferencing, and defuzzification of patient
data. It can handle patients’ peripheral health screening, and help caregivers focus on the few critical
patients who really need a physician’s clinical assistance.

To reduce the combinational logic blocks required to implement the system, we implemented the
division process required for normalizing membership functions using intelligent multiplication
techniques. To make the computing system fast, we used pipelined data processing architectures. An
FPGA implementation is useful in developing countries because of the low investment required
compared to ASIC prototyping costs. Additionally, FPGAs are reprogrammable, which allows design
improvements. This feature is important because it supports new structures, e.g., upgrading the current
smart diagnostic system, supporting other diseases, mapping to other fields of human expertise, etc.

With the Nios® II soft-core processor, we can overcome design issues such as limited peripheral
resources, difficult I/O configuration, complex hardware design, and software programming. This
design also meets time sequence and function requirements, optimally uses the processor’s resources,
and greatly improves the overall system efficiency. Because the system has external memory and I/O,
memory access is frequent. With the Nios II processor’s user-defined peripherals, user-defined logic,
and direct memory access (DMA), the design can easily access memory and move data when using
SDRAM, SRAM, and flash memory. In our design, the patient profile is stored in flash memory. By
combining the requirements of both software and hardware in a coordinated development process,
Altera’s SOPC solution is the best choice: it can fully showcase the advantages of an FPGA’s logic
control and data processing capabilities. This design approach allows for flexible system configuration,
provides simple, convenient development, supports various processing modes, and offers powerful data
processing capacity at low cost.

Function Description
The designed system has a pipelined smart processing unit that can predict the patient’s future
pathophysiological state based on past pathophysiological data. Figure 1 shows the functional
architecture of a diagnostic system that includes a smart agent that we plan to implement.

Figure 1. Smart Agent Based Diagnostic System Functional Architecture

Data Provided
by Patients

Inference
Engine

Patient Assisted
by Health Care
Professionals

Doctor at
Remote Location

Interaction

Interaction

Algorithm for
Diagnosis

Patient's
Profile

Knowledge Base
for Diagnosis

Reference Base
for Diagnosis

Smart Instrument
374

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
In Figure 1, the smart agent is represented by a fuzzy system. At least three entities are required in this
concept of diagnostics:

■ The healthcare personnel provide data by measuring the patients’ health parameters.

■ The physician interacts with the smart instrument and confirms or denies the diagnosis made by
the smart instrument.

■ The smart instrument performs the diagnosis at regular times and predicts future states of the
patient using fuzzy logic.

Based on previously fed data, the smart instrument can give an early signal of deterioration in the
patient’s health status and indicate an imminent emergency situation. Initially the data provided by the
patients under the assistance of health care professionals is stored in a patients’ profile. The data from
the patients’ profile is subjected to a diagnostic process using a knowledge base for diagnosis. The
diagnosis process is based on fuzzification of patient data. The inference engine makes a prediction
about the future physiological state of the patient based on the fuzzified data. Based on the prediction,
the smart system gives an indication about the possible next physiological state of the patient.

The smart processor we developed can fuzzify and defuzzify patient data. The patient data cannot
always be trusted because it relies on the quality and accuracy of measuring units and the technician’s
skill. Moreover, based on a single bit of data, it would be highly difficult to make an accurate decision
about the future pathophysiological state of the patient, particularly in a chronic case. Therefore, we
fuzzified the patient data to transform periodic measures into likelihoods that the pathophysiological
parameter of the patient is high, low, or moderate compared to a reference value set.

As an example study, this project analyzes patient renal data and predicts the patient’s future
physiological state. The system calculates the patient’s body mass index (BMI) using the patient’s
height (in feet) and weight (in kilograms). Because doctors are more interested in knowing whether the
pathophysiological risk parameters of a patient is high, moderate, or low as well as the patient’s
physiological parameter trends, it is more useful to represent the patient’s pathophysiological risk
parameters as linguistic variables instead of ordinary variables. Then, we can use fuzzy logic to build a
model that predicts the fuzzy set (low, moderate, or high) in which the patient’s particular risk parameter
(e.g., B.M.I, glucose, urea, creatinine, and blood pressure) lies to be referenced at the next reading of
that patient data. For this purpose, we used triangular and trapezoidal fuzzy operators. A typical
triangular function takes the form:

A(x; a, m, b) = max{min[(x - a)/(m - a), (b - x)/(b - m)], 0}

Similarly, a typical trapezoidal function takes the form:

A(x; a, m, n, b) = max{min[(x - a)/(m - a), 1, (b - x)/(b - n)], 0}

We determined the membership function in accordance with the ranges and tolerance limits set up by
the World Health Organization. Figure 2 shows the plot of the membership functions defined above.
375

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 2. Plots of the Membership Functions

Figure 2 depicts the cognitive frames used for fuzzy modeling patients’ BMI, blood glucose, blood
urea, blood creatinine, systolic, and diastolic blood pressure data. It is obvious that all low, moderate,
and high risk parameter ranges (modeled here as fuzzy sets) of the patients fall in the same universe of
risk parameter values.

Inferencing involves deciding whether the patient is in a normal condition, is heading towards a
moderately critical condition, or is in a severely critical condition. Inferencing is done by taking the
diagnostic algorithm’s next possible state output at different points in time. Typical rules for inferencing
take the following forms:

■ R1—If (BMI is high) and (glucose is high) and (urea is high) and (creatinine is high) and (systolic
blood pressure is high) and (diastolic blood pressure is high) then the (patient’s renal condition is
severe).

■ R2—If (BMI is high) or (glucose is high) or (urea is high) or (creatinine is high) or (systolic blood
pressure is high) or (diastolic blood pressure is high) then the (patient’s renal condition is
moderately critical).

■ R3—If (glucose is high at time Ti) and (glucose is low at time Tj) and (Ti ≠ Tj) then the (patient
should go for glycosylated hemoglobin).

1.0

0 10 20 30 40 B.M.I.

M
em

be
rs

hi
p

Fu
nc

tio
n

1.0

0 70 80 120 130 140
Blood Glucose

M
em

be
rs

hi
p

Fu
nc

tio
n

1.0

0

M
em

be
rs

hi
p

Fu
nc

tio
n

0.6 0.9 1.2 1.5
Creatinine

1.0

0 6 8 19 21
Urea

M
em

be
rs

hi
p

Fu
nc

tio
n

1.0

0 100 110 130 140
Systolic Blood Pressure

M
em

be
rs

hi
p

Fu
nc

tio
n

1.0

0 70 80 90 100

Diastolic Blood Pressure

M
em

be
rs

hi
p

Fu
nc

tio
n

B.M.I Blood Glucose

Creatinine Urea

Systolic Blood Pressure Diastolic Blood Pressure
376

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
■ R4—If (BMI is moderate) or (glucose is moderate) or (urea is moderate) or (creatinine is
moderate) or (systolic blood pressure is moderate) or (diastolic blood pressure is moderate) then
the (patient’s renal condition is normal).

and so on.

Defuzzification involves taking a crisp action based on the inference drawn, and can be implemented
by illuminating an LED or by outputting data. In our scheme, LEDs indicate that the patient’s state is
approaching criticality.

The system has two rule bases. The knowledge base contains rules for inferencing based on the patient
data set currently received and the already stored patient data. The reference base contains the reference
values for fuzzifying the patient data. Based on these values, the system computes the membership
function values of low, moderate, and high for the patients’pathophysiological parameters at different
points in time. The diagnostic algorithm uses these values to compute the possibility that the next
pathophysiological data will be low, moderate, or high.

The diagnosis algorithm computes the time-weighted mean of the membership functions of the
patient’s pathophysiological data. The possibility that the next pathophysiological data will be low,
moderate, or high is computed as:

where the summation is done from i = 1 to n, and the value of n is the sequence number of the time
instant at which the current pathological data of the patient is taken and R ∈{low, moderate, high}. μ(x)
is μl(x) μm(x), or μh(x) acordingly as the membership function refers to a low, moderate, or high fuzzy
set, respectively. To predict the fuzzy set in which the next state input of a certain pathophysiological
parameter will lie, the value of P(x) is considered for which P(x) ≥ PR(x).

We implemented the smart data processing system on an Altera® Cyclone® EP1C6Q240C8 FPGA. We
could also have implemented the system using software; however, this solution would require a
powerful computer to run the software at reasonable speed and accuracy. A powerful computer is too
costly and would require a steady supply of electricity in rural sectors. The cost would be an
impediment to adoption of the smart diagnostic system in the rural health care centers in third-world
countries. Additionally, a software-only solution could take longer to process if we constructed more
complex systems covering many different infected parts of the human body, However, a few
milliseconds delay cannot be considered important for medical diagnosis. The main reason for a
hardware-based implementation is the need for an inexpensive, portable diagnostic system. The main
disadvantages of an ASIC-based solution is the high development cost and the low reconfigurability.
An FPGA solution ensures that new changes in the proposed diagnostic algorithm can be mapped onto
the hardware without having to make costly changes.

Figure 3 shows the UP3 board on which the FPGA is mounted.

PR x()

iμ x()

i 1=

n

∑

i

i 1=

n

∑
-----------------------=
377

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 3. UP3 Board

We generated an SRAM Object File (.sof), which is a bitstream pattern, using the system’s VHDL
model and downloaded it to the FPGA via the JTAG interface and ByteBlaster II cable. The
configuration data is stored in the FPGA’s SRAM.

The input is sent to the FPGA using push-button switches. We need 12 push-button switches but the
UP3 board does not have that many. Therefore, we developed our own printed circuit board (PCB)
containing the required push-button switches and connected it to the UP3 board. The FPGA receives a
0 input when the user presses a switch. The binary data entered using the switches are converted into
real numbers for computation using conversion weights stored in a look-up table (LUT) implemented
on the SDRAM.

Using these parameter values, the system computes the corresponding membership function values μl,
μm, and μh. These values refer to whether the pathological parameter value is in the low, moderate, or
high fuzzy set, respectively. The values are stored in the CMOS flash memory using the Nios II soft-
core processor. Based on these values, the system computes the possibility that the values of the
different physiological parameters are low, moderate, or high. The maximum of these three possibilities
at any instant suggests the patient’s next possible physiological state.

The output therapeutic decision is displayed on UP3 board’s 7-segment display. The 7-segment display
indicates whether the pathological parameters will be low, moderate, or high values. Because, there are
four 7-segment displays in the final system and the board only has port available, we used a 4-bit output
called SCAN (0 to 3). The SCAN’s bit lines are connected to the cathodes ofthe LED 7 segment display,
which selects the 7-segment LED in time-shared mode. The display codes are stored in a LUT.

The user can reset the system at any time using a push-button switch. Two LEDs connected in common
anode mode indicate whether the patient’s condition is moderately critical (MC) or severely critical
(SC). The system has a battery back-up that provides a continuous power supply to overcome the FPGA
volatility.

The FPGA system implementation is very attractive because FPGAs are reconfigurable and becoming
more economical and faster as time goes on. We tested the FPGA implementation with a patient to
compare the decision result of the physician vs the smart agent.
378

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
To test the system, we analyzed data from a 5-foot tall, 42-year-old patient. Tables 1 through 6 show the
results. In the tables, AS refers to the actual physiological state of the patient. In the actual experiment,
the patient’s weight (Wt), glucose, urea, creatinine, systolic, and diastolic blood pressure data taken at
10-day intervals are input to the system at time Ti (where i = 0,1,…, 9). Initially, the height of the patient
is also given. Based on the height and weight data, the system computes the patient’s BMI at different
times. Using these parameters, the system, computes the corresponding membership function values μl,
μm, and μh.

In the AS clumn, M indicates a moderate risk, H* indicates high risk that still falls within the tolerance
limits of moderate value, and H indicates strictly high risk.

Table 1. BMI Data Results

Time Weight BMI μl μm μh Pl Pm Ph AS PNS
T1 64.1 27.97 0.00 0.29 0.14 0.00 0.29 0.14 M M

T2 66.2 28.31 0.00 0.24 0.16 0.00 0.26 0.15 H* M

T3 66.8 28.57 0.00 0.20 0.18 0.00 0.23 0.17 H* M

T4 67.5 28.87 0.00 0.16 0.21 0.00 0.20 0.18 H* M

T5 66.9 28.61 0.00 0.19 0.19 0.00 0.18 0.17 H* M

T6 67.8 29.00 0.00 0.14 0.21 0.00 0.14 0.18 H* H

T7 68.2 29.17 0.00 0.12 0.23 0.00 0.11 0.20 H* H

T8 69.5 29.73 0.00 0.04 0.27 0.00 0.09 0.22 H* H

T9 70.5 30.15 0.00 0.00 0.29 0.00 0.07 0.24 H H

T10 70.6 30.62 0.00 0.00 0.33 0.00 0.06 0.25 H H

Table 2. Glucose Data Results

Time Glucose μl μm μh Pl Pm Ph AS PNS
T1 120 0.00 1.00 0.00 0.00 1.00 0.00 M M

T2 125 0.00 0.50 0.50 0.00 0.67 0.33 H* M

T3 128 0.00 0.20 0.80 0.00 0.70 0.30 H* M

T4 127 0.00 0.30 0.70 0.00 0.54 0.46 H* M

T5 128 0.00 0.20 0.80 0.00 0.33 0.57 H* H

T6 128 0.00 0.20 0.80 0.00 0.29 0.71 H* H

T7 128 0.00 0.20 0.80 0.00 0.26 0.74 H* H

T8 129 0.00 0.10 0.90 0.00 0.23 0.77 H* H

T9 129 0.00 0.10 0.90 0.00 0.20 0.80 H* H

T10 131 0.00 0.00 1.00 0.00 0.16 0.84 H H
379

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Table 3. Urea Data Results

Time Urea μl μm μh Pl Pm Ph AS PNS

T1 17.0 0.00 1.00 0.00 0.00 1.00 0.00 M M

T2 17.5 0.00 1.00 0.00 0.00 1.00 0.00 M M

T3 18.7 0.00 1.00 0.00 0.00 1.00 0.00 M M

T4 19.1 0.00 0.95 0.05 0.00 0.98 0.02 H* M

T5 20.7 0.00 0.15 0.85 0.00 0.70 0.30 H* M

T6 20.6 0.00 0.20 0.80 0.00 0.56 0.44 H* M

T7 20.8 0.00 0.10 0.90 0.00 0.44 0.56 H* H

T8 20.9 0.00 0.05 0.95 0.00 0.36 0.64 H* H

T9 20.9 0.00 0.05 0.95 0.00 0.29 0.71 H* H

T10 21.0 0.00 0.00 1.00 0.00 0.24 0.76 H H

Table 4. Creatinine Data Results

Time Creatinine μl μm μh Pl Pm Ph AS PNS
T1 1.0 0.00 1.00 0.00 0.00 1.00 0.00 M M

T2 1.1 0.00 1.00 0.00 0.00 1.00 0.00 M M

T3 1.2 0.00 1.00 0.00 0.00 1.00 0.00 M M

T4 1.3 0.00 0.67 0.33 0.00 0.87 0.13 H* M

T5 1.4 0.00 0.33 0.67 0.00 0.69 0.31 H* M

T6 1.4 0.00 0.33 0.67 0.00 0.59 0.41 H* M

T7 1.4 0.00 0.33 0.67 0.00 0.52 0.41 H* M

T8 1.4 0.00 0.33 0.67 0.00 0.48 0.52 H* H

T9 1.8 0.00 0.00 1.00 0.00 0.38 0.62 H H

T10 2.4 0.00 0.00 1.00 0.00 0.31 0.69 H H
380

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
Table 5. Systolic Blood Pressure (SBP) Data Results

Time SBP μl μm μh Pl Pm Ph AS PNS
T1 128 0.00 1.00 0.00 0.00 1.00 0.00 M M

T2 131 0.00 0.90 0.10 0.00 0.93 0.07 H* M

T3 132 0.00 0.80 0.10 0.00 0.87 0.13 H* M

T4 136 0.00 0.40 0.20 0.00 0.68 0.13 H* M

T5 137 0.00 0.30 0.70 0.00 0.55 0.45 H* M

T6 138 0.00 0.20 0.80 0.00 0.45 0.55 H* H

T7 139 0.00 0.10 0.90 0.00 0.36 0.64 H* H

T8 140 0.00 0.00 1.00 0.00 0.28 0.72 H H

T9 140 0.00 0.00 1.00 0.00 0.23 0.77 H H

T10 143 0.00 0.00 1.00 0.00 0.18 0.82 H H

Table 6. Diastolic Blood Pressure (DBP) Data Results

Time DBP μl μm μh Pl Pm Ph AS PNS
T1 87 0.00 1.00 0.00 0.00 1.00 0.00 M M

T2 88 0.00 1.00 0.00 0.00 1.00 0.00 M M

T3 90 0.00 1.00 0.00 0.00 1.00 0.00 M M

T4 94 0.00 0.60 0.40 0.00 0.84 0.16 H* M

T5 96 0.00 0.40 0.60 0.00 0.69 0.31 H* M

T6 98 0.00 0.20 0.80 0.00 0.55 0.45 H* M

T7 98 0.00 0.20 0.80 0.00 0.46 0.54 H* H

T8 97 0.00 0.30 0.70 0.00 0.42 0.58 H* H

T9 100 0.00 0.00 1.00 0.00 0.34 0.66 H H

T10 101 0.00 0.00 1.00 0.00 0.28 0.72 H H
381

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Based on these membership function values, the possibilities the values of the different
pathophysiological risk parameters will be low, moderate or high has been computed by the system (see
Table 7). The AS and PNS subscripts are the first letter of the corresponding risk parameter. For
example, ASB refers to the patient’s state based on BMI data.

Although the system gives a crisp decision regarding the patient’s future pathophysiological state, the
point is that the system predicts a critical state at time T7, which is well before a clinically overt
criticality occurs at time T9. The system can thus be deployed in a variety of telediagnostic
environments, in which health care professionals provide support services without a doctor present.

Performance Parameters
Our system has the following performance parameters:

■ Power supply—DC voltage 5 V and the operating current is 175 mA.

■ Operating temperature—5o to 45o C and relative humidity or 8% to 95%.

■ Data input—Data is input via push-button switches. The input data is converted into real numbers
for the ease of computation.

■ Data output—The output data is displayed on the 7-segment display. A patient’s critical state is
signaled by a glowing LED.

■ Storage—The patient data is stored in a TC58FVB160AFT CMOS flash memory device.

We used the Nios II processor to manage the FPGA’s internal resources, define the time sequence
requirements for data processing, and handle display and control of the system. Additionally, we needed
to access multiple peripherals frequently from the main system, and the Nios II processor helped us to
improve the system’s overall operational efficiency. The Nios II functions are descibed below:

■ It is the main processor, and controls the whole system logic.

■ It handles the transfer of patient data between FPGA and CMOS flash memory.

■ It handles all instructions to the FPGA’s internal logic through user-defined programmable I/O
(PIO) peripherals.

Table 7. Smart Agent Decision Results

Time ASB PNSB ASG PNSG ASU PNSU ASC PNSC ASD PNSD ASS PNSS SC
T1 M M M M M M M M M M M M 0

T2 H* M M M M M M M M M H* M 0

T3 H* M H* M M M M M H* M H* M 0

T4 H* M H* H H* M H* M H* M H* M 0

T5 H* H H* H H* M H* M H* M H* M 0

T6 H* H H* H H* M H* M H* M H* H 0

T7 H* H H* H H* H H* H H* H H* H 1

T8 H* H H* H H* H H* H H* H H H 1

T9 H H H* H H* H H H H H H H 1

T10 H H H H H H H H H H H H 1
382

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
Design Architecture
For fast computation, we implemented a finite state machine with pipelined data processing on the
FPGA. Figure 4 shows the pipelined architecture.

Figure 4. Pipelined Architecture Implemented in FPGA

The system has four arithmetic logic units (ALUs):

■ ALU1 computes the BMI using height and weight data.

■ ALU2 computes the membership function values using the instantaneous values of the
pathophysiological parameters.
383

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ ALU3 computes the probability that low, moderate, or high pathophysiological parameters will
occur.

■ ALU4 decides whether the next pathophysiological parameter reading is low, moderate, or high.

With a pipelined architecture, the system can compute the decision for all pathophysiological
parameters in 14 clock cycles vs. the 44 clock cycles required in an unpipelined architecture. This
difference increases performance about 3.14 times.

Figure 5 shows the system architecture including the Nios II processor.

Figure 5. Medical Diagnostic System Architecture Co-Design

The design’s main modules are:

■ U1—2-Mbyte flash memory containing the patient data.

■ U2—Tri-state bridge.

■ U3—Nios II processor.

■ U4—DMA controller configured to feed the smart processing unit (U5) with patient data.

■ U5—Smart processing unit based on the pipelined architecture discussed previously.

■ U6—Four 7-segment displays and two LEDs for displaying the output results.

■ U7—11 push-button switches for entering data.

■ U8—SDRAM LUT that stores the display codes and conversion weights.

U6 U7 U8

LED Pushbutton
Switch

SDRAM

Tri-State Bridge

DMA Smart Processing
Unit (SPU)

FPGA

U4 U5

U3 Nios II Processor

U2

Tri-State Bridge

U1

Flash Memory
16 Mbytes
384

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
The hardware/software co-design involves the following steps:

1. Develop the system algorithm.

2. Implement the hardware peripherals using hardware description languages.

3. Verify the hardware peripherals’ functionality using the ModelSim software.

4. Synthesize the peripherals using the Leonardo Spectrum synthesis tool.

5. Perform layout and timing analysis of the hardware peripherals using the Quartus II software.

6. Implement the algorithm in the Nios II processor.

7. Use the Nios II Integrated Development Environment (IDE) to connect the Nios II processor with
the hardware peripherals.

8. Build and load the Quartus® II project onto the FPGA.

Figure 6 shows the data processing software flow chart.
385

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 6. Software Algorithm Flow Chart

Figure 7 shows the smart agent’s schematic.

Start

Enter Input
Data

Compute Membership
Function Values

Patient Profile
Calculate the

Possibilities Using
Present and Past Data

Is the
Patient

Moderately
Critical?

N

Y

Display the Indication in
LED

Is the
Patient

Severely
Critical?

N

Y

Display the Indication in
LED

Display Output Data
386

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
Figure 7. FPGA-Based Smart Agent Schematic

Design Description
Using Altera’s UP3 development board, we were able to design most of the system functions, and test
and simulate all functions. Additionally, we designed a few circuit boards for design and test. We
performed our system design and testing using the following steps:

1. Used SOPC Builder to access peripheral storage on the UP3 development board.

2. Referred to UP3 board examples and testing documents, and learned about the Nios II
architecture, C language software programming in the IDE, and online programming and
debugging for the device.

3. Implemented user-defined peripherals and logic on UP3 development board.

4. Implemented debouncing of data entered via the push-button switches.

Hardware Implementation
Our hardware design task was to combine the UP3 board testing methods and our circuits, and then
design the necessary hardware modules to develop a medical diagnostic system that implemented the
required functions on the Nios II processor. Using the PROTEL 99SE tool, we partitioned the design
using the UP3 development board and our own circuit modules. We designed all functional system
modules based on the FPGA, which represents a system-on-a-programmable-chip (SOPC) design
concepts in hardware. Because the Nios II processor is already available, we simply needed to configure
peripherals such as flash devices. Other system peripherals include a power management unit, LED
interface, and push-button switches.

CLK

DATAA

DATAB

DATAC

DATAD

ENA

REGOUT

LCELL (5F0C)

CLK

DATAA

DATAC

DATAD

ENA

REGOUT

LCELL (AAF0)

CLK

DATAA

DATAB

DATAD

ENA

SYNCH_DATA

COMBOUT

LCELL (BBC0)

CLK

DATAA

DATAB

DATAD

ENA

SYNCH_DATA

COMBOUT

LCELL (F388)

CLK

DATAA

DATAB

DATAD

ENA

SYNCH_DATA

COMBOUT

LCELL (E6A2)

CIN

CIN0

CIN1

CLK

ENA

COMBOUT

REGOUT

LCELL (0F0F)

CIN

CIN0

CIN1

CLK

ENA

COMBOUT

REGOUT

LCELL (0F0F)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

!ACLR

CIN

CIN0

CIN1

CLK

DATAB

COUT0

COUT1

REGOUT

LCELL (3C3C)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

!ACLR

CIN

CLK

DATAB

COUT0

COUT1

REGOUT

LCELL (C3C3)

!ACLR

CIN

CIN0

CIN1

CLK

DATAA

REGOUT

LCELL (A5A5)

DATAA

DATAD
COMBOUT

LCELL (AA00)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

DATAA

DATAC

DATAD

COMBOUT

LCELL (AAA0)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

!ACLR

CIN

CIN0

CIN1

CLK

DATAB

COUT

REGOUT

LCELL (3C3C)

!ACLR

CIN

CIN0

CIN1

CLK

DATAA

COUT0

COUT1

REGOUT

LCELL (A5A5)

DATAA

DATAB

DATAC

DATAD

COMBOUT

LCELL (8088)

DATAA

DATAB

DATAC

DATAD

COMBOUT

LCELL (A080)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

!ACLR

CIN

CIN0

CIN1

CLK

DATAA

COUT0

COUT1

REGOUT

LCELL (5A5A)

!ACLR

CLK

DATAA

DATAB

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (22A0)

DATAA

DATAC

DATAD

COMBOUT

LCELL (00A0)

!ACLR

CIN

CIN0

CIN1

CLK

DATAB

COUT0

COUT1

REGOUT

LCELL (C3C3)

!ACLR

CLK

DATAA

DATAB

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F0B0)

!ACLR

CLK

SYNCH_DATA

REGOUT

LCELL (0000)

!ACLR

CLK

DATAA

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (50F0)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (00F0)

CLK

DATAA

DATAC

DATAD

ENA

REGOUT

LCELL (505A)

!ACLR

CLK

DATAA

DATAB

DATAC

DATAD

REGOUT

LCELL (ECA0)

!ACLR

CLK

DATAA

DATAB

DATAC

DATAD

REGOUT

LCELL (F222)

DATAA

DATAB

DATAC

DATAD

COMBOUT

LCELL (8000)

CLK

DATAA

DATAB

DATAC

DATAD

ENA

REGOUT

LCELL (F222)

CLK

DATAB

DATAC

DATAD

ENA

REGOUT

LCELL (0CFC)

!ACLR

CLK

DATAA

DATAB

DATAC

DATAD

REGOUT

LCELL (ECA0)

!ACLR

CLK

DATAA

DATAD

REGOUT

LCELL (AA00)

DATAA

DATAB

DATAC

DATAD

COMBOUT

LCELL (8000)

DATAA

DATAD
COMBOUT

LCELL (AA00)

!ACLR

CLK

DATAA

DATAB

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (FF02)

DATAA

DATAB

DATAC

DATAD

COMBOUT

LCELL (E000)

!ACLR

CLK

DATAB

SYNCH_DATA

COMBOUT

REGOUT

LCELL (3030)

!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

DATAA

DATAC

DATAD

COMBOUT

LCELL (FA00)!ACLR

CLK

DATAD

SYNCH_DATA

COMBOUT

REGOUT

LCELL (F000)

DATAA

DATAB

DATAC

DATAD

COMBOUT

LCELL (2700)

CLK

DATAA

DATAB

DATAC

DATAD

ENA

REGOUT

LCELL (BBA0)

CLK

DATAA

DATAB

DATAC

DATAD

ENA

REGOUT

LCELL (FFA8)

CLK

DATAA

DATAB

DATAC

DATAD

ENA

REGOUT

LCELL (FEAA)

Selector39~79_COMBOUT

state.init_REGOUT

lpm_divide:Div15_add_sub_cella[2]~27
lpm_divide:Div12_add_sub_cella[2]~27

prouh[7]_REGOUT

probh[7]_REGOUT
result[0]~1435_COMBOUT

progl[7]_COMBOUT
lpm_divide:Div5_add_sub_cella[2]~27

progm[7]_COMBOUT

prodl[7]_REGOUT
result[0]~1539_COMBOUT

result~1496_COMBOUT
lpm_divide:Div14_add_sub_cella[2]~27

result[0]~1443_COMBOUT
result[0]~1432_COMBOUT

lpm_divide:Div13_add_sub_cella[2]~27

prosl[7]_COMBOUT

lpm_divide:Div19_add_sub_cella[3]~72
lpm_divide:Div19_add_sub_cella[3]~68

lpm_divide:Div19_add_sub_cella[3]~68COUT1_86

result2[3]~0_COMBOUT

result2[1]_COMBOUT
result2[1]_REGOUT

lpm_divide:Div19_add_sub_cella[3]~68
lpm_divide:Div19_add_sub_cella[3]~70

lpm_divide:Div19_add_sub_cella[3]~70COUT1_86

result2[2]_COMBOUT
result2[2]_REGOUT

state.compute_3_COMBOUT
state.compute_3_REGOUT

count[18]_REGOUT

state.sw_sel1_REGOUT

state.data_sel_COMBOUT

count[19]_REGOUT

state.compute_0_REGOUT probm[11]~4_COMBOUT

state.compute_1_COMBOUT
state.compute_1_REGOUT

state.compute_5_COMBOUT

prouh[15]~100_COMBOUT

state.compute_8_COMBOUT

count[9]_COUT

disp0[0]~2483_COMBOUT

disp0[6]~2478_COMBOUT

disp0[0]~2484_COMBOUT

Equal13~137_COMBOUT
disp2[0]~1315_COMBOUT

disp0[4]~2480_COMBOUT

disp2[0]~1316_COMBOUT

state.compare_COMBOUT

LessThan68~176_COMBOUT

state.res_sel_1_REGOUT

state.compute_4_COMBOUT

state.compute_4_REGOUT

disp2~1309_COMBOUT

result[11]~1450_COMBOUT

count[12]_COUT0
count[12]_COUT1

result1[0]_REGOUT
result1[1]_REGOUT
result1[2]_REGOUT

state.compute_2_COMBOUT

state.compute_2_REGOUT

state.critical_REGOUT

j[0]_REGOUT
j[1]_REGOUT

state.compute_sp_REGOUT

state.compute_dp_COMBOUT
state.compute_dp_REGOUT

Equal32~69_COMBOUT

state.res_disp_COMBOUT

state.res_disp_REGOUT

state.sw_sel2_REGOUT

i[0]_REGOUT

state.sp_sel_1_REGOUT
Selector79~68_COMBOUT

state~1328_COMBOUT

Equal0~71_COMBOUT

state.sp_sel_REGOUT

Selector68~69_COMBOUT
Selector68~70_COMBOUT

state.ht_sel_1_REGOUT

state.compute_REGOUT

b[3][0]~16_COMBOUT

WideOr1~14_COMBOUT
Add1~503_COMBOUT
state.delay1_REGOUT

cnt2[14]_REGOUT

Selector72~44_COMBOUT

cnt2[0]_REGOUT

Selector61~41_COMBOUT
Selector76~39_COMBOUT

state.wt_sel_1_REGOUT

state.wt_sel_REGOUT

state.pb_sel2_REGOUT
pb_s_REGOUT

state.delay_REGOUT

state.compute_ht_REGOUT

b1[3][0]~16_COMBOUT

data1[0]~274_COMBOUT

data1[0]~275_COMBOUT

WideOr0~4_COMBOUT
state.htwt_sel_REGOUT

disp0[4]~2487_COMBOUT
state.hold_REGOUT

state.htwt_sel_1_COMBOUT
state.htwt_sel_1_REGOUT

cnt[1]~1163_COMBOUT
Selector127~280_COMBOUT

WideOr0~5_COMBOUT

cnt[0]~1164_COMBOUT

Equal9~30_COMBOUT

state.display_COMBOUT

state.display_REGOUT

state.compute_6_COMBOUT

probh[15]~100_COMBOUT

state.compute_7_COMBOUT

state.compute_7_REGOUT

WideOr12~15_COMBOUT

data0[0]~105_COMBOUT

Equal15~97_COMBOUT
dp3_REGOUT

Selector137~411_COMBOUT
Selector137~409_COMBOUT

disp3[3]_REGOUT

Selector56~544_COMBOUT
Selector56~547_COMBOUT

Selector138~248_COMBOUT dp1_REGOUT

mc~reg0

clk

rst

mc

prouh[7]

prosm[7] prosl[7]

result2[1]

result2[2]

count[18]

count[15]

count[19]

probm[11]~4

state.compute_1

state.compute_5

prouh[15]~100

state.compute_8

count[14]

count[17]

disp2[0]~1316

state.compare

result[11]~1450

count[13]

state.compute_2

state.critical

state.res_disp

state.sp_sel

state.ht_sel_1

b[3][0]~16

cnt2[14]

cnt2[0]

state.wt_sel

state.delay

b1[3][0]~16

data1[0]~275

state.htwt_sel_1

cnt[0]~1164

state.display

state.compute_6

probh[15]~100

state.compute_7

data0[0]~105

dp3

disp3[3]

dp1

state.compute_dp

state.compute_4

state.data_sel

i[0]

disp0[0]~2484

progm[7]

count[16]

state.compute_3
387

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
To make it easy to understand the system hardware design process, we split the design description into
the following sections:

■ Schematic diagram design—Because we completed most of the functional testing and simulation
on the UP3 development board and self-designed circuits, the schematic diagram mainly refers to
designs that combine these elements into the schematic most representative of the circuit system.
With Altera’s SOPC solution, we integrated all processors and functional control units into the
FPGA, further simplifying the design structure.

■ Schematic diagram functional verification—Although most of the functional testing was
completed on the test board, we needed to functionally verify the hardware integration. The
schematic diagram functional verification primarily demonstrates the proof of concept. This
process confirmed our complete circuit design.

■ Component purchase—We purchased the necessary components, such as the 7-segment displays
and push-button switches, while designing the schematic diagram and verifying it. All component
packages were clearly marked on the schematic, which made PCB development easier.

■ Implementing the LUTs— Our design requires two LUTs. One LUT stores the conversion weights
that convert the binary data entered using the push-button switches to integers and real numbers
for data computation purposes. The other LUT stores the display codes for displaying data in the
7-segment displays.

We added peripherals using SOPC Builder (see Figure 8).

Figure 8. Adding Peripherals Using SOPC Builder

Software Implementation
Our software design task was to migrate the VHDL and C language programs of the previously
described functions (on the UP3 development board and self-designed circuits) to the Cyclone
EP1C6Q240C8 FPGA with a Nios II soft-core processor. We based the software module design on
highly integrated hardware modules so that we could complete core modification and perform
upgrades. We used the Altera Quartus II software, SOPC Builder, and Nios II IDE to build the Nios II
processor and to develop the system control program, highlighting the SOPC solution’s highly
integrated and programmable concepts. The design made it possible to implement, add, and remove
multiple peripherals easily, access user-defined peripherals, and design user-defined instructions.
Generally, the Nios II processor controls the system. However, we implemented most of the software
modules based on cooperation between the Nios II processor and the FPGA logic.

We used the VHDL and C languages for the software design. We wrote the logic control and data
processing program in VHDL, and used C language routines for the control program of the main and
sub Nios II processors. Based on the functional tasks, the system software is divided into system
initialization, data acquisition, data display, and patient state prediction. The implementation method
and steps are as follows:

■ System initialization—The system is initialized by the Nios II processor via the tri-state bus,
which includes user buttons, 7-segment displays, and the flash memory.
388

FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Processor
■ Data acquisition—The patient data is acquired through push-button switches. The system
receives a binary 0 input when each switch is pressed. The binary data entered through the push-
button switch array is converted into real numbers for computation using conversion weights
stored in a LUT.

■ Data display— The output therapeutic decision is displayed on 7-segment displays. The displays
indicate the possibilities of low, moderate,and high values of the different pathological parameters
at the patient’s next physiological state. Because there are four 7-segment displays for output in
the final system and there is only one port available for display, we used a 4-bit output called
SCAN (0 to 3). The display codes corresponding to the 7-segment display are stored in ROM.

■ Patient state prediction—The patient state is predicted by the smart agent implemented on the
FPGA and interfaced with the Nios II processor. The smart agent’s operation logic is discussed in
“Function Description” on page 374.

Design Features
Using Altera’s SOPC solution, we learned a new way to solve system design problems. By creating an
SOPC design, we learned its advantages and disadvantages. Because SOPC designs use multiple IP
modules to optimize the hardware design, we could simplify the system revision and debug process.
This approach also allowed us to design software and hardware modules simultaneously. In this design
contest, we acquired hands-on experience and were able to use some excellent hardware development
tools. The Quartus II software and SOPC Builder made it easy for us to modify and change hardware,
depending on the application. We also think that this design approach is economical—you do not need
to buy additional hardware, you just change the Nios II configuration. We can easily build new
functions by adding related hardware based on the changed Nios II processor.

The main features of our design are:

■ Portability—Because the requirements of the medical diagnostic system software may change
from time to time, we can design the system such that it can port to different hardware
configurations. The Nios II processor provides this flexibility.

■ Power consumption—The system is applicable for rural health care centers where power sources
may not be available; therefore, the system should consume very low power. The whole system
consumes as little as 60.00 mW.

■ Ease of operation—The system is designed and developed to be operable easily so that it can be
handled by health care professionals. Moreover, it can give an indication about the future
pathophysiological state of a patient in the absence of the physician.

■ Integration—The Nios II processor makes it possible to integrate the FPGA with the peripherals.

Conclusion
During Altera’s 2007 Nios II processor competition, our design group divided the design tasks into
system integration, hardware development, and software design.

■ System intregration—The convenience of the Nios II IDE and the SOPC Builder tools gave us the
flexibility to implement the design quickly on a prototype machine, which accelerated the
development process. In this competition, we learned the process of consumer-electronics product
development. The SOPC design approach reduces the cost of manpower and material resources
during development. Therefore, we believe that this design approach will become popular in the
future. Although we did not add many components, this competition made us appreciate the
potential system integration capabilities. Additionally, we hope that Altera can provide a variety
of demonstration board programs that will help interested students quickly grasp the FPGA design
development process.
389

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Hardware development—In this competition, we used a top-down design approach and planned
the complete hardware design in the beginning. Therefore, we needed to establish data stream
rules at the start of the planning process. These rules eliminated problems during the design stage,
allowing us to complete the project on time. Teamwork was an integral part of this contest.
Although the Quartus II tool was easy and flexible to use, there were design issues that required
experience; for example, using different frequencies while accessing the SDRAM. This
competition gave us an important opportunity to learn about teamwork and problem-solving,
understand system development, and resolve challenging design questions.

■ Software design—We developed the necessary software interface, focusing on implementing the
smart agent on the FPGA and interfacing peripherals with the Nios II processor. We used the
SOPC Builder C++ tool to create the software design for the Window’s interface. We also used it
as a verification tool and performed Nios II communication debugging for the phase test. We hope
to learn more about SOPC design in the future!
390

Appendix: Nios II Embedded Processor Family
Appendix:
Nios II Embedded Processor Family

Today’s embedded design engineers face a tough challenge: finding a processor with the perfect mix of
features, cost, performance, while managing processor availability and obsolescence issues. Altera’s
Nios® II processors deliver the perfect fit every time with fully customizable features and performance,
low product and implementation costs, ease of use and adaptability, and obsolescence-proof design.

The Nios II family of 32-bit RISC embedded processors delivers up to 300 MIPS of performance and
can consume as little as US $0.23 of FPGA logic. Because the processors are soft-core and flexible, you
can choose from an unlimited combination of system configurations to meet your performance, feature,
and cost targets. Designing with Nios II processors helps you send products to market faster, extend
your product's life cycle, and avoid processor obsolescence.

Increase Productivity With Powerful Development
Tools
With today’s short design cycles, anything that can increase productivity has the potential to pay big
dividends, win market share, and establish a competitive advantage. Altera’s powerful development
tools allow you to rapidly prototype, develop, and deploy embedded systems, reducing time-to-market
while extending time-in-market.

Altera’s comprehensive hardware and software tools help you create powerful Nios II processor
systems in minutes. Figure 1 shows the complete Nios II embedded processor design flow. From
concept (at top), through hardware and software implementation, to debug, Altera offers all the tools
you need to get your product to market fast.
391

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 1. Nios II Embedded Processor Development Flow

Hardware Development Tools
Altera provides a complete set of tools for your hardware design, including the SOPC Builder system
development tool, Quartus® II design software, ModelSim®-Altera software, and SignalTap® II
embedded logic analyzer.

Hardware design for creating Nios II processor-based systems uses the SOPC Builder system
development tool to specify, configure, and generate systems. Launching from within the Quartus II
design software, SOPC Builder provides an intuitive wizard-driven graphical user interface (GUI) so
you can create, configure, and generate system-on-a-programmable-chip (SOPC) designs. It minimizes
the time spent integrating components into a coherent system. Figure 2 shows a view of the intuitive
SOPC Builder GUI.

SOPC Builder

Targets

Quartus II Nios II IDE

Hardware Software

Automatic
Software

Generation

System Library
Header File
Application
Template

Define System

Processors
Peripherals
Memory

Interfaces

RTL Simulation

Instruction Set
Simulator

Target Hardware

RTL System
Description

System
Test Bench

JTAG Debugger

FPGA Configuration

Software
Development

Edit
Compile
Debug

Generate FPGA
Configuration

Synthesize
Place & Route

Compile
Download
392

Appendix: Nios II Embedded Processor Family
Figure 2. SOPC Builder GUI

Use the SOPC Builder system design tool to choose from a menu of peripherals, communication
interfaces, memory, and I/O to suit your application needs. This tool is tightly integrated with the
Nios II Embedded Design Suite and automatically generates a complete custom board support package,
including all required software drivers.

Quartus II Design Software
Altera’s Quartus II design software technology leadership gives you unmatched levels of performance
and ease-of-use. Using Quartus II software, you can easily design, optimize, and verify your Nios II
designs in an Altera device.

When you are ready to simulate your design, SOPC Builder generates both VHDL and Verilog HDL
simulation models. You can easily simulate Nios II processor-based systems using an automatically
generated simulation environment created by SOPC Builder and the Nios IIIntegrated Development
Environment (IDE). A full Quartus II software subscription includes ModelSim-Altera software that
can also be used to simulate your Nios II designs.

SignalTap II Embedded Logic Analyzer
The ultimate testbench for engineers who want to see the active processes within their design is running
at speed under real-world system conditions. The challenge is in accessing nodes buried within the
FPGA architecture. The SignalTap II embedded logic analyzer eliminates this challenge by providing
access to nearly any node within your FPGA design through a standard Joint Test Action Group (JTAG)
port to view design nodes in system and at system speeds.

Software Development Tools
The Nios II Embedded Design Suite (EDS) is a collection of tools, utilities, libraries, and drivers used
to develop embedded software for the Nios II processor. The Nios II EDS includes:

■ Integrated development environment

■ JTAG debugger

■ Instruction set simulator

■ Flash programmer
393

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
■ Design examples (in the form of software templates)

■ Software libraries and embedded software components

● Hardware abstraction layer (HAL)

● μC/OS-II real-time operating system 1

● TCP/IP protocol stack: NicheStack TCP/IP Network Stack-Nios II Edition 1

● Newlib ANSI-C standard library

● Simple file system

● Other Altera command-line tools and utilities

■ Embedded software acceleration tool: Nios II C-to-Hardware Acceleration (C2H) Compiler 1

(1) Fully functional evaluation version is included with the Nios II EDS and can be licensed separately.

Nios II Integrated Development Environment
Based on the open, extensible Eclipse IDE project and the Eclipse C/C++ Development Tools project,
the Nios II IDE is the primary software development tool for the Nios II family of embedded processors.
You can complete all software development tasks within the Nios II IDE, including editing, compiling,
downloading, debugging, and flash programming. The Nios II IDE, shown in Figure 3, provides a
consistent development platform that works for all Nios II processor systems. With a PC, an Altera
device, and a JTAG download cable, you have everything you need to develop and debug Nios II
processor-based systems.

Figure 3. Nios II IDE

JTAG Debugger
The Nios II architecture supports a JTAG debug module that provides on-chip emulation features to
control the processor remotely from a host PC. The Nios II IDE communicates with the JTAG debug
module on one or more Nios II processors so you can:

■ Download programs to memory

■ Start and stop program execution
394

Appendix: Nios II Embedded Processor Family
■ Set breakpoints and watchpoints

■ Analyze registers and memory

■ Collect real-time execution trace data

The debug module connects to the JTAG circuitry built into all Altera devices and connects to the host
PC via a download cable (Figure 4). Additionally, debug support for the Nios II processor is available
from several industry-standard providers.

Figure 4. Nios II JTAG Debug Module

Instruction Set Simulator
The Nios II instruction set simulator (ISS) allows you to begin developing programs before the target
hardware platform is ready. The IDE allows you to run programs on the ISS as easily as running them
on a real hardware target.

Flash Programmer
Many designs that use Nios II processors also incorporate flash memory on the board. Any common
flash memory interface (CFI)-compliant flash device connected to the FPGA can be programmed using
the Nios II IDE flash programmer. The Nios II IDE flash programmer can also program any Altera
serial configuration device connected to the FPGA, as shown in Figure 5. The Nios II IDE flash
programmer is pre-configured to work with all of the boards available with the Nios II development kits,
and can be easily ported to any custom hardware.

Figure 5. Transmitting Flash Content to the Flash Device

Software Templates
In addition to a project set-up wizard, the Nios II IDE provides software code examples, in the form of
project templates, to help you bring up working systems as quickly as possible.

System Interconnect Fabric

JTAG Debug
Module

Nios II Processor

Altera FPGA

Avalon Port

JTAG
UART

Avalon Port Avalon Port

On-Chip
Memory

Debug
Data

Character
Stream

Debugger

JTAG Terminal
JTAG

Hub

Host PC

Altera
Download

Cable

B
uilt-In

JTA
G

 C
ontroller

Altera FPGA

Target Board

Altera
Download Cable

Flash
Programmer

Design

CFI Flash
Device

Host PC

Flash Content

Flash Content
395

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Each template is a collection of software files and project settings. You can add your own source code
to the project by placing the code in the project directory or importing the files into the project.

Figure 6 shows some of the available software project templates.

Figure 6. Software Project Templates

System Software
The Nios II IDE lets you customize systems quickly using system software. With system software (also
referred to as “software components”), you have an easy way to painlessly configure your system for
specific target hardware.

■ Hardware Abstraction Layer—The hardware abstraction layer (HAL) system library is a
lightweight run-time environment that provides a simple device driver interface for programs to
communicate with underlying hardware. As SOPC Builder and the Nios II IDE are tightly
integrated, the HAL system library can be automatically generated to serve as a board support
package for Nios II processor-based designs.

■ μC/OS-II—A complete, portable, ROM-able, preemptive real-time kernel, μC/OS-II from
Micrium ships with all Nios II development kits and includes full source code, reference manual,
and free developers’ license. When you are ready to migrate your design to your board, you can
purchase a shippers' license. A shippers’ license entitles you to a license for three developers to
create an unlimited number of designs for one year on μC/OS-II and a perpetual license to support
designs created during the subscription period (to fix bugs and make minor modifications).

■ TCP/IP Stack—NicheStack TCP/IP Network Stack, Nios II Edition is a software suite of
networking protocols designed from the ground up to provide an optimal solution for designing
network-connected embedded devices with the Nios II processor (refer to Table x). The stack has
a small footprint, is portable, and delivers high performance without compromising compliance
to request for comment (RFC) standards. NicheStack supports a wide variety of physical
interfaces, and can be configured as a standard client machine, an IP router, or a multi-homed
server. The suite also contains a comprehensive device networking package, FTP, Telnet,
IGMPv1, and DNS and DHCP client components. The NicheStack TCP/IP Network Stack, Nios
II Edition is distributed by Altera as full ANSI C source code and includes an evaluation license.
If you wish to design with this software suite, you must purchase a license from Altera. The Nios
II Edition NicheStack TCP/IP Network Stack has the following highlights:

● Zero data copy for ultra fast performance

● Standard sockets interface

● Raw socket support

● Non-blocking versions of all functions

● Versatile MSS and window options
396

Appendix: Nios II Embedded Processor Family
● Connections limited only by memory availability

● Optional optimized assembly language checksum routines

● “Predictive” header processing for speed

● Nagle algorithm (slow start)

● VJ smoothed round trip timing

● Delayed ACKs

● BSD style "keepalive" option

● Complete debugging and optimization module

Nios II C-to-Hardware Acceleration (C2H) Compiler
Altera also offers the Nios II C-to-Hardware Acceleration Compiler (C2H Compiler), a productivity
tool that gives embedded developers push-button acceleration of performance-critical C-language
software algorithms. These algorithms are automatically converted into hardware accelerators in the
FPGA that act as coprocessors with a latency-aware, pipelined connection to the processor's memory
map. With this tool, designers have an easy way to boost performance using a known programming
language and familiar tools, improving productivity and speeding time-to-market.

The C2H Compiler is tightly integrated into the Nios II development environment (Figure 7), leveraging
Altera's proven SOPC Builder tool and the system interconnect fabric to automate the conversion of
ANSI C source code to hardware (register transfer language), integrate the resulting hardware
accelerator into the system's memory map, and schedule memory transactions with latency-aware
pipelining. It enables developers to quickly prototype functions in software running on the processor,
then easily convert the software into a hardware-accelerated implementation.

Figure 7. C2H Compiler

Protect Your Software Investment from Processor
Obsolescence
Component obsolescence impacts virtually every industry, especially those with products that have long
lifecycles such as automotive, industrial, military, aerospace, and medical. The biggest investment in
397

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
any embedded system is the application software; changes to the system hardware can threaten years
of investment in software development.

All silicon is eventually discontinued, and FPGAs are not immune to that. However, by designing with
a soft processor your software investment is protected in many ways. Nios II processor designers have
a perpetual license to create and deploy Nios II processor-based designs in Altera FPGAs, so even if the
underlying FPGA device changes, the investment in application software is preserved.

■ No need to port application software—Because the processor is soft, it is implemented as a
hardware project that can easily be migrated to another Altera FPGA device while maintaining
the same application code.

■ No need to requalify a new processor—Because the processor hasn't changed, you do not need to
spend the time and effort requalifying a new device.

■ Minimal lost opportunity cost—By keeping the same design tools, design flow, hardware design,
and application software, your lost opportunity cost is minimized.

■ Board redesign—In the worst-case scenario where your current FPGA is not available, you may
need to redesign your board. However, design risk is significantly reduced because the entire
hardware design is intact and only the device and pin connections change.

■ Phasing in new product—Phasing in a new product is always a challenge. However, if you design
your system with an Altera FPGA, upgrading your system simply involves a flash update that can
be performed remotely, as opposed to a hardware replacement. This minimizes customer down
time and field service costs.

Scale System Performance
Altera’s Nios II processors let you take full advantage of the inherent parallelism of FPGAs to achieve
high levels of system performance. Multiple processors can execute code simultaneously while
hardware accelerators can offload compute-intensive algorithms at the same time. Upgrade your
embedded system's performance at any stage of the product life cycle without the need to redesign the
board or develop hand-optimized assembly code.

Three Processor Cores
Choose from three code-compatible, 32-bit, soft-core processors: one optimized for maximum system
performance, one optimized for minimum logic usage, and one that strikes a balance between the two.
These cores can easily be configured with features such as multipliers, user-specified cache memories,
custom instructions, hardware debug logic, and more to adapt to your specific performance needs.
Table 1 shows the features of each Nios II processor family member; Tables 2 and 3 provide additional
performance details.

Table 1. Nios II Processor Family Members (Part 1 of 2)

Feature Nios II /f (Fast) Nios II /s (Standard) Nios II /e
(Economy)

Feature Nios II/f (Fast) Nios II/s (Standard) Nios II/e (Economy)

Description Optimized for maximum
performance

Faster than the fastest and smaller than
the smallest first-generation Nios CPU

Optimized for minimum
logic usage

Pipeline 6 Stage 5 Stage 1 Stage

Multiplier 1 Cycle (1) 3 Cycle (1) Emulated in software

Branch Prediction Dynamic Static None
398

Appendix: Nios II Embedded Processor Family
Note to Table 1:
(1) Using DSP Blocks in Stratix® or Stratix II FPGAs.

Note to Table 2:
(1) These results were generated using seed swapping and synthesis/fitting settings in the Quartus II software.

Note to Table 3:
(1) These results were generated using seed swapping and synthesis/fitting settings in the Quartus II software.

High-Bandwidth System Interconnect
Altera’s SOPC Builder system design software lets you generate high-throughput systems that take
advantage of the inherent parallelism of FPGAs. The system interconnect fabric is fully switched, in
that dedicated connections between master and slave components allow multiple simultaneous
transactions without the arbitration stalls found in traditional bus architectures.

Instruction Cache Configurable Configurable None

Data Cache Configurable None None

Custom Instructions Up to 256 Up to 256 Up to 256

Table 2. Maximum Clock Frequency (fMAX) for Nios II Processor System (Note 1)

Device Family Device Used Nios II /f Nios II /s Nios II /e
Stratix III EP3SL70F484C2 266 200 322

HardCopy® Stratix II HC230F1020C 202 202 321

Stratix II EP2S60F1020C3 222 171 285

HardCopy Stratix EP1S80F1020C5_HC 147 131 176

Stratix EP1S80F1020C5 148 128 172

Cyclone III EP3C40F324C6 163 136 190

Cyclone II EP2C20F484C6 142 111 193

Cyclone EP1C20F400C6 134 121 173

Table 3. DMIPS for Nios II Processor System (Dhrystone Benchmark v2.1) (Note 1)

Device Family Device Used Nios II /f Nios II /s Nios II /e
Stratix III EP3SL70F484C2 300 128 50

HardCopy® Stratix II HC230F1020C 228 129 49

Stratix II EP2S60F1020C3 251 110 44

HardCopy Stratix EP1S80F1020C5_HC 166 84 27

Stratix EP1S80F1020C5 168 82 27

Cyclone III EP3C40F324C6 165 68 17

Cyclone II EP2C20F484C6 144 55 18

Cyclone EP1C20F400C6 130 53 17

Table 1. Nios II Processor Family Members (Part 2 of 2)

Feature Nios II /f (Fast) Nios II /s (Standard) Nios II /e
(Economy)
399

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
In traditional bus architectures (Figure 8), a single arbiter controls communication between the bus
masters and slaves. Each bus master requests control of the bus, and the arbiter then grants bus access
to a single master. If multiple masters attempt to access the bus at once, the arbiter allocates bus
resources to a master based on a fixed set of arbitration rules. This can lead to a bandwidth bottleneck
as only one master can access the system bus and its resources at a time.

Figure 8. Traditional Bus Architecture

The system interconnect fabric's simultaneous multi-master architecture increases your system's
bandwidth by eliminating this bottleneck (Figure 9). Using Altera’s system interconnect fabric, each
bus master gets its own dedicated interconnect, meaning that bus masters only contend for shared
slaves, not for the bus itself. Each time a component is added or the peripheral access priorities change,
SOPC Builder generates a newly optimized system interconnect fabric with a minimum of FPGA
resource use.

Figure 9. System Interconnect Fabric Architecture

The system interconnect fabric supports a wide range of system architectures, including single- and
multiple-master systems, and allows seamless data transfers between peripherals with performance-
optimized data paths. Your design's off-chip processors and peripherals are equally well supported by
the system interconnect fabric.

Custom Instructions
Custom instructions allow developers using Nios II processors to increase system performance by
extending the CPU instruction set to accelerate time-critical software. Using custom instructions, you
can optimize system performance in a way not possible with traditional off-the-shelf processors.

Master
Masters

Slaves
UART PIO Program

Memory
Data

Memory

Master

Arbiter

System Bus

Bottleneck

Slaves

Masters

Program
Memory

I/O
Custom

Accelerator
Peripheral

I/O
Program
Memory

Data
Memory

Master Master Master

Data
Memory

System Interconnect
Fabric

Arbiter Arbiter
400

Appendix: Nios II Embedded Processor Family
The Nios II family of processors supports up to 256 custom instructions to accelerate logic or
mathematically complex algorithms normally handled in software. For example, a block of logic that
performs a cyclic redundancy code calculation on a 64-Kbyte buffer operates 27 times faster as a
custom instruction than when performed by software (Figure 10). Nios II processors support fixed and
variable cycle operations, include a wizard for importing user logic as a custom instruction, and
automatically create software macros for use in developers’ code.

Figure 10. Nios II Custom Instructions

Hardware Accelerators
Automatically accelerate your software by converting C language subroutines into hardware
accelerators that boost performance without increasing clock frequency and power consumption.
Simply “right-click to accelerate” performance-critical functions using the Nios II C-to-Hardware
(C2H) Acceleration Compiler and eliminate the time and expense of manually generating Verilog HDL
or VHDL accelerators. See Figure 11.

Figure 11. Nios II Hardware Accelerator

Multiprocessor Systems
Use multiple processors to scale your system’s performance or to partition software applications into
smaller, simpler tasks that are easier to write, debug, and maintain. The Nios II Embedded Design Suite
(EDS) and tools from industry-leading embedded software providers support developing and
debugging multiprocessor applications. Nios II processors, combined with high-density devices such
as Stratix FPGAs and HardCopy structured ASICs, are ideal platforms for creating high-performance
multiprocessor systems.

Nios II Embedded Processor

+--

&

<<>>

Out

result

A

dataa

Nios II
ALU

B

datab
Custom
Logic

Program
Memory

Program
Memory

Processor Accelerator

Data
Memory

System Interconnect
Fabric

Arbiter Arbiter

D
M

A

D
M

A

401

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Configurable Caches and Tightly Coupled Memory
Adjust the size of the processor instruction or data cache to meet the performance needs of your
application. For fast access to frequently used routines, add up to four tightly coupled memories that
provide cache-like access without the penalty of cache misses.

Customize Your Processor
Rather than being limited to a pre-fab processor, with Nios II processors, you choose the exact
peripherals, memory, and interface features you need-customizing the processor to your specifications.
In addition, you can easily integrate your own proprietary functions to give your design a unique
competitive advantage.

Nios II development kits include a library of commonly used peripherals and interfaces. See Table 4.
For a complete list of SOPC Builder-ready intellectual property (IP) and peripherals, visit
www.altera.com/SOPCBuilderReady.

Using the interface-to-user-logic wizard in the SOPC Builder software, you can also create your own
custom peripherals and integrate them into Nios II processor systems. With SOPC Builder and Altera
FPGAs, you can assemble embedded processor configurations not available in off-the-shelf processors,
letting you create exactly what you need, every time.

Adapt to Changing Requirements
Add hardware features at any time in the product lifecycle without the need to redesign your board. You
can boost performance and add features, even late in the development stage, to help you adapt to
changing requirements and reduce development time, insulating your product from the competition. To

Table 4. Nios II Peripherals

Peripheral Description
JTAG UART Communicates serial character streams between a host PC and an SOPC Builder

system using the JTAG circuitry built into Altera FPGAs

CompactFlash Interface Provides mass storage support

Interface to User Logic Connects on-chip user logic or off-chip devices to an SOPC Builder-generated system

UART Provides common serial interface with variable baud rate, parity, stop and data bits,
and optional flow control signals

Interval Timer Provides a 32-bit timer; can be also be used as periodic pulse generator or system
watchdog timer

Parallel I/O (PIO) Provides 1- to 32-bit parallel I/O (input, output, and edge-capture) ports

Serial Peripheral Interface
(SPI)

Implements an industry-standard serial peripheral interface with either master or slave
protocol

DMA Controller Performs bulk data transfers by offloading memory tasks from the CPU

SDRAM Controller Provides a simple Avalon® interface to off-chip SDRAM and supports 8-, 16-, 32-, and
64-bit data

Memory Interfaces Includes:
● On-chip ROM and RAM
● SDRAM, SSRAM, SRAM, and flash
● Altera serial configuration devices

Ethernet Port Includes:
● 10/100 Mbps SMSC LAN91C111single-chip Ethernet controller interface
● Software support provided by the lightweight IP TCP/IP stack
● Included with the Nios II development kits
402

Appendix: Nios II Embedded Processor Family
deploy bug fixes, feature enhancements, and service upgrades for systems in the field, on site or
remotely, simply download a new firmware image on the target system.

Reduce Your Total System Cost
Your total investment in an embedded application is more than the cost of the embedded processor. By
implementing your embedded system in an FPGA, you can reduce system cost several ways:

■ System Integration Reduces BOM Cost—Reduce chip count by implementing functions currently
handled by discrete components. Integrating functions into a single FPGA reduces board size,
cost, density, and power consumption.

■ Royalty-Free Perpetual Use License—Purchase once, use perpetually, and pay no royalties for
Nios II processors implemented in Altera FPGAs and HardCopy structured ASICs.

■ Low Cost Embedded FPGA—Combine the Nios II /e core with a low-cost Cyclone® series FPGA
and consume as little as US $.23 of logic, which leaves plenty of room to add your own custom
design or integrate functions performed by external devices. By using a soft-core processor, you
can always target the latest, lowest cost device with minimal design risk.

■ High-Volume Migration Path to ASIC—Once your FPGA design is finalized and moves into high-
volume production, you can quickly migrate it to an Altera HardCopy II structured ASIC solution,
dramatically reducing device cost. Altera also offers an ASIC license for the Nios II processor,
peripherals, and interconnect logic for designs that need to migrate to cell-based ASIC designs.

■ Exact-Fit Peripheral Feature Set—Avoid paying for unnecessary peripherals, features, or power
consumption. Create a custom-tailored system that combines one or more CPUs with the exact set
of peripherals, memory, and I/O interfaces you need, and a power consumption you can live with.

■ Custom Coprocessor—Avoid migrating to an expensive discrete processor for incremental
performance enhancements. Instead, offload your computing to a low-cost coprocessor inside
your FPGA. Using a combination of one or more Nios II processors, custom instructions, and
hardware accelerators, your FPGA co-processor can provide significant performance boost to
your existing processor.

■ Low-Cost Development Tools—You can download full featured evaluation versions of the Nios II
processor, Nios II Embedded Design Suite, and SOPC Builder system design tool today for free
enabling you to go from concept to complete system running in the lab in a matter of hours.

■ Driver Development Costs—Choose from a library of available drivers for your embedded needs
and drastically reduce the need for custom driver development and accelerate time-to-market.

■ Reduce the Cost of Hardware Upgrades and Maintenance—The ability to update firmware over
Ethernet is a common feature in today's embedded systems. In classic embedded systems
(comprised of a discrete microprocessor and the devices it controlled), the word “firmware”
applied to the update of the software image that the microprocessor was running. Add FPGAs to
the embedded mix and the remote update possibilities increase. This is especially true of systems
that contain a Nios II soft processor, because you can upgrade both the Nios II processor (as part
of the FPGA image) and the software that it runs in one remote configuration session.

Speed Development with Nios II Development Kits
Altera and its partners offer development kits that give you everything you need to start designing the
perfect processor for your system today: from documentation to download cables, from boards to
design software. One example kit is shown in Figure 12. To find out more, visit Altera's development
kits web site at www.altera.com/devkits.
403

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Figure 12. Nios II Development Kit, Cyclone Edition

Accelerate Your Learning Curve
Get started immediately by downloading the complete set of Nios II design tools and intellectual
property (IP) cores or accelerate your design efforts with one of our low-cost development kits. Reuse
one of the many pre-built embedded reference designs as a template for your own application and
quickly come up to speed on how to use Altera tools through several in-depth tutorials, online training
modules, or instructor-led training classes.

There are several ways to learn more about Altera's embedded solutions, all of which begin by
navigating to the Altera embedded web site (www.altera.com/embedded) where you can:

■ View online demonstrations

■ Read in-depth technical documentation

■ Download an evaluation version of the Nios II processors and Nios II IDE

■ Check out the latest Nios II development kits

■ Register to attend on-line or instructor-led training

When you are ready for the next step, simply order a development kit or contact a sales office. Visit
www.altera.com today for details.

You can also visit the Nios design forum site (www.niosforum.org), where Nios and Nios II users
around the world share ideas, design examples, and other information.
404

Appendix: Nios II Embedded Processor Design Contest Winners
Appendix: Nios II Embedded Processor
Design Contest Winners

The following table lists the 2007 contest winners.

Nios II Design Contest Winners

Design University/College Award Location
MRI Spinal Segmentation Based on the
Nios II Processor

Information Science Institute, College of
Computer and Information Technology,
Beijing Jiaotong University

First China

Portable Telemedicine Monitoring
Equipment

HuaQiao University Second China

Laser Direct Writing Digital Servo
Controller Based on SOPC Technology

Ultra-Precision Photoelectric Instrument
Engineering Research Institute, Harbin
Institute of Technology

Second China

Nios II Processor-Based Fingerprint
Identification System

College of Communication Engineering,
Chongqing University

Third and
C2H Award

China

Nios II-Based Intellectual Property Camera
Design

Xidian University Third China

An Internet-Based Smart Terminal Shanghai Jiao Tong University Third China

Fingerprint Identification System Based on
the Nios II Processor

Huazhong University of Science and
Technology

Third China

Multi-Functional Digital Albums Based on
the Nios II Processor

Information Science Institute, Beijing
Jiaotong University

Third China

SOPC-Based Cordless Phone National Institute of Technology, Tiruchy First India

Nios II Processor-Based Self-Adaptive
QRS Detection System

Indian Institute of Technology,
Kharagpur

Second India

FPGA-Based Clinical Diagnostic System
using Pipelined Architectures in the Nios II
Soft-Core Processor

Jadavpur University, Calcutta Third India

Police Vehicle Support System with
Wireless Auto-Tracking Camera

Inha University, Korea Aerospace
University, Hongik University

First and
C2H Award

Korea

Aerial Photographic System Using an
Unmanned Aerial Vehicle

Chungbuk National University Second Korea

Auto Audio Equalizer Using Digital Signal
Analysis

Hanyang University Third Korea
405

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
RTOS Acceleration Using Instruction Set
Customization

Centre for High Performance Embedded
System (CHiPES), Nanyang
Technological University (NTU)

Star Award Singapore

Smart Self-Controlled Vehicle for Motion
Image Tracking

Department of Information Engineering,
I-Shou University

First Taiwan

H.264 VBS-BMA-Based Hardware
Infrastructure Implementation on an FPGA

Ching Yun University/ Department of
Electronic Engineering

Second Taiwan

Smart Bus Station Sign Oriental Institute of Technology Third Taiwan

FPGA-Based Smart Induction Motor
Controller Design

Electrical Engineering Department,
Yuan Ze University

Third Taiwan

Intelligent Solar Tracking Control System
Implemented on an FPGA

Institute of Electrical Engineering, Yuan
Ze University

Third Taiwan

Nios II Design Contest Winners

Design University/College Award Location
406

Appendix: Nios II Embedded Processor Design Contest Winners
The following pages show photos of some of the award presentations and design contest winners.

Prize Won: Second Prize, Taiwan
University: Ching Yun University
Project: H.264 VBS-BMA-Based Hardware
Infrastructure Implementation on an FPGA

Prize Won: First Prize, Taiwan
University: I-Shou University
Project: Smart Self-Controlled Vehicle for Motion Image
Tracking

Bob Xu, University Program Manager of Altera
presented the Third Prize Award to Beijing Jiaotong
University and Huazhong University of Science and
Technology.

The winning teams in China showcased their projects at
SOPC World 2007 in Wuhan, China.

Prize Won: First Prize, India
University: Jadavpur University, Calcutta
Project: SOPC-Based Cordless Phone

Eric Law, FAE Director of Altera Asia Pacific, presented
the award to the Best Instructor from the National
Institute of Technology, Tiruchy
407

Nios II Embedded Processor Design Contest—Outstanding Designs 2006
Michael Lee, Altera FAE Manager, presented the prize to the Best Instructor of the First Prize winner and the
winning team from Inha/Hongik/ Korea Aerospace University.
408

	Introduction
	Nios II Embedded Processor Design Contest
	Contents
	Automotive Applications
	Auto Audio Equalizer Using Digital Signal Analysis
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Description
	Design Features
	Conclusion

	Consumer Applications
	H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

	An Internet-Based Smart Terminal
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion
	References

	Multi-Functional Digital Albums Based on the Nios II Processor
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

	Communications Applications
	SOPC-Based Cordless Phone
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Description
	Design Features
	Conclusion
	References
	Appendix

	Nios II-Based Intellectual Property Camera Design
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

	Industrial Applications
	Police Vehicle Support System with Wireless Auto-Tracking Camera
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Description
	Design Features
	Conclusion

	Smart Self-Controlled Vehicle for Motion Image Tracking
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

	RTOS Acceleration Using Instruction Set Customization
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Features
	Conclusion
	References

	Aerial Photographic System Using an Unmanned Aerial Vehicle
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Description
	Design Features
	Conclusion

	Laser Direct Writing Digital Servo Controller Based on SOPC Technology
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

	Smart Bus Station Sign
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

	FPGA-Based Smart Induction Motor Controller Design
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

	Intelligent Solar Tracking Control System Implemented on an FPGA
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

	Nios II Processor-Based Fingerprint Identification System
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion
	Appendix: C2H Compiler Usage

	Fingerprint Identification System Based on the Nios II Processor
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion
	References

	Medical Applications
	MRI Spinal Segmentation Based on the Nios II Processor
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

	Nios II Processor-Based Self-Adaptive QRS Detection System
	Design Introduction
	Functional Description
	Performance Parameters
	Design Architecture
	Design Description
	Design Features
	Conclusion
	References

	Portable Telemedicine Monitoring Equipment
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

	FPGA-Based Clinical Diagnostic System using Pipelined Architectures in the Nios II Soft-Core Processor
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Description
	Design Features
	Conclusion

	Appendix: Nios II Embedded Processor Family
	Increase Productivity With Powerful Development Tools
	Protect Your Software Investment from Processor Obsolescence
	Scale System Performance
	Customize Your Processor
	Speed Development with Nios II Development Kits
	Accelerate Your Learning Curve

	Appendix: Nios II Embedded Processor Design Contest Winners

