
RTOS Acceleration Using Instruction Set Customization
Star Award

RTOS Acceleration Using Instruction
Set Customization

Institution: Centre for High Performance Embedded System (CHiPES), Nanyang
Technological University (NTU)

Participants: Muhamed Fauzi Bin Abbas, Ku Wei Chiet

Instructor: Professor Thambipillai Srikanthan

Design Introduction
As embedded system designs become increasingly more complex, the use of real-time operating
systems (RTOS) becomes essential to meet time-to-market pressures and to contain non-recurring
engineering costs. However, an RTOS consumes precious CPU cycles in return for the services it
provides. Further, the RTOS is typically treated as a pure software entity and is subject only to minor
adaptations. In this project, we leverage work done by our research group towards instruction set
customization for RTOS acceleration using dedicated hardware and apply it to the Nios® II processor.
We present our design, findings, and results in this paper.

In this project, we implemented RTOS acceleration by customizing the Nios II instruction set. As part
of the process, we identified RTOS operations that are executed frequently and converted them into
custom instructions (CIs), thereby collapsing a series of instructions into fewer operations and reducing
the RTOS CPU overhead.

By reducing the time consumed by system tasks, greater processing time is made available for user
applications. The system becomes more responsive, and this effect is further noticeable if the CPU is
clocked at a lower clock frequency, where the same number of clock cycles constitutes a higher
percentage of system overhead. By allowing more time for user tasks, RTOS acceleration benefits
applications that are run on the system without changing the applications. This acceleration provides a
drop-in method for improving system performance and responsiveness.

The effect of our work is very noticeable in systems that run a large number of tasks. For our project
we use the Nios II/s CPU and µC/OS-II.
143

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
We decided to use the Nios II processor because of the following factors:

■ The Nios II processor is a soft-core CPU that allows instruction set customization. In our opinion,
using instruction set customization for RTOS acceleration is extremely attractive because the
instruction execution is serialized with respect to other instructions, retaining the sequential
nature of the original function being accelerated. However, all parts of the custom instruction can
execute in parallel when the instruction is executed. Finally, this instruction can be accessed either
in assembly language or as an intrinsic function from a high-level language such as C or C++,
making integration with the software RTOS simpler.

■ SOPC Builder makes it extremely easy to add custom instructions to the CPU core. In the future,
we plan to explore the use of the C-to-Hardware Acceleration (C2H) Compiler for this work. This
implementation would potentially make it easy to create new RTOS customization instructions
because the RTOS itself is typically written in C.

At the same time, it seems that the Nios II processor is typically targeted at medium complexity
applications (about a 100-MHz clock with multiple tasks). We found that in this configuration, RTOS
overheads can be very significant in systems with a large number of tasks. These types of systems stand
to benefit significantly from our work. However, as we shall demonstrate later in the paper, our
proposed design can be easily parameterized to cater to different workloads and requirements.

Function Description
For this project, we used µC/OS-II running on the Nios II/s processor. By analyzing the RTOS, we
determined that the two most frequently executed portions are:

■ Timer tick routine—The timer tick routine executes at the system clock frequency, which typically
ranges from 100 Hz (10 ms) to 1,000 Hz (1 ms). Because all RTOS operations are expressed
relative to this parameter, the system clock frequency has a direct impact on the system resolution.
This routine runs as part of the interrupt service routine (ISR) in response to the timer tick,
therefore, it is executed very frequently, and acceleration results in significant savings.

■ Scheduler—The scheduler is called every time the status of one or more tasks changes in the
system. Further, some portion of the scheduler is called with interrupts disabled. Any
improvement in these areas results in reduced interrupt latency. In general, the scheduler is called
as the final operation of many system calls and acceleration improves the system call processing
time.

µC/OS-II handles 64 tasks with unique task priorities. The task priority is the same as the task ID.

Time Management Module
The timer services offered by µC/OS-II consist of timeouts and delays. The timer services’ basic unit
of measurement is the system timer tick, which is generated as a periodic interrupt by a hardware timer
in the system. Timer management affects the following areas:

■ All delays and timeout requests are expressed in number of ticks. µC/OS-II, which has a 16-bit
internal timer delay variable, supports delays of up to 65,535 ticks.

■ When a timer tick occurs, the tick ISR decrements the waiting task’s delay variable. If the variable
reaches 0, the task can be added to the ready list.

■ If the task is suspended when its delay value reaches 0, the task delay value is reloaded with 1 to
delay it by another tick. This process continues until the task is resumed.

The timer module’s basic architecture comprises a 16-bit counter to store the delay value for each
supported task. Additionally, two extra bits are stored for every task: one bit stores whether the delay
144

RTOS Acceleration Using Instruction Set Customization
counter is active and the other stores whether the task is suspended. Figure 1 shows the basic unit for
each task, which is replicated for the number of tasks expected in the system.

Figure 1. Timer Management Basic Unit Architecture

Figure 2 shows the architecture for a full implementation with 64 units. The instruction usage is
described next.

Figure 2. Custom Instruction for 64 Tasks

Scheduler Module
In an associated project in our research group, the basic scheduler was accelerated using instruction set
customization [1]. Figure 3 shows the architecture diagram for that implementation. We implemented
the scheduler so that it could be instrumented and tested in the same manner as the other work done in
this project.

Delay (16) A S

Delay 16 Delay counter.

A 1 Active. Indicates whether the counter is in use.

S 1 Suspended. Indicated whehter the task is suspended.

Name Width Function

0

1

2

3

4

5

...

n

...

...

63

Task ID Delay (16)

dataa (32 Bits) datab (32 Bits) prefix (8 Bits)

S (1)A (1)

Calculate list of tasks made ready

32-Bit Result

Array of Task Delays
(64 x 16 Bit)

Active Bit
(64 x 1 Bit)

Suspended Bit
(64 x 1 Bit)

Lower
List

Upper
List

Get
Delay
145

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 3. Scheduler Custom Instruction Architecture Block Diagram

Member Select

Map

Command

Set or
Clear

Group Select

Ready Table
8-Byte Array

Ready Groups
8-Byte Array

Highest Ready Member

Unmap

Highest Ready Task

Low

High
Highest Ready Group

Unmap

WDAT1

WADR1
RADR1
RADR2

RDAT1
RDAT2

WDAT1

WADR1 DAT[7:0]
146

RTOS Acceleration Using Instruction Set Customization
Performance Parameters
The design uses 3,748 registers and 41% of the logic elements (LEs) available in the Cyclone® II device
on the Development and Education (DE1) board, as shown in Table 1. Details about the hardware
consumption are discussed later in this section.

Figure 4 shows the debug messages sent from the DE1 board to the PC console through the JTAG
connection. The messages show how we benchmarked the system using the Dhrystone benchmark
program.

Table 1. Design Resource Usage

Resource Description
Flow status Successful - Tue Oct 02 09:52:15 2007

Quartus II version 7.1 Build 156 04/30/2007 SJ Full Version

Revision name DE1_SD_Card_Audio

Top-level entity name DE1_SD_Card_Audio

Family Cyclone II

Device EP2C20F484C7

Timing models Final

Met timing requirements Yes

Total logic elements 7,749 / 18,752 (41%)

Total combinational functions 7,278 / 18,752 (39%)

Dedicated logic registers 3,631 / 18,752 (19%)

Total registers 3748

Total pins 287 / 315 (91%)

Total virtual pins 0

Total memory bits 47,104 / 239,616 (20%)

Embedded multiplier 9-bit elements 4 / 52 (8%)

Total phase-locked loops (PLLs) 1 / 4 (25%)
147

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 4. Debug Messages

The custom instructions need to be carefully added into specific parts of the RTOS and are called from
multiple places in the system. Therefore, there is an overall system performance impact from our
project. In this section, we report the main results and improvements by using custom instructions for
RTOS acceleration.

Performance Improvement of Specific Functions
Although the custom instructions are used in many places in µC/OS-II, their main impact is seen in a
few specific functions.

Timer Tick Custom Instruction
For the timer tick custom instruction, the main impact is in the timer tick ISR (OSTimeTick). At every
system timer interrupt (typically every 1 or 10 ms), the timer tick ISR is run in response to the timer
tick interrupt.

The timer tick ISR has 2 main operations:

■ The wait count of each task is decremented by 1 by iterating through the task control blocks for
all tasks present in the system.

■ For unsuspended tasks whose wait count becomes 0, the scheduler is called to update the task’s
ready list.

The timer tick custom instruction only affects the decrement operation. Because the kernel iterates
through the waiting tasks, the function’s execution time directly depends on the number of tasks in the
system. Table 2 shows the results for the OSTimeTick module. The performance improvement
148

RTOS Acceleration Using Instruction Set Customization
(calculated as a percentage) is shown in brackets. We tabulated the results with 4 tasks (light load), 16
tasks (medium load), and 48 tasks (high load) in the system.

As shown in Table 2, the performance improvement is in the range of 70% to 81%, even for systems
with a light load. As the number of system tasks increases, the software RTOS starts to show very high
overhead. In contrast, the RTOS supported by the custom instruction scales better and less time is
consumed in the ISR, showing more than 90% improvement.

Scheduler Instruction
The scheduler instruction significantly affects many areas of the RTOS. The main impact is noticed in
OS_Sched. As with the timer tick, the performance depends on the number of system tasks. Table 3
shows the performance data (see Table 2 for the column definitions). The typical improvement is 40%.

Dhrystone Benchmark
While the performance improvement in individual functions is impressive, it is not representative of the
performance improvement that a system will actually experience because that depends on the custom
instruction usage in the actual system. However, because these instructions are part of the RTOS, some
improvement can be measured without actual applications.

The Dhrystone benchmark is typically used to measure the CPU performance with respect to the
amount of work it performs. In recent years, Dhrystone use for comparing CPUs has diminished.
However, it is still a viable measure of the amount of work that the CPU can perform.

In our case, we are measuring the performance of the same CPU with different amounts of hardware to
offload certain tasks. We are trying to measure the ability of the same CPU to do work when supported
by the custom instructions. On the same CPU, the Dhrystone benchmark is affected only by the number
of CPU cycles that are available for the software to execute. Therefore, we can use the Dhrystone as a

Table 2. Timer Tick Performance

CPU Types
(# of Tasks)

Software (1) Hardware (with Custom Instructions) (2)

st (3) lt (4) st lt
4 Tasks 584 612 107 (81.60%) 183 (70.10%)

16 Tasks 921 2525 249 (72.90%) 298 (88.20%)

48 Tasks 4,057 4,844 219 (94.60%) 260 (94.60%)

Notes:
(1) The Software column indicates performance when only the pure software RTOS is executed (i.e., without any custom

instruction support).
(2) The Hardware (with Custom Instructions) column indicates performance when the RTOS has been accelerated using the

custom instruction.
(3) st refers to the typical shortest time spent in the execution of the relevant portion.
(4) lt refers to the typical longest time spent in execution.

Table 3. Scheduler Instruction Performance

CPU Types
(# of Tasks)

Software Hardware (with Custom
Instructions)

st lt st lt
4 Tasks 295 423 140 (52.50%) 251 (40.66%)

16 Tasks 287 440 154 (46.34%) 269 (38.86%)

48 Tasks 286 437 154 (46.15%) 268 (38.67%)
149

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
benchmark to measure of the amount of work that can be performed as a result of adding RTOS custom
instructions.

Table 4 shows the Dhrystone benchmark for the system running at 50 MHz with the Dhrystone task
running at medium priority. Results are reported for the following four system types with a different
number of system tasks because the number of tasks impacts the RTOS primitive execution times:

■ Original RTOS—The system without any custom instructions.

■ Scheduler modified—The system includes the scheduler custom instruction.

■ Timer modified—The system includes the timer tick custom instruction.

■ Combined modified—The system includes both custom instructions.

The numbers are reported for the system with timer interrupts occurring at 100 Hz (10 ms) and 1,000 Hz
(1 ms). The corresponding percentage improvement is shown in parentheses. As required by the
Dhrystone benchmark, we did not apply a compiler optimization. As Table 4 shows, the performance
is improved by nearly 54%.

Although we collected the data in Table 4 without compiler optimization, we feel that it is not
representative of commercial systems. Table 5 presents the same numbers when compiler optimization
(O2) is applied. Although the differences are not as large as before, we can see that the Dhrystone
benchmark does improve by up to 9.4%. Therefore, the system can perform almost 10% more work
when RTOS acceleration is applied.

Table 4. Dhrystone Tests without Compiler Optimization

of
Tasks

Original RTOS Scheduler Modified Timer Modified Combined Modified
100 Hz 1000 Hz 100 Hz 1000 Hz 100 Hz 1000 Hz 100 Hz 1000 Hz

16 3.995 3.257 4.001
(0.15%)

3.305
(1.47%)

4.023
(0.70%)

3.587
(10.13%)

4.045
(1.25%)

3.722
(14.28%)

48 3.486 2.153 3.491
(0.14%)

2.202
(2.28%)

3.592
(3.04%)

3.194
(48.35%)

3.604
(3.38%)

3.316
(54.02%)

Table 5. Dhrystone Tests with Compiler Optimization

of
Tasks

Original RTOS Scheduler Modified Timer Modified Combined Modified
100 Hz 1000 Hz 100 Hz 1000 Hz 100 Hz 1000 Hz 100 Hz 1000 Hz

16 4.014 3.787 4.023
(0.22%)

3.806
(0.50%)

4.019
(0.12%)

3.85
(1.66%)

4.026
(0.30%)

3.908
(3.20%)

48 3.536 3.159 3.538
(0.06%)

3.18
(0.66%)

3.56
(0.68%)

3.4
(7.63%)

3.566
(0.85%)

3.456
(9.40%)
150

RTOS Acceleration Using Instruction Set Customization
Hardware Resource Requirements
The base hardware was designed to support 64 system tasks. Table 6 shows the resources (logic cells
and registers) required for the scheduler and the timer.

The hardware data is for a custom instruction that supports all 64 system tasks. However, it is possible
to obtain comparable performance while consuming less hardware based on application-specific
parameters because the Nios II processor is a soft-core processor and we can create the CPU to match
the specific application requirements. The system has two main optimization areas:

■ µC/OS-II is extremely customizable and we can restrict the number of tasks that are present in the
system. Depending on the application requirements, we can support fewer tasks. Similarly, we can
restrict the number of tasks that require hardware. For example, if the system needs to support 16
tasks, we only need 16 counters in the timer custom instruction. This method allows us to achieve
the same performance without consuming too much hardware.

■ In software, it is convenient to use entities that are multiples of 8 bits. Therefore, the µC/OS-II
timer wait value is 16 bits. A system that ticks at a rate of 1,000 Hz waits for a maximum of
approximately 65 seconds. A system that ticks at a rate of 100 Hz waits for a maximum of
655 seconds. For a system that typically has small waits, we can reduce the timer tick custom
instruction counter width. For example, a 12-bit counter allows a wait of more than 4,000 ticks
(4 seconds at 1,000 Hz or 40 seconds at 100 Hz). µC/OS-II already supports delays longer than
the time supported by the resolution of the counter. By adapting that area, we can use a smaller
hardware counters width, thereby reducing the hardware requirements.

Table 7 shows the hardware resources required for different numbers of tasks and counter resolution for
the timer tick custom instruction. The hardware required to support 16 tasks at 12-bit resolution is
approximately 20% of the custom instruction (23% logic cells and 20% registers) that supports all 64
tasks at 16-bit resolution.

This result is possible because the Nios II processor is a soft-core CPU and can be easily customized to
closely match the CPU to the application requirements. The custom instructions can be easily
parameterized, i.e., SOPC Builder can generate the custom instruction with the correct bit-width and
task support the designer requires.

Design Architecture
We constructed our basic Nios II platform with µC/OS-II obtained from the Nios II Integrated
Development Environment (IDE) Project Wizard. We developed the custom instruction for the time

Table 6. Hardware Requirements

Optimization Logic Cells Registers
Scheduler 592 80

Timer 3,657 1,184

Table 7. Hardware Results

Tasks Timer Resolution (bits) Logic Cells Registers
64 16 3,657 1,184

64 12 2,834 928

24 16 1,301 432

16 16 917 304

16 12 865 240
151

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
management and scheduler modules and then we modified the µC/OS-II source code to work with our
custom instructions. We also adapted and used the Dhrystone code that came with the Nios II IDE to
benchmark the system’s performance improvement.

The main CPU is the Nios II processor, which was clocked at 50 MHz as the reference design. The
design uses the Nios II/s processor, flash memory, and SDRAM controllers, which are connected to the
Nios II processor by a tri-state Avalon® bridge, ext_ram_bus. We used additional modules, such as a
timer, JTAG UART, etc., to run and debug the Nios II processor. Figure 5 shows the hardware modules
in SOPC Builder.

Figure 5. Nios II Processor and Hardware Modules in SOPC Builder

We designed the following two custom instructions to make the system faster:

#define ALT_CI_TIMER (n, A, B) __builtin_custom_inii(0x20+(n&((1<<5)-1)), A, B)
#define ALT_CI_SCHD (A, B) __builtin_custom_inii(0x0, A, B)

The custom instruction depends on a number of input parameters that cannot be passed to it directly.
Additionally, the design requires functions to load and store values inside the instruction. Therefore, we
set up the instruction to perform a number of different operations. The function is selected by changing
the value of the prefix parameter. Because the custom instruction stores values, it requires two clock
cycles to run. The time management custom instruction has the following operations:

■ Set delay for task n.

■ Clear delay for task n.

■ Get delay for task n.

■ System tick reduces all active counts by 1.

■ Update suspended tasks and read status of tasks 0 to 31.

■ Update suspended tasks and read status of tasks 32 to 63.

■ Clear result registers.

■ Update active bit for all tasks.
152

RTOS Acceleration Using Instruction Set Customization
■ Mark task n as suspended.

■ Mark task n as unsuspended.

The scheduler custom instruction has the following operations:

■ Put a task into ready list.

■ Remove a task from ready list.

■ Find the highest priority task from ready list.

■ Return the ready group value.

■ Clear all the task bits from ready list.

■ Get the bit mask from 0 to 7.

■ Get the bit information from OSUnMapTbl.

■ Get one element value of OSRdyTbl[].

Design Features
Our design has the following main features:

■ Significantly reduces RTOS overhead—While RTOS usage is considered essential in many
modern CPU-based systems, the overhead can be significant. Our approach helps contain it.

■ More time for user tasks—As demonstrated, properly using these instructions results in more time
for user tasks, thereby allowing the same system to do more work at the same frequency.
Alternatively, the system can be clocked at a lower frequency.

■ Improved determinism—When using custom instructions, the execution time does not increase at
a very steep rate as the number of system tasks increases. This situation provides better scalability
and improved determinism because the custom instruction consumes almost the same amount of
time, regardless of the number of tasks.

■ Potentially reduces interrupt latency—Code that uses the custom instructions often runs in system
areas that are either in ISRs or in areas that run with disabled interrupts. Reducing execution time
of these modules reduces the system’s worst-case interrupt latency.

■ Parameterized instructions—The design can be easily parameterized, allowing the designer to
tailor the custom instructions to the target application’s specific requirements. This process is
made even simpler by including SOPC Builder options such that the RTOS design is also
generated when producing the designer’s CPU software development kit (SDK).

■ Drop-in optimization—Application-specific hardware/ software partitioning is a time-consuming
task that requires many design and test iterations. In CPU-based software-intensive systems that
require an RTOS, our approach offers an attractive method to improve the system performance by
simply reducing the RTOS overhead, an area that system designers seldom touch. Additionally,
because the custom instructions are independent and parameterized, the designer can utilize
unused FPGA resources in a final system for RTOS acceleration (the hardware requirements can
be managed by selecting the specific instruction, the number of tasks, and their timer solutions,
etc.), which has a positive impact on the whole system. Because the RTOS and instruction
153

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
generation can be automated, this option can be provided as a customizable, pre-verified, drop-in
optimization.

■ Wide applicability—Because our work makes more CPU time available to user tasks, it is
applicable to any system that is based on a customizable CPU on an FPGA, regardless of the target
application. All software-based systems can benefit from our work.

Conclusion
This project builds on work that was done previously in our research group using the Nios II processor
and an older version of µC/OS-II. Since then, the Quartus II software and SOPC Builder have evolved
significantly, making a number of tasks easier. It is interesting to note that while the participants in our
project group were mentored and supported by the people who did the earlier research, one of us used
the Nios II processor for the first time in this project.

The project was a cumulative learning and knowledge enrichment experience regarding the Nios II
processor and FPGAs. In addition to the fact that we achieved RTOS acceleration, most applications
can reap immediate benefits when run on the modified RTOS.

In our opinion, the Nios II processor is very useful for embedded system engineers and is also an
excellent tool for research engineers. The designer can easily change external peripherals and interfaces
from within SOPC Builder, making a seamless interface between processor and hardware logic. Instead
of passively adapting to the hardware processor, we can customize both hardware and software,
particularly when using Nios II custom instructions that make the system much more flexible than using
standard processors. The Avalon bus quickly helped us connect all the modules required in our system
and made it just as easy to improve the system later when we realized that we lacked something.

While implementing the project, we learned the following things:

■ SOPC Builder is a very flexible, powerful tool that allows even a software engineer to learn and
design a hardware system quickly and efficiently on any Altera FPGA.

■ We spent some time understanding the differences between the Nios and Nios II processors
because we migrated some of the designs from a previous project.

■ We found the Nios II IDE Project Wizard examples very useful because IDE generated the
µC/OS-II and Dhrystone elements we used in this project.

■ We found that the µC/OS-II source code is not copied to each project folder but instead uses the
main copy in the Nios II IDE root folder, which made it difficult for us to switch projects between
our optimized and regular RTOS. This setup is most likely due to the fact that most people treat
the RTOS as a software entity that is not touched as part of the system design process.

■ We were able to implement the accelerated RTOS using two custom instructions for the
competition. It is unfortunate, however, that we did not have sufficient time to implement an event
control block (ECB) custom instruction, which would have further improved the system
performance (particularly for system synchronization and communication). In the future, we hope
to integrate this custom instruction into the Nios II IDE, allowing developers to utilize the
instruction with the Nios II Project Wizard. This modification will make optimization even more
seamless. Additionally, we want to explore the C2H Compiler in the future to see if it can further
ease the process of integrating modules for RTOS acceleration.
154

RTOS Acceleration Using Instruction Set Customization
References
The references are for our group’s relevant research publications.

[1] T F. Oliver, D L Maskell, “Accelerating an Embedded RTOS in a SOPC Platform,” Proceedings of
the annual technical conference of the IEEE Region 10 (TENCON), November 21 - 24, 2004.

[2] M Sindhwani, T Oliver, D L Maskell and T Srikanthan, “RTOS Acceleration Techniques - Review
and Challenges,” Proceedings of the Sixth Real-Time Linux Workshop, Singapore, pp. 123-128,
November 2004.

[3] Z Jin, M Sindhwani and T Srikanthan, “RTOS Acceleration on Soft-core Processors Using
Instruction Set Customization,” 2004 IEEE International Conference on Field Programmable
Technology (FPT 2004), Australia, pp. 371-374, December 2004.

[4] M Sindhwani and T Srikanthan, “Framework for Automated Application-Specific Optimization of
Real-Time Operating Systems,” Fifth International Conference on Information, Communications and
Signal Processing (ICICS 2005), Thailand, pp. 1416-1420, December 2005.
155

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
156

	RTOS Acceleration Using Instruction Set Customization
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Features
	Conclusion
	References

