
Smart Self-Controlled Vehicle for Motion Image Tracking
First Prize

Smart Self-Controlled Vehicle for 
Motion Image Tracking

Institution: Department of Information Engineering, I-Shou University

Participants: Chang-Che Wu, Shih-Hsin Chou, Chia-Hung Chao, Chia-Wei Hsu

Instructor: Dr. Ming-Haw Jing

Design Introduction
Automobile electronics pose high requirements for safety, and the number of automobiles on the road 
is huge. According to Global Automotive Components, there were 760 million automobiles in 2004 and 
850 million in 2005. General Motors projects that by 2020, there will be 1.1 billion automobiles 
worldwide. Data from IC Insights shows that until 2010, automobiles with on-board electronics will 
account for 40% of these vehicles. Therefore, there is a huge potential for growth in the automobile 
electronics market, which can generate substantial profit for automobile vendors as well as provide an 
opportunity for rapid growth of Taiwan’s high-tech vendors. In these circumstances, auto electronics 
will become the highlight of Taiwan’s research and development. 

Our project uses image processing technology to provide identification and implement self-controlled 
auto guidance. For example, if the driver is not familiar with backing an auto into the garage, he/she can 
start the electronic automated guide setting for automated guidance, speed control, identification, etc.

In October 2007, Toyota’s latest Lexus models, the LS 460 and LS 460L, were marketed in U.S. These 
models are equipped with Toyota’s latest Advanced Parking Guidance System. The system uses a 
backward camera and a sonar sensor to detect the vehicle’s surroundings. If the driver presses a button 
and turns on the brakes to control the auto’s speed next to a parking space, the system automatically 
hands over the power steering to finish parking. 

Similarly, the automatic guided vehicle (AGV), which is most commonly used in automated factory 
systems, can move forward, stop, and turn following the commands and routes of the program, and can 
be linked to a material handling system. A type of fully automated material handling equipment, an 
AGV can load goods automatically at a fixed location and move to another location for unloading. The 
125



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
basic function of the AGV is to walk automatically along a fixed track. Although this technology has 
been used in factories, it cannot be used in a complex environment because its route must be planned 
in advance and the track must be drawn on the ground. 

Unlike the AGV, our project uses images to identify a mark, the position of which can be altered 
according to the application environment. Compared with traditional AGVs, our design has wider 
application. Additionally, this design can search for a specific mark, automatically analyze the existing 
image information, lock in on the object, and control the automobile. Besides assisting people with 
parking and backing into a garage, the system can be used for airplanes and any other power vehicle. 
This project implements a machine vision algorithm based on a hardware acceleration module, and uses 
the efficient, multi-core embedded Nios® II processor to implement the self-controlled automobile 
guidance platform. In the future, the design can implement many applications such as auto security, 
including anti-bumping, driveway deviation alarms, driveway retaining (i.e., guiding the driver to the 
original path), rear obstacle alarm, pedestrian monitoring, distance monitoring (i.e., keeping the driver 
some distance away from the auto ahead), night viewing, automatic headlight adjustment, 
transportation/speed-limit sign identification, blind spot monitoring, etc.

Using two embedded Nios II soft-core processors, this design integrates complex peripheral circuits and 
memory modules into an auto control platform through the easily designed, highly integrated Avalon® 
bus. With the high-performance Nios II processor, the design can easily implement real-time image 
processing and high-speed automated control products.

Project Description
Using hardware and software co-design, we integrated the image input port, auto-controlled platform, 
and power control module into an experimental platform for automated target tracking. We built the 
smart image-tracking embedded system platform with a high-performance soft-core CPU controlling 
the peripheral modules and a VHDL image processing core circuit. See Figure 1.

Figure 1. Embedded System Featuring Smart Image Tracking

The core components of the system are: 

■ CMOS sensor hardware module

● CMOS sensor controller—Drives the CMOS sensor, continuously captures images, and 
imports the motion image data flow.

Real-Time
Image Input

Auto Control
Platform

Image
Capture
Module

Peripheral
Memory

Display
Module

Auto
Control
Module

Nios II
Processor

Image
Processing

Core

Power Control
126



Smart Self-Controlled Vehicle for Motion Image Tracking
● Data simplification—Compresses the image data (GB and GR) captured by the CMOS sensor, 
reducing the computing workload and analysis time.

● SDRAM controller—With six FIFO controllers, it allots SDRAM resources to two CMOS 
sensor controllers and VGA controllers (three for writing and three for reading).

■ VGA hardware modules

● VGA controller—Uses its components to display images on VGA directly in real time.

● XY histogram—Marks the target’s position with XY coordinates and makes a histogram of the 
X and Y axes for real-time images.

■ Power control—With a second soft-core CPU executing instructions from outside, the CPU drives 
the wheel’s control circuits with four groups of programmable I/Os (PIOs), controlling whether 
the auto goes forward/backward or turns left or right. 

Figure 2 shows a photo of the smart image-tracking auto.

Figure 2. Smart Image-Tracking Auto

Application Areas
The design can be used for the following applications:

■ Smart auto electronic devices applied in guidance systems for backing the autos into the garage, 
pulling over, and automated driving

■ AGV automated material handling systems

■ Automated airplane piloting and positioning to gates or runways

VGA Output

DC Motor 
Auto Body

Drive Circuit

Charge-Coupled
Device (CCD) Ln
127



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Automated image and visualization control interfaces, such as input interfaces used for toy autos 
or boats, or control commands (e.g., video game handsets)

■ Automated guidance for assistance equipment such as wheelchairs and electric autos

Target Users
Our design targets the following users:

■ Automobile electronics equipment manufacturers

■ AGV automated guidance auto-controlled system vendors

■ Airplane automated piloting and control system manufacturers

■ Home entertainment product manufacturers

■ Assistance equipment manufacturers

Development Board
For this design, we used the Development and Education (DE2) board, which includes an Altera® 
Cyclone® II EP2C35 FPGA with 35,000 logic elements (LEs), 8-Mbyte (1 Mbyte x 4 x 16) SDRAM, 
4-Mbyte flash memory, a secure digital (SD) card interface, a USB master-slave controller with class 
A and B USB interfaces, a 10/100 Ethernet physical layer/media access controller (PHY/MAC), two 
serial connectors (RS-232 DB9 ports), etc. See Figure 3. 

Figure 3. DE2 Development and Education Board
128



Smart Self-Controlled Vehicle for Motion Image Tracking
Function Description
We used the Quartus® II software version 7.1 to design the Data Compress and XY Histogram cores of 
the smart vehicle guidance system. We created the cores using VHDL and Verilog HDL. Our design 
has the following functionality:

■ Captures images with a CMOS sensor, reduces the number of images using data simplification, 
and displays them on-screen in real time via the VGA controller.

■ Analyzes the reduced image data and generates statistics on the X and Y axis for analysis. 

■ Builds the whole system’s infrastructure with SOPC Builder, complete hardware and software co-
design, and 100% demonstration.

■ Implements the self-controlled auto body guidance system and demonstrates automatic stop, left 
or right turn, automatic searching for special targets, etc.

■ Implements the SDRAM controller with multiple interfaces and distributes the SDRAM writing 
and reading in a FIFO structure.

■ Delivers a dual-CPU embedded system for the CMOS sensor image processing and auto body 
power control.

Major Hardware Components
We created the dual-CPU core with SOPC Builder, designed hardware circuit components in 
Verilog HDL, conducted timing simulation and verification with waveforms, and connected the CPU 
using the PIO method. In addition to the peripheral circuits provided by SOPC Builder, the design has 
a dual-CMOS sensor image capturing circuit, a 6-port SDRAM controller, and a VGA controller that 
contains the image processing circuit. Figure 4 shows the hardware circuit, which has been integrated 
into a bigger module (the block on the left of Figure 4). This block is a dual-CPU module created with 
SOPC Builder.
129



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 4. Hardware Components

Dual-Core Processors
Figure 5 shows the dual-core processors. cpu_0 controls the CMOS sensor and image processing, and 
cpu_1 controls the auto-controlled power. 

Figure 5. Dual-CPU System

Dual-CMOS Sensor Grabber
The dual-CMOS sensor grabber compiles the control hardware circuit grabbed onto the lens image, and 
simultaneously grabs images from the dual lenses using two Integrated Development Environment 
(IDE) interfaces (expansion headers 1 and 2) on the DE2 development board. 

Multi-Port SDRAM Controller
The multi-port SRAM controller generates six FIFO interfaces (implemented in embedded RAM), 
three for reading and three for writing, with the Quartus II MegaWizard® Plug-In Manager. The 
controller enables two groups of CMOS sensor grabbers and one group of VGA controllers to read and 
write to the SDRAM. 
130



Smart Self-Controlled Vehicle for Motion Image Tracking
VGA Controller and Image Processing
The VGA controller and image processing function write the hardware control circuit output by the 
VGA monitor, generate image statistics on the X- and Y-axis while outputting images, and store the 
results in on-chip memory for the Nios II processor to read. 

SOPC Builder Settings
We used SOPC Builder to create the Nios II system. For example, we added user-defined pins on the 
DE2 development board to control custom peripheral circuits, and used a phase-locked loop (PLL) to 
generate a 100-MHz clock source for the SDRAM. See Figure 6. 

Figure 6. SOPC Builder Settings

Memory Configuration During System Software Execution
Because the CMOS sensor grabber and VGA controller occupy the development board’s SDRAM, the 
cpu_0 and cpu_1 programs are stored in flash memory. The exceptional vectors of cpu_0 are put in 
SRAM at the time of program execution, and cpu_1 is put in on-chip memory. When we developed the 
CPU software in the Nios II IDE, we assigned variable stack areas to relevant memories, as shown in 
Figures 7 and 8. 

New Users 

Generate Multiplication 

Custom Pin

Frequency with PLL
131



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 7. cpu_0 Memory Configuration in SOPC Builder (up) and Nios II IDE (down)

Figure 8. cpu_1 Memory Configuration in SOPC Builder (up) and Nios II IDE (down)

Performance Parameters
The application differentiates 640 x 480, 24-bit full-color real-time images for each of the 10 frames 
per second. It must process 8.78-Mbytes of data per second while conducting binarization and image 
processing of the X- and Y-axis histograms. Because the massive image information must be handled 
quickly, we used an architecture accelerated in hardware and controlled by software. Additionally, the 
SDRAM resources can be switched to the Nios II processor, and the Nios II processor can read and 
process the SDRAM image. When we tested the image processing algorithm, we also developed a PC 
simulation program with BCB (Intel 1.6-GHz dual-core, 1-Gbyte RAM, and 1.3 mega CMOS sensor). 
Table 1 compares the experimental data. 

Table 1. Performance Analysis for Three Image Processing Platforms

PC Software 
Simulation

Nios II Software Nios II Software 
plus Hardware 
Acceleration

Frames handled 
per second

1 to 2 3 to 4 9 to 11

Notes Developed with a Video For 
Windows (VFW) function for 
binarization, histogram 
analysis, etc.

Includes switching SDRAM master, 
reading SDRAM, binarization, 
histogram analysis, etc.

Includes reading 
SDRAM, binarization, 
histogram analysis, etc.
132



Smart Self-Controlled Vehicle for Motion Image Tracking
Design Architecture
Figure 9 shows the system development flow chart.

Figure 9. System Development Flow Chart

System Architecture
As shown in Figure 10, the design has a dual-core system: one CPU controls the CMOS controller 
module and another controls most peripheral components. Between the two CPUs are input and output 
pins for information communication. With this design, one CPU handles massive image information at 
full speed and the other operates the auto control system. Thus, when a deviation or a crash is detected 
in the images, the system triggers the intermission of another CPU via a PIO and informs the auto 
control system in real time that it should give commands to rectify the direction or avoid a bump. 
Peripheral components used in the design include: flash memory, SDRAM, SRAM, M4K RAM, LCM, 
JTAG-UART, RS-232, general-purpose I/O (GPIO), button, switch, timer, LED, segment, VGA, CMOS 
sensor, etc.

Select
Components

Customize &
Integrate

System
Verification &
Construction

External
CPU/DSP

Soft-Core
CPU Nios/

Nios II
Processor

Intellectual
Property (IP)

External
Devices,
Memory,
ASSPs,
ASICs

System Definition &
Customization

Avalon
Switch Fabric

System Components
Avalon Switch Fabric

(VHDL or Verilog HDL)
Testbench Environment

Embedded Software
Design

RTOS Development
Environment 

OS/RTOS Kernels

Nios II IDE

Preferred IDE

Header Files
Generic Peripheral
Drivers
Custom Software
Libraries
133



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 10. System Block Diagram

Image Processing
Figure 11 shows how the design supports dynamic real-time image tracking. When the CMOS sensor 
captures an image through hardware components, RAW data is converted into RGB. After binarization 
and grayscale application, the data is easy to process and the image is immediately shown on the VGA 
display. The whole process is performed in hardware. For image tracking, the Nios II processor marks 
the target using the X- or Y-axis histogram statistics. When a new image arrives, the Nios II processor 
can read out the values needed without doing anything, achieving the advantages of hardware 
acceleration. 

Figure 11. Image Processing Block Diagram

Software Flow Chart
Figure 12 shows the software flow chart, which is described as follows:

1. For computational acceleration, binarization and statistics are performed in hardware.

2. The system searches for the position of the target mark.

3. The system dynamically locks the mark.

CMOS Controller

SDRAM
Controller

VGA
Controller

Gray

Threshold

Nios II
Processor

01

Nios II
Processor

02

On-Chip
Debugging

Avalon
Bus

Data Memory

Instruction Memory

SDRAM Controller

SRAM Controller

Flash Controller

M4K RAM

GPIO

PIO

Information
Analysis

CMOS
Sensor 1

CMOS
Sensor 2

Sensor
Switch

VGA

Data Bus 32 Bits

Data Bus 16 Bits

CMOS
Capture

CMOS
Capture

VGA Control

RAW2RGB
&

Mirror_Col

RAW2RGB
&

Mirror_Col

Gray
& 

Threshold

Gray
& 

Threshold

Sdram_Control
(6Port)

SDRAM
134



Smart Self-Controlled Vehicle for Motion Image Tracking
4. The system determines the length of the mark and whether the distance between the self-
controlled auto and the mark is the shortest. If it is not, the system determines whether the mark 
is longer than 70% of the mark frame. If it is, the system enlarges the mark frame. 

5. The PIO sends the forwarding command to the self-controlled auto.

6. If the self-controlled auto is at the closest point to the mark, the system determines whether it is 
a mark for turning left or right. If it is, it turns left (or right) according to the mark; otherwise it 
stops the auto. 

Figure 12. Software Flow Chart

Hardware Circuit Diagram
The dual-CMOS sensor image capturing component switches between main and sub-pictures. One of 
CMOS sensors controls the frame speed, by which the value output at once is 10 bits. Meanwhile, the 
pixel’s X and Y axis are output for reading. See Figure 13. 

CCD 
Capturing

XY Statistics
Search for the

Position
of Mark Line

Lock the
Mark Line

CCD Capturing

XY Statistics

Turn the Auto
Right/Left

Auto Runs
Forward

Enlarge the
Mark Frame

Does It Arrive
 at the

Nearest Place?

Determine the
Length of the

Mark Line

No

Is the Mark
Line for Turning
Left or Right?

Auto Stops

Shorter than
70% of Mark

Frame

Longer than
70% of Mark 

Frame

Yes

No

Yes
135



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 13. Dual-CMOS Sensor Module

The multi-port SDRAM controller uses six FIFO buffers to provide three read and three write SDRAM 
controllers. Each FIFO is 2 Kbytes and is generated by M4K RAM. See Figure 14. 

Figure 14. 6-Port SDRAM Controller

For the VGA controller and image processing functions (see Figure 15), the system combines the values 
read by SDRAM with the appropriate H_sync and V_sync signals, and sends out pixels one by one. 
Meanwhile, it generates the X- or Y-axis histogram statistics and stores the results in another M4K 
RAM block where the values can be read immediately when the Nios II processor needs them. 
136



Smart Self-Controlled Vehicle for Motion Image Tracking
Figure 15. VGA Controller and Image Processing Modules

DC Motor Driver Circuit
The wheel’s forward or backward rotation is controlled by a full bridge circuit. The Nios II processor 
controls the auto’s body movement with CAR_CMD [3..0], the PIO. CAR_CMD[1..0] is the back-
wheel switch and CAR_CMD[3..2] is the front-wheel switch. Figure 16 shows a full-bridge circuit 
switch that controls forward or backward electrical flow for the back wheels (the case of the front 
wheels is similar). Table 2 shows the detailed control commands.
137



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 16. Back Wheel Full-Bridge Circuit Switch

Test Scenarios
In Figure 17, the smart image tracking auto has locked onto a special target and is heading towards it. 
The image clearly shows that, in addition to the white arrow, there are many other white obstacles such 
as white walls, tissues, etc. Figure 18 shows the VGA output of the smart image tracking auto, and a 
binary image can be seen clearly. The smart image tracking auto locked onto the white arrow (within a 
green rim) and when the auto body moves forward, the green rim automatically grows bigger and locks 
onto the white arrow.

Table 2. Auto Control Commands

CAR_CMD[3] CAR_CMD[2] CAR_CMD[1] CAR_CMD[0] CAR_CMD Car Body 
Movement 

0 0 0 0 0x0 Stop

0 0 0 1 0x1 Forward

0 0 1 0 0x2 Backward

0 1 0 0 0x4 Front wheel turning 
right

1 0 0 0 0x8 Front wheel turning 
left

0 1 0 1 0x5 Right forward

0 1 1 0 0x6 Right backward

1 0 0 1 0x9 Left forward

1 0 1 0 0xA Left backward
138



Smart Self-Controlled Vehicle for Motion Image Tracking
Figure 17. Smart Image Tracking Auto Moves Towards Target

Figure 18. Target Locked by Forwarding Smart Image Tracking Auto
139



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Design Methodology
This section describes our design methodology.

Implementation Method
We used the following implementation methods:

1. Define the system—We included processors, memory, peripheral components, and pins 
connecting the peripheral components.

2. Generating system—We produced a system .ptf file using SOPC Builder.

3. Hardware design—We compiled and set up the required components using Verilog HDL. We 
integrated, compiled, and simulated circuits, designed the auto body driver circuit, and measured 
the required electrical characteristics. 

4. Software design—We used BCB to check the image processing algorithm, using the Nios II IDE 
to generate relevant header documents and drivers, and wrote system applications and compiled 
them into .elf.

5. Simulation—We used the ModelSim software for simulation. When we found a problem, we went 
back to step 2 and redesigned the software and hardware. 

6. Verification—Using the JTAG interface, we downloaded the hardware and software to RAM or 
flash in the DE2 development board for physical verification. 

7. Test—We combined the application with the auto body power control to conduct a product test on 
a rudimentary system.

Design Steps
To our knowledge, system-on-a-programmable chip (SOPC) design can provide an integrated, 
hardware/software platform with high elasticity. Because our design involves applying the embedded 
system to mechanical controls, the design planning consisted of four phases: 

■ Define the input port and output ports—Define modules needed by each stage from outside to 
inside, and determine their input or output pins. For example, the input port of the outermost 
system is the CMOS sensor while the output port is the VGA output and power control of the self-
controlled auto. The inside modules include the CMOS grabber, SDRAM controller, VGA 
controller, Nios II CPU, automated auto driver module, etc. 

■ Select cores and custom intellectual property (IP) components—The design uses two full-edition 
CPUs. Aside from the peripheral interfaces attached to SOPC Builder, we needed to create the 
multi-port SDRAM controller and VGA controller. 

■ Perform hardware and software system design—We conducted the hardware and software design 
jointly, which was a challenge because software development involves planning and distributing 
hardware resources as well as the system performance. SOPC Builder enables an integrated 
development interface with high elasticity, which accelerated the system planning process. The 
Nios II IDE enables a complete environment for software development, including setting up break 
points, debugging, simulating instructions, etc., all of which accelerate product development. 

■ Perform mechanical integration—The design combines modules such as a DC motor, pulse-width 
modulation (PWM) sign control, full bridge switch, transistor enlarger circuit, etc. at which we 
are not adept (for we are majors in information engineering). However, being enthusiasts, we 
enjoyed the learning process and felt successful. We present our work using mechanical 
integration, allowing the prototype development system to be presented more dynamically.
140



Smart Self-Controlled Vehicle for Motion Image Tracking
Design Features
Our design has the following features:

■ Dual-CPU communication—We used two CPUs to control and manage the smart image tracking 
system and obtained dual-CPU communication with I/O and interrupts. 

■ 100% hardware and software implementation—We perfectly implemented the smart image 
tracking auto functions, such as target searching, target locking, auto body automated leading 
control, automated stop, etc. 

■ Custom peripherals with hardware acceleration—At first we developed the CMOS sensor 
controller and SDRAM controller with a hardware circuit; we stored the CMOS sensor image 
directly in SDRAM and made the SDRAM a Nios II master. But the experiments showed that the 
speed could not meet our requirements because the Nios II processor spent too much time reading 
SDRAM and image processing. Therefore, we developed circuits combing the VGA controller 
with image processing and implemented the VGA output and image processing at the same time. 
This design delivered the effect that we wanted.

■ Three IP functions connected outside of the Nios II processor—Because the Nios II processor can 
be set with elasticity, PIO pins communicating outside can be easily designed according to the 
user’s needs. By combining the hardware circuits such as the VGA controller, multi-port SDRAM 
controller, image processing function, etc., we improved the performance of the massive image 
data processing.

■ Fully uses the FPGA resources—The design uses the Cyclone II EP2C35 high-capacity FPGA. 
However, because we used a dual-core CPU and developed many complex IP cores in which many 
components use M4K RAM (e.g., the FIFO buffer and image processing components), the whole 
system uses a total of 21,732 logic elements (LEs) (65%) and 347,248 RAM bits (72%), taking 
full advantage of the FPGA resources. See Figure 19. 

Figure 19. FPGA Resources Used
141



Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Conclusion
We benefited greatly from participating in the Altera Nios II Embedded Processor Design Contest 2007. 
We divided our work into systems integration, hardware development, and control circuit design, which 
are described as follows: 

■ System integration—Thanks to the Nios II IDE and convenient SOPC Builder, we implemented 
the soft-core CPU in the prototype machine with a flexible design, accelerating the development 
process. With quick executive efficiency provided by a dual-core PC, the new Quartus II 
version 7.1 software and Nios II IDE version 7.1 largely reduced the time we had to wait for 
hardware integration or software compilation. 

■ Hardware development—Thanks to the contest, we are now acquainted with SDRAM controller 
design. With timing adjustments, we designed multiple high-speed peripherals that share one 
SDRAM device. Besides the VGA controller, we learned how to process real-time images while 
outputting image pixels, etc. 

■ Control circuit design—We are honored to participate in this Nios II design contest. Although the 
challenge of working with unfamiliar mechanical controls gave us a lot of trouble, we finally saw 
the clumsy, smart image-tracking auto operate on various surfaces. This contest brought all 
members in our lab together to solve problems jointly. Thank you for providing young students 
with such a precious opportunity to make our dreams come true. 
142


	Smart Self-Controlled Vehicle for Motion Image Tracking
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion


