
H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA
Second Prize

H.264 VBS-BMA-Based Hardware
Infrastructure Implementation on an
FPGA

Institution: Ching Yun University/ Department of Electronic Engineering

Participants: Wenxian Qian, Songzhi Gu

Instructor: Ou Qianmin

Design Introduction
The block matching method, which is used for motion estimation, plays a key role in motion picture
coding systems. Replacing the fixed-block-size block matching algorithm (FBS-BMA) with the H.264
variable-block-size block matching algorithm (VBS-BMA) addresses the issue that video object
changes cannot be processed effectively, further improving video compression efficiency. Our design
reduces the complex H.264 VBS-BMA calculation and features low latency, low power, and high
throughput, delivering better coding performance.

H.264 VBS-BMA supports 4 x 4, 4 x 8, 8 x 4, 8 x 8, 8 x 16, 16 x 8, and 16 x 16 blocks. When serial
frame data is transmitted via a network, the user can choose the most appropriate block for matching
according to the current bandwidth, thereby obtaining the best transmission speed and frame quality.
However, the H.264 VBS-BMA calculation is more complex. Therefore, we designed an efficient very-
large-scale integration (VLSI) hardware structure that features high computing throughput to cut the
complex calculation time required by H.264 video coding, reduce the calculation frequency, and
improve coding performance. Our design uses the following elements:

■ Hardware—Because the design has numerous complicated calculations for compression, we
needed an effective system to process video frames in real time. To process serial frame data of a
specific size and frequency effectively, we used Altera’s Nios® II development kit. The Nios II
processor is a soft-core processor based on the RISC architecture. It synthesizes a processor
circuit (but not a hard core) on FPGA fabric, permitting scalable development. The Nios II
processor can serve as the hierarchy setting for memory, and add processor instructions
9

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
independently to perform special calculations. While using Altera’s development board and
FPGA to develop hardware, we used the Quartus® II software and SOPC Builder, which is
integrated in the Quartus II software, to develop the test platform. Besides adding our block
matching circuit to the test platform via SOPC Builder, we also used Ethernet chip-embedded
control hardware and components, and then transmitted them to the development board for rapid
prototyping.

■ Software—We used the Nios II Integrated Development Environment (IDE) to write and compile
test software, implement network transmission between PCs, and migrate µC/OS-II into the
hardware structure of the Nios II processor system.

■ PC—We designed a graphical interface program that can be executed in the Microsoft Windows
operating system (OS). The PC is connected to the test platform through the network, transmitting
motion frames and vectors, and accomplishing calculation, estimation, compensation, and
decoding. It displays real-time estimation frames on the PC screen to facilitate users’ viewing.

Function Description
Users load serial frame data through the graphical user interface (GUI) as shown in Figure 1. Next, the
test platform is connected as the the connection status shows (see Figure 2). After the frame is sent to
the test platform via the network, the system performs the motion vector calculation, motion estimation,
and motion compensation. Then, the estimation frame is sent back to the PC via the network and
displayed on the monitor (see Figure 3).
10

H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA
Figure 1. User Loads Serial Frame Data on PC

Load Frame for Estimation
11

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 2. PC Connects to the Test Platform

When the Connection Succeeds, the
Connection Status Shows it.
12

H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA
Figure 3. Test Platform Returns Estimation Frames after Processing

Performance Parameters
Our design has the following performance parameters.

■ The design targets the Cyclone® EP1C20F400C7 device, which has 20,060 logic elements (LEs),
294,912 memory bits, and 301 pins. The design uses 8,881 (44%) LEs, 110,352 (34%) memory
bits, and 176 (58%) pins.

■ The system adds some necessary interface modules in the Nios II processor to improve system
integration. Because most of the peripherals have related intellectual property (IP) cores that are
well designed and tested, they can be used to accelerate hardware validation and software

The Status is Displayed
During the Test
13

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
development. We used many Altera IP cores, including SDRAM, Ethernet PHY chip, UART,
SRAM, and flash memory. Additionally, the Nios II processor’s 32-bit processing significantly
enhanced the image processing efficiency and networking, and improved serviceability.

■ The Nios II processor serves the design’s control and algorithm cores. Because many IP cores and
user IP cores can be added as peripherals, the system is more flexible.

■ We enabled the motion estimation test function. After testing, we could estimate the frame result
in real time.

■ Currently, the device implements 4 x 4 block matching. In the future we can add other blocks
using the same principles.

Design Architecture
Figure 4 shows the design concept of the H.264 VBS-BMA FPGA hardware structure. Users can load
serial frame data through the GUI, transfer it to the test platform using Ethernet, test the H.264 block
matching circuit, send the data back via the network, and (after test platform computation) display the
frames on the PC interface for real-time viewing.

Figure 4. H.264 VBS-BMA System Design Concept

Figure 5 shows the PC operation. The current frame of the loaded serial frame data is transmitted to the
Ethernet with a TCP socket. The PC receives motion vectors that are sent back from the test platform
and decodes them to obtain the new estimation frame.

Figure 5. PC Operation

Figure 6 shows the test platform operation. First, the TCP socket receives the frame data package that
the PC transmits from the Ethernet and caches it in the Receive Data Buffer. The first frame received is
stored in the Previous Frame Memory as the previous frame, and the last frame is stored in the Current
Frame Memory as the current frame. After the current frame is received, the current and previous
frames are transferred to the block matching circuit for motion estimation and motion vector
calculation. The DMA device accelerates data transmission from the memory to the block matching

Ethernet

Current Motion Frame

Motion Frame Estimation

Packet
Transmission

Packet
Receiving

TCP Socket
(Client Socket)

Process

Motion
Vector
Buffer

Decoder
14

H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA
circuit. Motion vectors obtained from the calculation are stored in the Send Data Buffer and are sent
back to the PC via a TCP socket. During transmission to the PC, motion vectors are decoded to rebuild
the estimation frame using the original previous frame. The new estimation frame is then put into the
Previous Frame Memory to replace the original previous frame and become the previous frame for the
next calculation.

Figure 6. Test Platform Operation

As shown in Figure 7, after the test platform is connected to the PC, it receives frame data (Cx) over the
network from the PC. The first frame (C0) is transmitted directly to the Previous Frame Buffer for
initialization; all other frames are transmitted to the Current Frame Buffer. After the current frame is
received, the current and previous frames are transmitted to the motion estimation device for motion
vector calculation. After the test platform conducts the motion compensation on the motion vector and
previous frame, the generated estimation frame (Px) is transmitted to the Previous Frame Buffer to serve
as data for the next motion estimation. Simultaneously, motion vectors are sent back to the PC via the
network. Px and Px-1 (the previous frame) are stored in the PC. The system then determines whether
data transmission is finished; if it is not, it continues to transmit Cx and repeats the whole process until
it finishes.

Ethernet

Current Frame MemoryReceive
Packet

Send
Packet

TCP Socket
(Client Socket)

Process

Receive
Data
Buffer

Motion Vector
Decoding Function

Send
Data
Buffer

Previous Frame Memory

DMA Function
(DMA Sending)

Motion Estimation
Device
15

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 7. System Flow Chart

Figure 8 shows the test platform’s hardware structure. The Nios II processor creates the hardware
structure of the matching circuit. We used the Avalon® bus to connect peripherals like traditional
peripheral models; for example, an LCD shows the test platform’s IP address, an Ethernet MAC/PHY
transmits and receives data packets, and SDRAM stores the previous and current frames. We used a
direct memory access (DMA) model for effective data transmission between the peripherals and
memory.

Store in Current
Buffer

Initialize Previous
Buffer

End

Cx

Motion Estimation

Store in Previous
Buffer

Transmit to PC
and Estimate
Px-1 and Px

Determine Whether
It Finishes

X 1

Estimate Px with
Previous Buffer and Replace

Previous Buffer

Initialization

No

Yes

MV

(Motion Vector)

Test Platform
16

H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA
Figure 8. Test Platform Hardware Structure
Adapted from the Nios II Processor Reference Handbook

Figure 9 shows the test platform’s software structure. It provides support from the inside to the outside.
The first internal layer is the matching circuit’s hardware structure, which supports the whole software
structure implementation. The second layer is the hardware driver, which is generated automatically
during the creation of the hardware structure and allows components in the outside layer to use
hardware in the first layer. The third layer is Altera’s hardware abstraction layer (HAL) library that
enables components in the outside layer to use hardware. The other two layers are for the embedded
operating system (OS) and protocol stack. The final layer is our application.

Figure 9. Test Platform Software Structure
Adapted from Using Lightweight IP with the Nios II Processor Tutorial

LCD Screen

Buttons, LEDs, etc.

Nios II
Processor

Altera FPGA

Ethernet MAC

General-Purpose I/O

DMA Controller

LCD Display

Timer 1

Timer 2

SDRAM Controller

Motion Estimation
Logic

Avalon Tri-State
Bridge

Avalon
Switch
Fabric

(Avalon
Bus)

SDRAM Memory

SDRAM Memory

SDRAM Memory

Ethernet MAC/PHY

Clock Reset

Nios II Processor
System Hardware

Software Device
Drivers

HAL API

μC/OS-II

LwIP Software
Components

TCP Socket Server Process
and Application
17

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 10 shows the system structure of the motion estimation device. The Avalon bus sends frames to
the matching circuit. After the calculation, the Avalon bus reads motion vectors from the circuit’s
motion vector register and sends them to the PC.

Figure 10. Motion Estimation Device System Structure

Our motion estimation architecture contains 16 sum of absolute differences (SAD) modules, a VBSME
processor, an address generation unit (AGU), and a control unit. These modules operate as described
below:

■ Each of the 16 SAD modules handles a different SAD calculation based on the sub-block and its
search area.

■ The VBSME processor sums the SAD calculation from 16 basic blocks generated by the 16 SAD
modules, while composing a SAD of different-sized sub-blocks and primary blocks and searching
for the best motion vector.

■ The AGU controls memory data reading and writing.

■ The control unit controls coordination between the other modules.

Design Methodology
Figure 11 shows the hardware and software design flow charts.

Nios II
Processor

Avalon
Bus

clk

reset

address

chip select

write

write data

read

read data

Avalon Slave
Interface

H.264 VBS Motion
Estimation Design

Motion
Estimation Device

SAD MV

MV_min

Motion Vector Register

Control UnitVBSME
Process

Address
Generation

Unit

Current Block Data

Search Area Data

16 SAD Modules
18

H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA
Figure 11. Hardware and Software Design Flow Charts

Hardware Design
As shown in Figure 11, we used a standard project based on Nios II examples and wrote the hardware
program using the concept of layered modules. After compilation, we opened SOPC Builder, integrated
custom user IP, and added a DMA device to enhance the system performance. After we built the
hardware structure, SOPC Builder automatically organized the hardware devices and generated the
related drivers and files needed for software development. We transmitted the compiled test platform to
the development board using the Quartus II software, using the FPGA combined with other hardware
required by the test platform to perform rapid prototyping.

Next, we used the Nios II IDE to test the software code and compile the test software in the test
platform. The Nios II IDE contains µC/OS-II (a real-time OS) and a protocol stack (light-weight IP),
and a small TCP/IP protocol used in the embedded system, which helped us implement network
communication between the TCP server socket and the PC. µC/OS-II provides quick responses, we
migrated it to the hardware structure of the Nios II processor.

Software Design
As part of the software design, we modified the Altera-provided simple socket server IP. We set the IP
address, subnet mask and port name, modified the read, receive, write, and transmit program, set the
system library’s send and receive buffer sizes, and downloaded the compiled project to the test platform.

To allow users to test the platform, we wrote a graphical interface program executed in Microsoft
Windows using the Borland C++ Builder software version 6.0. Because we used TCP/IP, we used the
client TCP socket to connect the PC with the test platform. Then, we were able to transmit motion
frames and vectors, load serial frame data in the PC to test the block matching circuit, and send the
estimation images generated by the test platform back to the PC for the user to view in real time.

Compile Hardware Project

Establish Project
(Use Standard Project)

Use Quartus II Software to
Design Hardware

Add Hardware via SOPC Builder
& Generate New System Module

Use Quartus II Flash Programmer
to Transmit Compiled Hardware

Project to the Board

Compile Software Project

Call Nios II IDE via
SOPC Builder

Use Nios II IDE to Establish
Software Project

Write C Program

Use Nios II IDE to Transmit
Compiled Software Project

to the Board

Hardware Design Software Design

Observe Results in Nios II IDE
19

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Design Features
Our design has the following features:

■ The H.264 block matching circuit uses Altera’s DMA device to manage the transmission between
the block matching circuit and SDRAM, i.e., to provide effective transmission without using the
Nios II processor.

■ We used SOPC Builder to add Ethernet chip control hardware and automatically generate the
related drivers required for the system’s network functions.

■ The user IP is customized and integrated in SOPC Builder to perform complex computation.
Additionally, the layered modular hardware circuit design reduces the complexity and allows
users to customize the design.

Conclusion
In an era of software, designers seem to pay more and more attention to the study and development of
software. However, our design shows that the H.264 VBS-BMA algorithm used for software can also
be implemented in hardware to provide better performance. Additionally, Altera’s simple socket server
IP allows users to observe the estimation frame in real time without processing complex pins with a
logic analyzer and signal generator and writing a complex testbench.

The Nios II processor allows users to create various devices—such as SDRAM, an Ethernet PHY chip,
UART, SRAM, and flash memory—and embed them in the processor. The user can develop these
modules directly with SOPC Builder, reducing the peripheral hardware design’s complexity and
development time.

In addition to gaining a deeper understanding of the Nios II processor during the design contest, we
learned how to solve problems and achieve peace of mind, which is the most important asset that cannot
be obtained from classroom teaching.
20

	H.264 VBS-BMA-Based Hardware Infrastructure Implementation on an FPGA
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

