
FPGA-Based Smart Induction Motor Controller Design
Third Prize

FPGA-Based Smart Induction Motor
Controller Design

Institution: Electrical Engineering Department, Yuan Ze University

Participants: Zhong Zhaoming, Lin Minghong, Chen Yilong

Instructor: Lin Zhimin

Design Introduction
From a control viewpoint, DC motors must be maintained frequently due to their brushes and rectifiers.
Sometimes the motor is installed in a location that makes it difficult or impossible to maintain or repair
the motor. Compared to the disadvantages of DC motors, AC motors have a variety of advantages. for
example, AC motors feature small size, light weight, low rotary inertia, and low price. Generally
speaking, induction motors are nonlinear and time-varying with a dynamic coupling system, so the
controller design is complicated. When considering control problems, various control theories are often
proposed, e.g., proportion-integral-derivative control, sliding mode control, adaptive control, etc. These
methods aim to make the system’s behavior comply with the design requirements for all system
parameter variations and external interferences.

Most of these methods are based on knowledge of status equations for fully or partially controlled
systems. However, in practice, the status equation is not easily obtained. Therefore, research for a smart
control method with a self-learning capability for better control performance becomes an important
subject. Our design uses a neural network (NN) for its amazing effect, which traditional controllers
cannot achieve, when the system is involved in an uncertain, time-varying, or nonlinear status, etc.

The key for success using NN is the approximation characteristics. Currently, the methods commonly
proposed are the back propagation algorithm, Lyapunov stability method, genetic algorithm (GA), etc.
Although the back propagation algorithm is direct and straightforward to use, it is hard to ensure
stability and robustness in a closed-loop system. A Lyapunov stability theory-based control structure
can ensure system stability, but its computing process is complicated. GA can acquire the global
optimization result, but its calculation is large and unsuitable for real-time control. Therefore, our team
proposed using an adaptive, fuzzy neural network controller algorithm to control the induction motor.
205

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
The whole system can self-regulate parameters in real time based on the learning method deduced from
Lyapunov stability theory and back propagation algorithm. The developed algorithm obtains the fastest
parameter convergence rate, and is easy to perform and implement.

In actual use, digital controllers demonstrate higher stability, expectable output, and stronger anti-noise
capability compared to analog controllers. In particular, the rapid growth of semiconductor technology
in recent years makes single-component logic circuits the design trend. If an integrated circuit (IC) can
be implemented based on digital circuit integration and control rules, the control system will certainly
be less complicated and more reliable, providing smaller hardware, lower design cost, fast execution,
and high flexibility. FPGAs are suitable for economic returns and research schedules. Based on these
theories, we used Altera’s Nios® II processor to implement the design control rules. When writing the
program, we chose the Verilog HDL language for hardware and the Nios II processor for the control
rule software. Meanwhile, we combined some hardware peripheral circuits to finish the design and
construction of the entire experiment environment. Figure 1 describes the design of the proposed
FPGA-based smart induction motor.

Figure 1. FPGA-Based Smart Induction Motor Design

The most important and difficult part of this design is implementing the smart control algorithm
because the proposed control rules involve many calculations and complicated operations (such as
positive/negative numbers and floating-point arithmetic) and Verilog HDL uses binary concepts.
Although the complementary code and fixed-point methods are available, users unfamiliar with
Verilog HDL grammar can spend a lot of time writing code and it is difficult to perform program
maintenance. Instead, using the Nios II embedded processor for the design we wrote our code with the
familiar C language without considering positive/negative numbers and floating-point arithmetic, and
wrote code directly using the decimal system. Compiling the control rules with the Nios II processor
saved a lot of time in parameter adjustment because the Nios II processor is faster to compile than
hardware. Additionally, the Nios II processor offers a floating-point custom instruction; adding this
instruction greatly shortens the time required for the hardware to process floating-point operations,
enhancing system efficiency.

D/A Interface
Circuit

Optical Encoder
Counting Circuit

Motor Control Effort

Motor Angle
206

FPGA-Based Smart Induction Motor Controller Design
Function Description
Generally, the induction servomotor drive system can be simplified as

(1)

Here, J is the rotary inertia, B is a damping coefficient, θ is the motor’s rotation, and Tl is additional
load interference. Te is the electromagnetic torque and can be defined as below:

(2)

 (3)

Where Kt is the torque constant, is the torque current command, is the outflow current command,

np is the pole pair, Lm is the air gap magnetic flux, and Lr is the rotor inductance. In sum, the dynamic
equation of induction motor can be rewritten as:

 (4)

Here, Ap = -B/J, Bp = Kt/J > 0, Dp = -1/J, and is the control command. The purpose of the
entire induction motor control system is to design a control rule, allowing the motor angle to track the
control command exactly. Herein, the tracking error is defined as:

e = θc - θ (5)

First, provided that both system dynamic functions Ap and Bp of the induction motor and external
interference Tl can be acquired, an ideal control rule can be obtained using the feedback control theory.

(6)

Insert equation (6) of the ideal control rule into system dynamic equation (4) and obtain:

 (7)

If the appropriate selection of k1 and k2 allows equation (7) to be a Hurwitz multinomial (i.e., its roots

are all on the left half plane), control objective will be achieved. In actual use, however, the

system dynamic function and external interference often cannot be acquired, i.e., ideal control rule (6)
cannot come true.

To address the problem that the ideal controller cannot be realized owing to failed acquisition of the
system dynamic function and external interference, we proposed an adaptive fuzzy neural network
controller. Figure 2 shows the block diagram, including an NN controller and a compensation
controller, and its arithmetic formula is:

u = unn + ucp (8)

el TTBJ =++ θθ &&&

*
qste iKT =

()() *223 dsrmpt iLLnK =

*
qsi *

dsi

lqs
t T

J
i

J
K

J
B 1* −+−= θθ &&&

lppp TDuBA ++=
Δ

θ&

)()(* titu qs=

[]ekekTDABu clppp 21
1* +++−−= − &&&& θθ

021 =++ ekeke &&&

0lim =
∞→

e
t

207

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
The NN controller unn uses a fuzzy NN to learn ideal controller and uses a compensation controller
to overcome the learning error due to the neural controller. First, we define a sliding surface in packet
identifier (PID) form as shown below:

 (9)

Insert equation (8) into (4) and we get:

 (10)

By subtracting equations (6) and (10), we use equation (9) and get the dynamic equation:

 (11)

Figure 2 shows the adaptive fuzzy neural network control system block diagram.

Figure 2. Adaptive Fuzzy Neural Network Control System Block Diagram

According to the approximation theorem, we know that an optimal neural network controller is near to
the ideal control (6), i.e.,

 (12)

Where is the parameter vector of fuzzy rule of optimal value, is the activation parameter vector

of the fuzzy rules, is the approximate error for network learning, and we assume . In actual

use, the optimal network parameter often cannot be acquired directly or it has multiple solutions, so
the estimation machine estimates the entire optimal network parameter, i.e.,

 (13)

Here, is estimation parameter vector of . Thus, the output learning error of network can be
defined as:

*u

∫++=
t

dekekes
021)(ττ&

lpcpnnpp TDuuBA +++=)(θθ &&&

)(*
cpnnp uuuBs −−=&

Estimation Law

Compensation
Controller

Neural
Controller

Adaptive Laws

Sliding
Surface

S
e-

-

Θ

Θc

+

cpu

nnu

u
+

tK
eT

lT

-

+

1
Js + B

1
s

Θ

Induction Servomotor Drive

Adaptive Fuzzy Neural
Network Control

ε+= Θw Tu **

*w Θ
ε E≤ε

*w

ΘwT
nnu ˆ=

ŵ *w
208

FPGA-Based Smart Induction Motor Controller Design
 (14)

Where . Insert equation (14) into (11) and simplify (11) as:

 (15)

To learn the needed controller parameter online and ensure the stability of the entire closed-loop system,
this design deduces the required learning rules based on the Lyapunov stability theorem. Herein,
Lyapunov functions are selected as shown below:

 (16)

Where and are learning speeds and . Adjust equation (16) for time differential and
insert equation (15) into it to obtain:

 (17)

The learning rule is chosen as shown below:

 (18)

The compensation controller is chosen as shown below:

 (19)

And

 (20)

(17) can be simplified as:

 (21)

=−= nnuuu *~ ε+ΘwT~

www ˆ~ * −=

)~(cp
T

p uBs −+= εΘw&

)
2

~

2

~~
(

2
1

2

2

1

2

ηη
EBsV

T

p ++= ww

1η 2η EEE ˆ~ −=

)
~~~~

(
21 ηη
EEBssV

T

p

&&
&& ++= ww

)
~~~~

()]~([
21 ηη

ε EEBuBs
T

pcp
T

p

&&
++−+= wwΘw

)
~~

()()
~

(~
21 η

ε
η

EEBusBsB pcpp
T

p

&&
+−++= wΘw

Θww s1
~-ˆ η== &&

)sgn(ˆ sEucp =

sEE 2

~-ˆ η== &&

V& pp BsEsB −= ε 0)(≤−−≤ pBsE ε
209

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Thus, the designed control system can ensure the system stability based on the Lyapunov stability
theorem. To increase the network learning performance, our research introduces a steepest descent
algorithm to adjust more parameters. First, an energy function is defined as:

 (22)

Based on the steepest descent algorithm, the adjustment of fuzzy rule is:

(23)

Here . Comparing the coefficient of equation (18) with that of (23) and obtain:

(24)

This is a Jacobian item of the entire system and the membership function parameter can be adjusted as:

 (25)

 (26)

Figure 3 shows a block diagram of the FPGA-based induction motor smart control system. The
hardware circuit includes a frequency divider (Divider), induction motor angle counting module (Theta-
Acc), and two rows of digital-to-analog converter (DAC) modules (DAC_1, DAC_2). The software is
the Nios II embedded processor (Nios II CPU). The following sections provide a detailed description
of each module.

Figure 3. Hardware of FPGA Induction Motor Control System Block Diagram

Divider
Because the FPGA’s input frequency is 50 MHz, it is divided into the required frequency. First, we
designed two frequencies, clk and clk1. One frequency controls the DAC chip select (CS) signal, which
updates the DAC data signal (LDAC) and controls the system to input/output data once for every 1

2

2
1 eE =

kow
k

o

o

o

o
w

k
wk x

w
net

net
y

y
E

w
Ew 4

4

4

4

4

4
δη

∂
∂

∂
∂

∂
∂η

∂
∂η −=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−=−=Δ

4
4

o
o net

E
∂
∂δ =

so =4δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∂

∂
∂
∂

∂
∂

∂
∂−=−=Δ

2

2

2

2

2

3

3

3

3

4

4

4

42
2

ij

j

j

j

j

k

k

k

k

o

o

o

o
m

ij
mij m

net
net
y

y
net

net
y

y
net

net
y

y
E

m
Em

∂
∂

∂
∂

∂
∂η

∂
∂η

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∂

∂
∂
∂

∂
∂

∂
∂−=−=Δ

2

2

2

2

2

3

3

3

3

4

4

4

42
2

ij

j

j

j

j

k

k

k

k

o

o

o

oij
ij

net
net
y

y
net

net
y

y
net

net
y

y
EE

σ∂
∂

∂
∂

∂
∂η

∂σ
∂ησ σσ

Divider

Theta_Acc

Function
Generator

Nios II
CPU

DAC_1

DAC_2

clock

en

clk

Theta

Theta_ref

clk

clk

clk

clk1
Theta
Theta_ref

clk
clk1

U

A0
A1
CS
LDAC
DATA

A0
A1
CS
LDAC
DATA
210

FPGA-Based Smart Induction Motor Controller Design
millisecond (ms). The other frequency controls the DAC data selection signal (A0, A1). Control using
clk1 is slower than clk, ensuring that the data selection signal is not replaced until the output data arrives
at the input latch and avoiding incorrect data output.

Theta_Acc
This module increases the motor angle (en) calculated by the optical encoder’s 12-bit count circuit to
15 bits using an accumulator. The optical encoder’s count circuit output is only 12 bits (0 to 4,095), so
a 15-bit register (Theta) accumulates the optical encoder’s output to make the motor’s rotation angle
larger than 4,095 for forward or backward rotation.

We designed a judgment condition to determine whether the current angle and the subsequent angle,
which are 12 bits beyond the optical encoder (4,095) and smaller than 0, are forward or reverse rotation
to calculate the correct rotation angle. A prerequisite is that the current and subsequent rotation angle
shall not be larger than 2,047°. Then, the design accumulates the result with an accumulator and outputs
it.

Function Generator Module
This module stores the sinusoidal function value in memory. It reads the memory content value using a
look-up table to generate the sinusoidal function (Theta_ref) of the motor tracking command. The
content value of the sinusoidal function memory has output-enabled amplitude of 2 V and a frequency
of 1/2π. It increases as the sinusoidal function of 5/3π after 5.5 seconds.

Nios II CPU
The Nios II CPU writes the induction motor’s proposed smart control rule and uses interrupts to control
its calculation cycle as 1 ms. When an interrupt is generated during program execution, the design first
inputs the motor angle and tracking command output with the induction motor’s angle counting module
hardware circuit and the function generator module into the Nios II CPU. Then, it calculates the motor’s
control effort using a CPU control rule. Because the calculated motor control effort ranges from -5 to
+5 V and the induction motor’s control voltage ranges from 0 to 10 V—in which 5 V means stop, >5 V
means forward rotation, and <5 V means reverse rotation—5 V must be added in the displacement
method to make the control voltage range 0 to 10 V. Finally, this control effort is output to the next
module.

Digital-to-Analog Control Module (DAC_1, DAC_2)
This first group of digital-to-analog (D/A) modules outputs tracking commands and the motor angle,
and the output voltage ranges from -5 to +5 V. Because the DAC IC can output two groups of signals
(12 bits) but can only receive 8 bits of data, the tracking command and motor angle are output four
times. First, the system separates the 12 -bit tracking commands and motor angle for output into 8
low-bit data and 4 high-bit data, and outputs the data to the DAC input latch with data selection signal
(A1, A0), respectively. It uses the update signal (LDAC) to transfer the input latch data to the DAC latch
to output the updated data. The output order is: output 8 low-bit, tracking command data and its 4
high-bit data. Then, output the 8 low-bit data of the motor angle and its 4 high-bit data.

The second group of D/A modules outputs the motor control. Because the DAC IC can output two
groups of signals, the two groups of 12-bit motor control effort are also separated into 8 low-bit data
and 4 high-bit data and output four times. The motor control input voltage of one group ranges from 0
to 10 V for controlling induction motor; the other group ranges from -5 to +5 V for connecting the
oscillometer for observation.

Performance Parameters
Because we used an FPGA in this design, both the angle sampling cycle and induction motor control
frequency can reach 1 kHz. Compared to a computer or single chip, which was used in the past, the
FPGA remarkably boosts the control performance. Particularly, using the Nios II embedded processor
to calculate the proposed smart control rule not only simplifies writing the program with Verilog HDL
211

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
but greatly shortens the development time. Additionally, because we can add peripheral devices quickly
and easily, and many intellectual property (IP) cores are available, we can easily adjust the entire control
system according to our needs and amend the control rule operation parameters and algorithm rules
quickly.

Design Architecture
The design’s peripheral circuit, as shown in Figure 4, contains an optical encoder count circuit and two
groups of D/A signal circuits with adjustable output voltage. The entire induction motor positioning
control experiment environment is shown in Figure 5 and the Nios II system circuit designed with the
Quartus II software is shown in Figure 6. Figure 7 shows the software flow chart of the C language
program flow written using the Nios II Integrated Development Environment (IDE).

Figure 4. Peripheral Hardware Printed Circuit Board

Figure 5. FPGA-Based Induction Motor Smart Control System Experiment Environment
212

FPGA-Based Smart Induction Motor Controller Design
Figure 6. FPGA-Based Induction Motor Smart Control System Circuit Design
213

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
Figure 7. Software Flow Chart

Design Methodology
We used the methodology described in the following steps:

1. Design the peripheral hardware circuit of the induction motor system, including one group of the
optical encoder count circuit and 2 D/A circuit groups. The optical encoder count circuit receives
the rotation angle of the optical scale/encoder climate count induction motor, and the MC14584B
IC postpones the optical encoder’s phase A and phase B, causing fourfold resolution. The
SN74159 IC uses the fourfold frequency signal to determine whether the induction motor rotates
forward or backward and calculates its rotation angle with three 4-bit SN74193 ICs, obtaining the
motor’s actual angle. For the D/A design, we use the AD7237 IC, which has two channels capable
of outputting 0 to 10 V and -5 to 5 V voltage signals, respectively. The 74245 IC prevents the
current from back-flowing to the FPGA-based development board.

2. Use the Quartus II software to write Verilog HDL code (motor angle count module, D/A control
module) corresponding to the optical encoder count circuit and D/A circuit. Perform simulation
and actual hardware testing using the Quartus II software and peripheral hardware circuit, and use
an oscillogram and embedded logic analyzer to verify the functionality.

3. Write a divider and control command function generator module. Use the divider to manage the
system hardware control cycle as 1 ms. Pinpoint the command function value as 3 bits after the
decimal point and stored it in the sinusoidal function memory.

End

Update the Control
Parameters

End

Initialize Motor
Parameters &

On-Chip Peripherals

Read Tracking
Command & Rotor

Angle Position

Main

1 ms Trigger Off 1 ms Trigger Off

ISR

Reset Timer Counter

1 ms Trigger
On?

Call Control_Algorithm

Shift Control Effort
to 0 to 10 V

Output Tracking
Command, Rotor Angle
Position & Control Effort

1 ms Trigger
On?

No

Yes

End

No

Calculate the Tracking
Error & Sliding Mode

Surface

Control_Algorithm

Calculate the
Neural Control

Calculate the
Compensation Control
214

FPGA-Based Smart Induction Motor Controller Design
4. Create a Nios II embedded processor for the induction motor control system using SOPC Builder.
The system contain a 32-bit Nios II CPU, floating-point custom instruction, Nios II flash storage
and SDRAM, Avalon® tri-state bridge, system ID peripheral, JTAG UART, timer for the Nios II
processor, timer for interrupts, PLL providing the CPU and SRDAM clock, and an Avalon PIO
for the motor angle, tracking command, and control effort. Combine the system with the hardware
program to complete the hardware structure of the induction motor control system.

5. Use the Nios IDE to write a software program containing the peripheral device, smart control rule
of the induction motor, control program, and main program. Design a 1-kHz interrupt program
that executes the induction motor’s smart control rule once every 1 ms to calculate the induction
motor’s output control effort.

6. Integrate a peripheral hardware circuit, Verilog HDL hardware program, Nios II software
program, and induction motor to complete the FPGA-based induction motor smart control
system.

7. After the induction motor is booted, its actual angle is first obtained by the optical encoder’s count
circuit and is increased by 15 bits through the FPGA hardware’s motor angle count module. It is
then sent to the Nios II CPU with motor angle tracking command generated by the control
command function generator module. After the program is interrupted, the count circuit calculates
the motor control effort using the induction motor’s smart control rule and conveys it to the D/A
module. It outputs to the external D/A chip to control the induction motor after it is converted into
analog voltage.

8. Use a digital oscillometer to observe the control result and verify the performance of the entire
induction motor smart control system. Figure 8 shows the experiment result, including the
tracking command and motor position and induction motor control effort. The result shows that
the method proposed provides a good response after it learns the control parameters, and it is not
bad when the control command changes. Therefore, we conclude that our proposed method can
effectively control the induction motor’s rotation angle.

Figure 8. FPGA-Based Induction Motor Smart Control System Experiment Results

9. Subject to the contest, we have no way to demonstrate the result of the FPGA-based induction
motor smart control system, so we display the hardware performance by controlling a brushless
DC motor when exhibiting the project. In this case, it further reveals and proves the Nios II
functionality and convenience as well as the adaptability of the smart control system. When the
control objects are different, we do not need to change the hardware design or the controller
parameters because of the on-board artificial intelligence.

Design Features
Integrated with an artificial intelligence smart control technology, we developed this design and applied
it to various examples. Applying induction motor positioning control demonstrates the superiority of
the design. This design has the following features:

tracking command

rotor position
1sec

2V

control effort

1sec
2V

Tracking Command and Motor Position Control Effort
215

Nios II Embedded Processor Design Contest—Outstanding Designs 2007
■ Fast learning capability and robust control rules—Because induction motor control is
complicated and motor parameters easily vary with operation, traditional methods cannot provide
effective controls. Therefore, we proposed an adaptive fuzzy neutral network controller. The
entire control system includes an NN controller and a compensation controller, of which the
former uses a fuzzy neural network to learn and is near to an ideal controller and the latter ensures
the stability of the entire system. The controller can self-regulate its parameters in real time
according to the learning method deduced by the Lyapunov stability theory, so that stability of the
entire closed-loop circuit system ensures convergence. An induction motor control system
integrated with the these two controllers achieves robustness and accurate positioning control of
the induction motor control system. The adaptive fuzzy neural network controller has learning
ability and adjusts its internal parameter value promptly according to external interference,
achieving good control performance. Therefore, even for control systems requiring high
reliability and real-time reaction, the designer does not need to worry about poor control caused
by parameter changes or equipment failure due to long-term use.

■ Improved performance with FPGA—In recent years, fueled by improving IC process technology,
FPGA technology has become mature and is often applied to various hardware-enabled
algorithms. Moreover, more and more systems on chip (SOC) have been used, so the proposed
adaptive fuzzy neural network controller is implemented by an FPGA in this design. Compared
with computers that were used in the past, FPGAs reduce the size of the control system, improve
flexibility, lower cost, and boost the system’s calculation and execution speed. In particular, by
virtue of the FPGA’s reprogrammability, designers can keep changing and planning devices to
cater to users’ needs.

■ Coded in Verilog HDL—In the aspect of software writing, the hardware peripheral circuit is
designed in Verilog HDL. We used the Nios II processor for the control rules, which simplifies
the program and accelerates design and parameter adjustment.

■ Control system meets industry demands—Using an adaptive fuzzy neural network controller in an
FPGA, this design offer low cost, high performance, and high reliability for the induction motor
control system. A slightly modified program can be used to control various motors. Featuring
small size, high flexibility, low cost, fast processing speed, short production period, and
modularized design of the hardware architecture, the system does not require much effort when
applied to different control systems. Therefore, the design can be used in various highly efficient
controls, including on-line and real-time learning systems (e.g., a machine arm in industrial and
medical fields), household robot control systems, car back-up systems, automatic driving
systems, and digital wheel chair systems. We believe that the design will contribute to many areas,
including industrial and medical fields.

Conclusion
Before the contest we had a basic knowledge of Verilog HDL programming and the Quartus II software,
but we were not very familiar with them. We did not know anything about the Nios II processor. During
the contest we improved our hardware design ability and found that the powerful Nios II processor can
not only accelerate hardware design, but also simplify and facilitate the design methodology. Thus, we
could use many tools—such as an embedded processor, floating-point custom instruction, and
memory—to plan the hardware quickly and easily. From the results, we were impressed by the FPGA
performance. Moreover, the user-friendly Nios IDE allowed us to write, compile, and execute our
programs easily. This project was not only helpful for our future research, but also strengthened our
competitiveness for development in this field.
216

	FPGA-Based Smart Induction Motor Controller Design
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

