
Power Distribution Network Design for Stratix IV GX and Arria II GX FPGAs

Transceiver Portfolio Workshops 2009

© 2009 Altera Corporation—Public

Question – What is Your PDN Design Methodology?

© 2009 Altera Corporation—Public

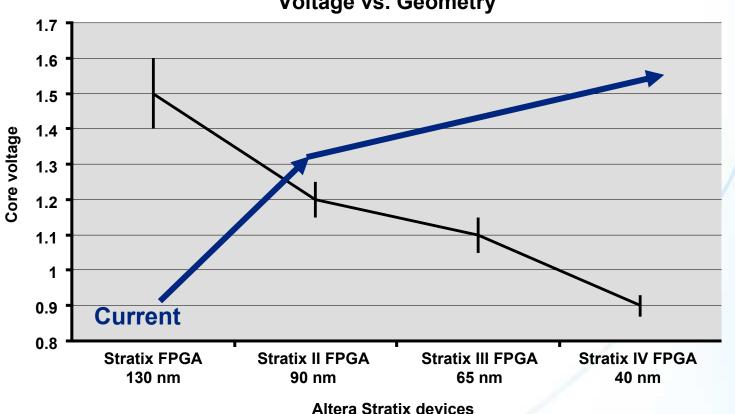
Agenda

- Power integrity issues
- Challenges of 40-nm PDN design and Altera innovations to help
- What is the PDN?
- PDN design and decoupling schemes
- Power distribution network design
- Altera's PDN design tool flow
- Summary

© 2009 Altera Corporation—Public

Common Power Integrity Issues

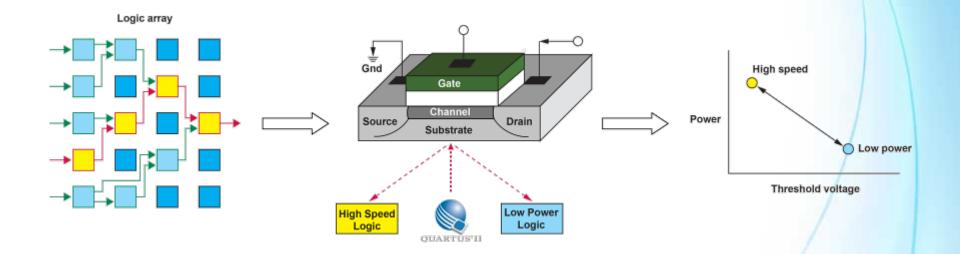
- Power integrity issues can result in:
 - Increased jitter
 - Poor timing results (decreased slew rate)
 - Device brown-out and metastability
 - Logic errors
 - EMI (electromagnetic interference) problems
- Power integrity issues can be:
 - Difficult to diagnose
 - Be found late in design cycle or post-deployment


Need a power distribution network design methodology

© 2009 Altera Corporation—Public

Technology Challenges

Larger densities and lower voltages with less noise margin create challenges for power design



Voltage vs. Geometry

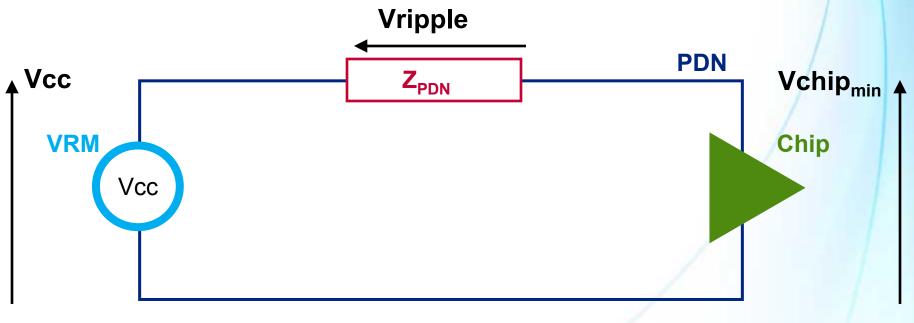
© 2009 Altera Corporation—Public

Programmable Power Technology (PPT) for Stratix III and Stratix IV FPGAs

Quartus II software automatically adjusts transistor threshold voltage for low power and high performance

Note: A very simplistic "model" of Programmable Power Technology. Actual implementation varies and is patented.

© 2009 Altera Corporation—Public

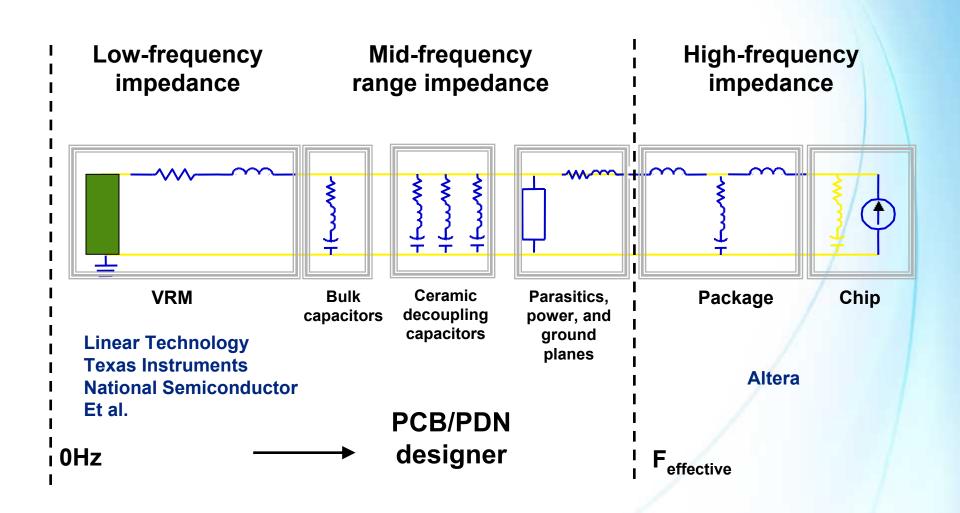


Role of the PDN

 Distributes clean power to each device from the voltage regulating module (VRM) to the power rails of the chip

– Keep ripple noise (rail collapse) < spec (typically 5%)</p>

Provides return path for I/O signals



Vcc - Vripple ≥ Vchip_{min}

© 2009 Altera Corporation—Public

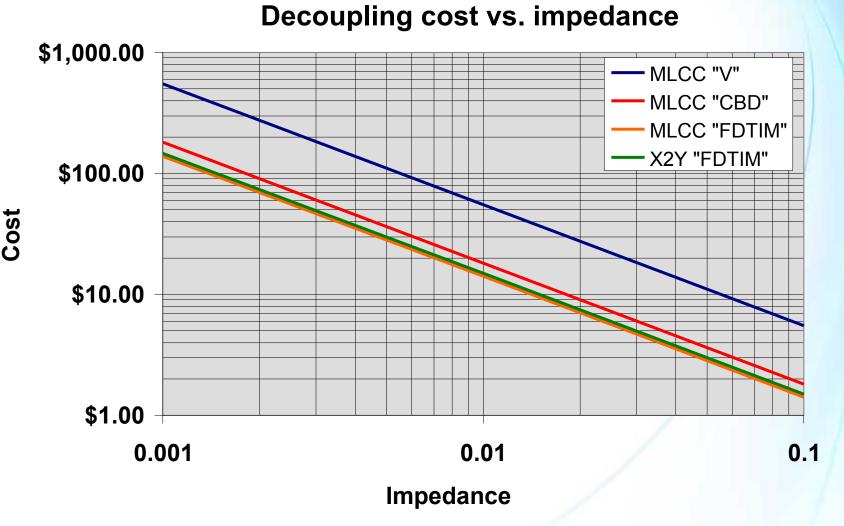
Simplified Model of a PDN

© 2009 Altera Corporation—Public

PDN and Decoupling Schemes

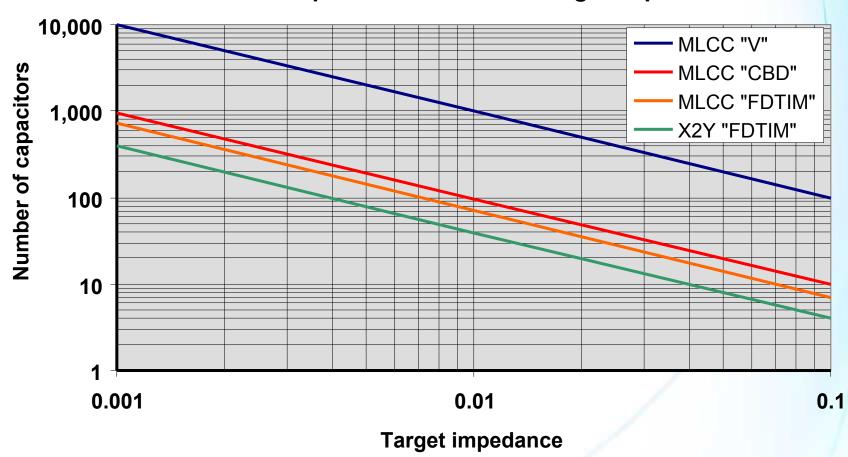
© 2009 Altera Corporation—Public

ALERA


Different Schemes for Decoupling

- Frequency domain target impedance methodology (FDTIM) or multi-pole (MP)
 - Good: Least number of capacitors, very stable, and low cost
 - Bad: Requires analysis of the network and can require many different capacitor values
- Capacitors-by-the-decade (CBD)
 - Good: Less capacitor types than FDTIM and fewer capacitors than Big-V
 - Bad: Produces a more unstable solution than FTDIM with more capacitors, requires some analysis
- Big-V
 - Good: Least number of different capacitors, requires least amount of analysis
 - Bad: Requires the most amount of capacitors, making it inefficient, extremely costly, and possibly unstable
- Distributed matched bypassing (DMB)
 - Good: Most stable, requires less capacitors than Big-V or CBD
 - Bad: Requires the most analysis with costly embedded PCB resistors, capacitor value is locked per capacitor pad

^{© 2009} Altera Corporation—Public

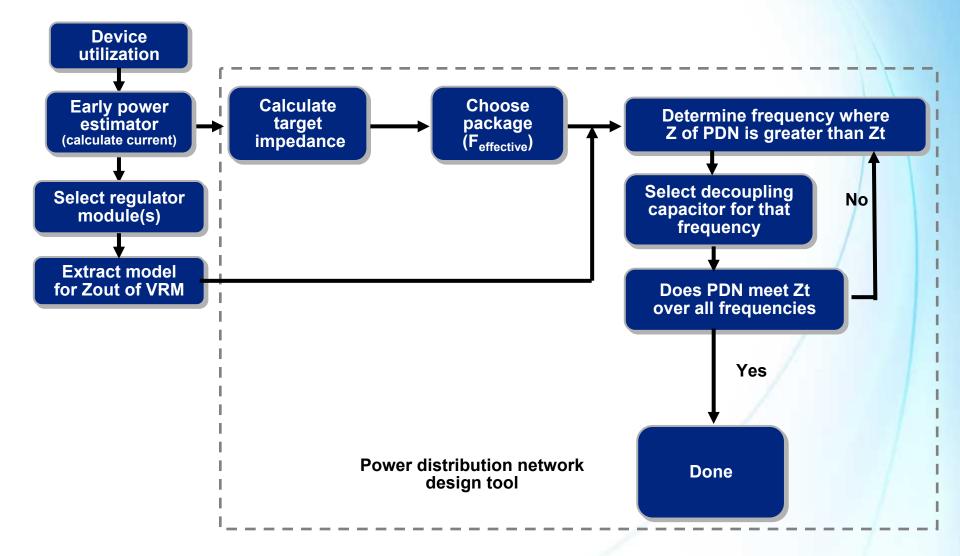

Decoupling Cost for Each Scheme

© 2009 Altera Corporation—Public

Capacitors Needed for Decoupling Scheme

Number of capacitors needed vs. target impedance

© 2009 Altera Corporation—Public

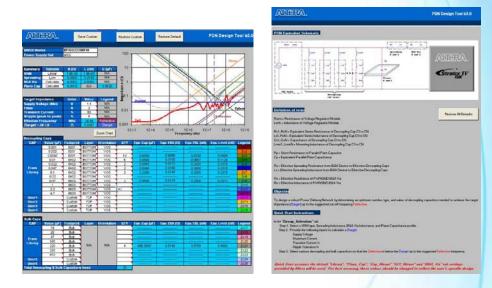

Power Distribution Network Design

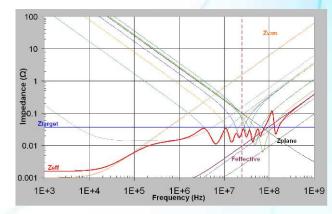
ADERA.

Altera's PDN Design Tool Flow

© 2009 Altera Corporation—Public

Power Distribution Network Design Flow


© 2009 Altera Corporation—Public



Altera's Power Distribution Network Design Tool

- Excel spreadsheet tool
- You supply:
 - Rail current
 - VRM choice
 - Package choice
 - PCB specification
 - Stack up, via size, capacitor outline
 - Spreading inductance
- You select:
 - Capacitor values and quantity
- Tool shows you:
 - Impedance plot over frequency

Robust, low-cost PDN suited to your design

© 2009 Altera Corporation—**Public**

PDN Design Tool Flow

Stratix IV GX FPGA – VCC supply example

SIVGX Dev	ice	EP4SGX230KF40			
Power Sup	ply Rail	VCC			
Summary	Options	R (Ω)	L (nH)	C (μF)	
VRM	Switcher	1.0E-03	2.0E+01	N/A	
Spreading	Low	0.0005	0.0150	N/A	
BGA Via	Calculate	0.0002	0.0261	N/A	
Plane Cap	Calculate	0.0019	N/A	0.0630	
Target Imp	edance	Units	Value	Legend	
Supply Vol	tage (Min)	V	0.9	N/A	
l max		Α	3	N/A	
Transient C	Current	%	50	N/A	
Vripple (pe	ak-to-peak)	<mark>%</mark> 3		N/A	
Effective Fi	requency	MHz	24.84	Feffective	
Ztarget = Δ	V / ΔI	Ω	0.0180	Ztarget	

PDN tool setup

- Select device (package)
 - With BGA, via and plane spreading generates f_{effective}
- Select voltage regulator module (VRM)
 - Type
- Select plane capacitance
 - Type
- Supply rail
 - Voltage
 - Ripple voltage as %
 - See appendix
- Compute maximum supply current
 - Use early power estimator value
 - Or use Quartus II PowerPlay power analyzer maximum transient current to adjust transient current %

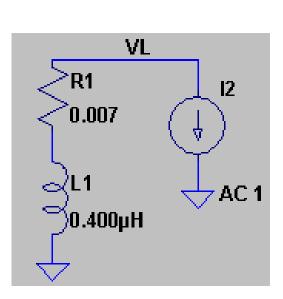
© 2009 Altera Corporation—Public

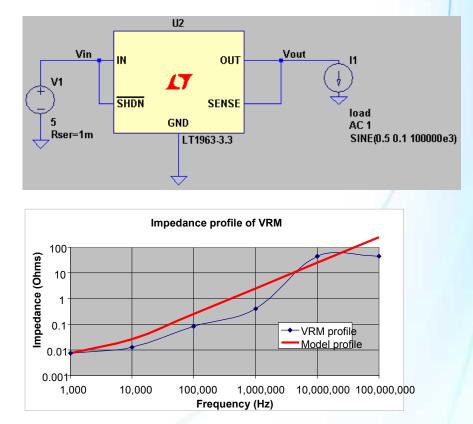
Calculating Target Impedance

- Altera target impedance (Zt) is calculated for each rail by dividing the allowed voltage deviation by the dynamic current drawn by the device
- The dynamic current is calculated to be 50% of the maximum current drawn, estimated from EPE

$$Z_{Target} = \left(\frac{V_{rail} \times \% _ripple}{\frac{1}{2}I_{MAX}}\right) = \left(\frac{V_{ripple}}{\frac{1}{2}I_{MAX}}\right)$$

PowerPlay power analyzer in Quartus II software provides the maximum dynamic current


$$Z_{Target} = \left(\frac{V_{rail} \times \% _ripple}{I_{MAX \, dynamic}}\right) = \left(\frac{V_{ripple}}{I_{MAX \, dynamic}}\right)$$


© 2009 Altera Corporation—Public

Selecting Voltage Regulator Module

- The VRM has an impedance profile that behaves like an inductor and resistor in series
- Custom option in PDN tool to model any VRM

© 2009 Altera Corporation—**Public**

Package Choice – Stratix IV GX Device Package Plan

Device	F780 (29 mm)	F1152 (35 mm)	F1152 (35 mm)	F1517 (40 mm)	F1760 (43 mm)	F1932 (45 mm)
EP4SGX70	368, 28, 8		480 <mark>, 56</mark> , 24		Pi	n
EP4SGX110	36 <mark>8, 2</mark> 8, 8	368 <mark>, 28</mark> , 16	480 <mark>, 56</mark> , 24		mi	gration
EP4SGX180	36 <mark>8, 2</mark> 8, 8	560 <mark>, 44</mark> , 16	560, 44, 24	73 <mark>6, 88</mark> , 36		
EP4SGX230 1 st device	368, 28, 8	560 <mark>, 44</mark> , 16	560, 44, 24	736 <mark>, 88</mark> , 36		
EP4SGX290	288, 0, 16	560 <mark>, 44</mark> , 16	560 <mark>, 44</mark> , 24	736 <mark>, 88</mark> , 36	864 <mark>, 88</mark> , 36	904 <mark>, 98</mark> , 48
EP4SGX360	28 <mark>8, 0</mark> , 16	560 <mark>, 44</mark> , 16	560 <mark>, 44</mark> , 24	736 <mark>, 88</mark> , 36	864 <mark>, 88</mark> , 36	904 <mark>, 98</mark> , 48
EP4SGX530 2 nd device			560, 44, 24	736, 88, 36	864, 88, 36	904, 98, 48

Total I/O, LVDS, transceiver counts

ounts

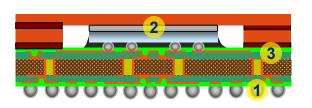
Notes:

Flip-chip ball-grid array (BGA) with 1.0-mm pitch Details subject to change

→ 14-layer package substrate with increased onpackage decoupling (OPD)

EP4SGX230HF35C4(N)

H, K, N all have enhanced OPD

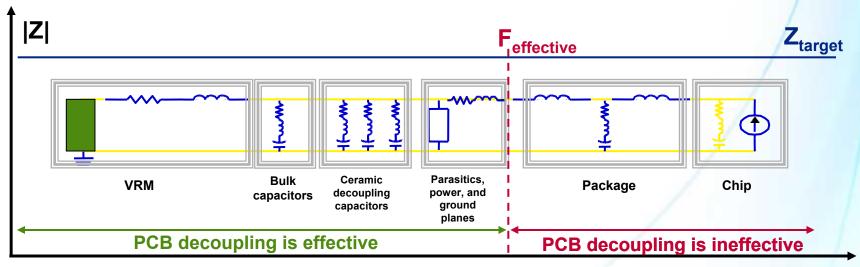

© 2009 Altera Corporation—Public

Package and Die Features

	f _{effective} −		
Supply	EP4SGX230FF35 (8 layers)	EP4SGX230HF35 (14 layers)	
VCC	~25 MHz	~24 MHz	
VCCA_(L/R)	80 MHz	~20 MHz	
VCCR_(L/R)	~50 MHz	~20 MHz	
VCCT_(L/R)	~50 MHz	~20 MHz	
VCCHIP_(L/R)	80 MHz	~60 MHz	

Typical maximum frequency needed to be decoupled for different Stratix IV GX packages (This is device dependent. You need to use the PDN tool.)

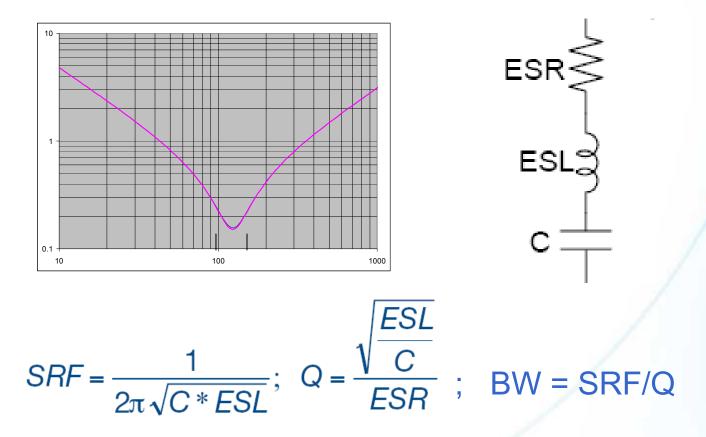
Note: preliminary data


Silicon and package features	Benefits
 8:1:1 – I/O:GND:PWR ratio On-die decoupling capacitors On-package decoupling capacitors 	 Reduces loop inductance → reduces SSN Improves power quality Improves power quality

© 2009 Altera Corporation—Public

Use f_{effective} to Reduce Over-Design

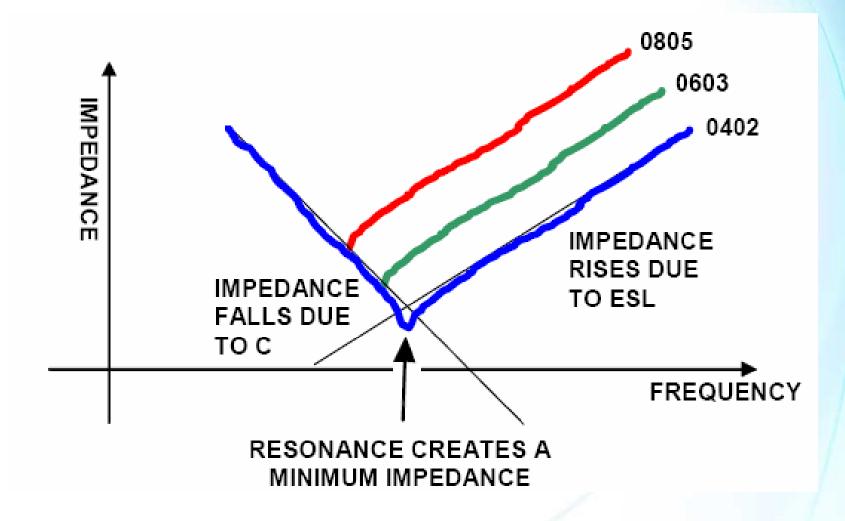
- PCB decoupling capacitors are ineffective in reducing PDN |Z| beyond f_{effective}
 - PCB capacitors are limited due to system ESL
 - Device OPD/ODC dominate at high frequencies
- f_{effective} is device specific
 - f_{effective} calculation takes die, package, and PCB parasitics



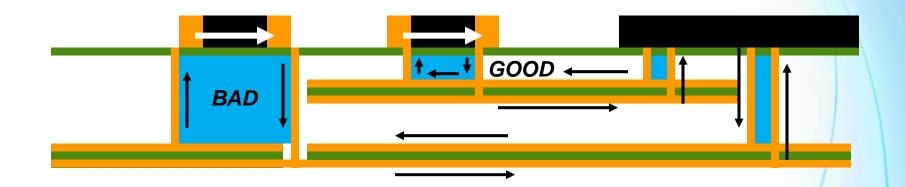
Frequency

© 2009 Altera Corporation—Public

Properties of Decoupling Capacitor

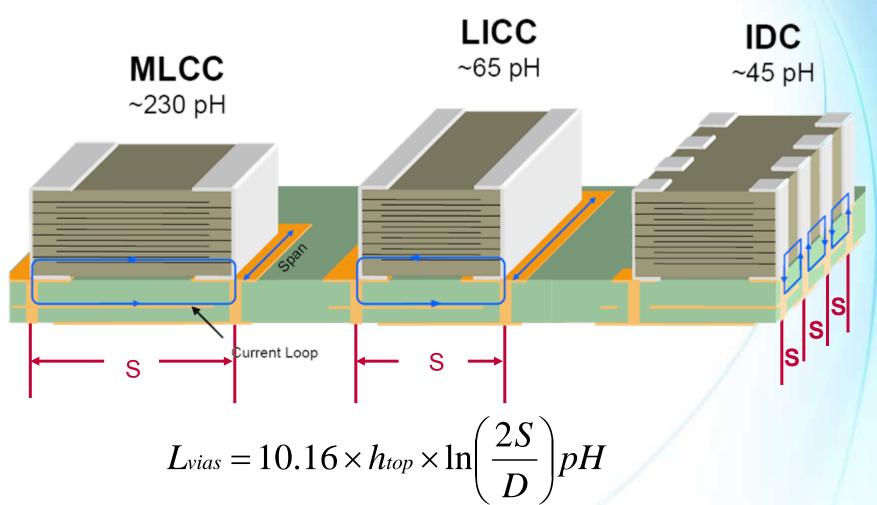

The most effective area of decoupling occurs within the bandwidth of any given capacitor

© 2009 Altera Corporation—Public


Z Profile vs. Package

© 2009 Altera Corporation—Public

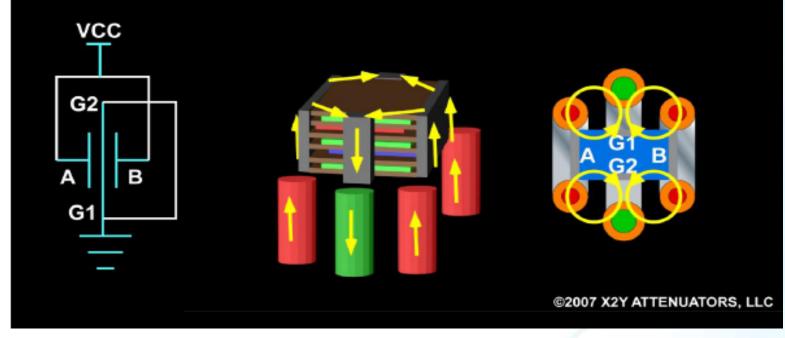
Mounting Inductance


Reduce mounting inductance

- Place capacitor as close as possible to load
- Place capacitor on load side of board
- Place power plane for power delivery close to load
- Place power and GND planes adjacent for interplane capacitance
- Place vias to power and ground on capacitor as close as possible

© 2009 Altera Corporation—Public

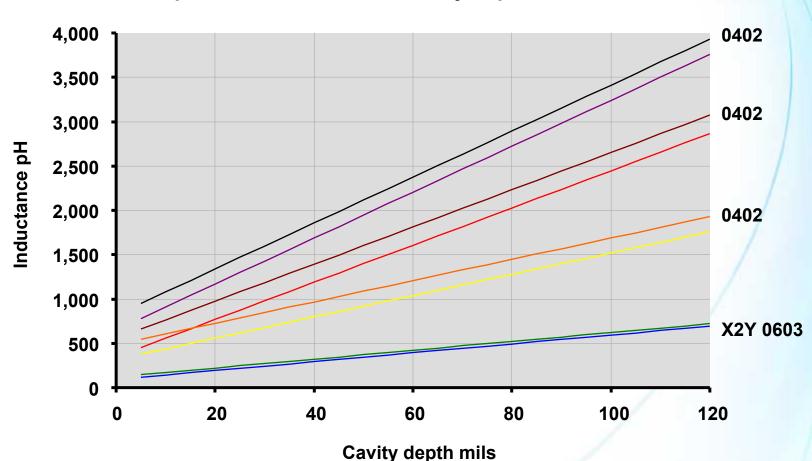
Loop Inductances and Capacitor Geometry


Courtesy of AVX

© 2009 Altera Corporation—Public

Loop Inductance on X2Y Geometry

X2Y[®] BYPASS APPLICATION FOUR SMALL INDUCTION LOOPS BETWEEN TERMINALS AND VIAS



Courtesy of X2Y

© 2009 Altera Corporation—Public

Capacitor Geometry and Inductive Loops

Capacitor inductance vs. cavity depth from surface

Courtesy of X2Y

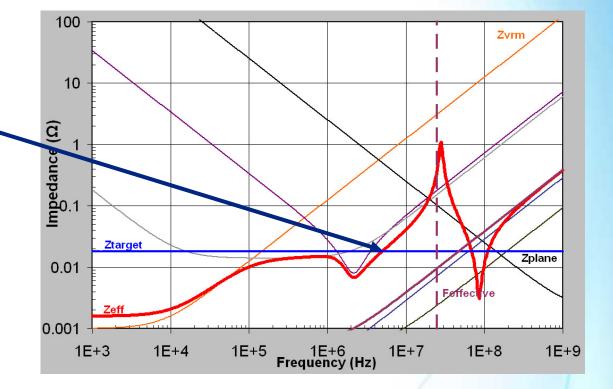
© 2009 Altera Corporation—Public

- Select VRM
- Start at the lowest frequency where Z_{eff} crosses Z_{target}

■ ~150 kHz

 Add large capacitors until Z_{eff} < Z_{target} at target frequency

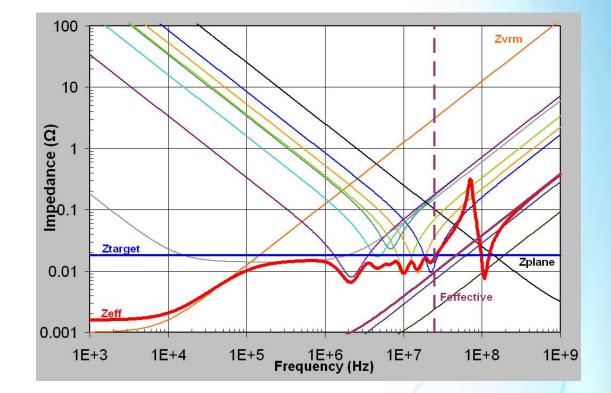
© 2009 Altera Corporation—Public



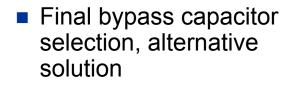
100 Added 4 x 220µF bulk Zvrm capacitors 10 New crossing point -Add smaller capacitors Impedance (9 Ztarget Zplane 0.01 | Feffec ve 0.001 1E+5 1E+3 1E+4 1E+7 1E+8 1E+9 1E+6 Frequency (Hz)

© 2009 Altera Corporation—Public

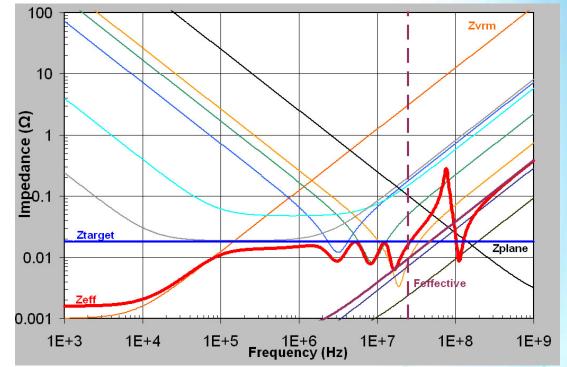
- 4 x 220µF bulk capacitors, 1 x 4.7µF MLCC capacitor
- New crossing point } ·
- Add smaller capacitors
- Until crossing point ≥ past f_{effective}



© 2009 Altera Corporation—Public


 Final bypass capacitor selection

4 x 220µF bulk cap 1 x 4.7µF MLCC 0603 1 x 1µF MLCC 0603 1 x 0.47µF MLCC 0603 2 x 0.22µF MLCC 0402 3 x 100nF MLCC 0402 4 x 47nF MLCC 0402 **Total 15 caps**



© 2009 Altera Corporation—Public

3 x 220µF bulk cap 4 x 10µF bulk cap 1 x 2.2µF MLCC 0603 1 x 0.47µF MLCC 0603 X2Y 3 x 100nF MLCC 0603 X2Y **Total 12 caps**

Many different solutions – still needs engineering skill for optimal solution

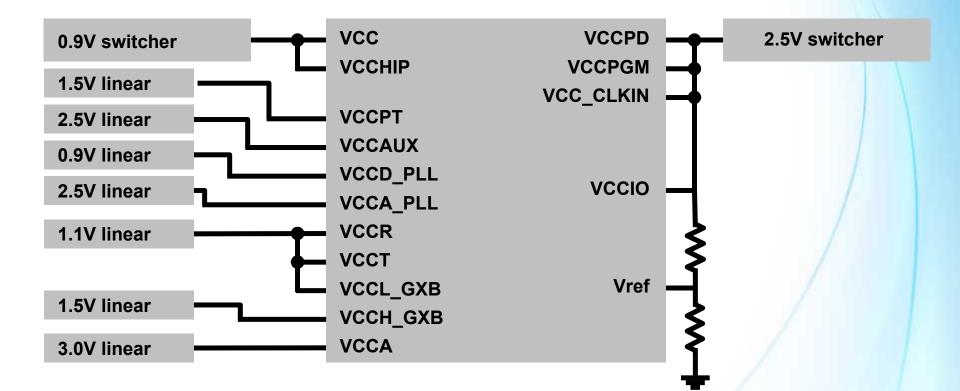
© 2009 Altera Corporation—Public

Summary

- Innovative architecture and advanced process technologies ease PDN design
 - Programmable Power Technology
 - Stratix IV GX FPGAs lowest power, high-performance FPGAs
 - Arria II GX FPGAs lowest power, cost-optimized FPGAs with up to 3.75-Gbps transceivers
- Best-in-class FPGA power modeling
 - Early power estimator and Quartus II PowerPlay power analyzer
 - Accurate power estimator
 - Allows power optimization
- Ease of design with Altera's PDN tool
 - Fairly accurate, easy-to-use spreadsheet tool
 - Provides a scientific way (FDTIM) to decouple power rails in the system
 - As accurate as the inputs provided by the user
 - Has proved very useful while designing PDN for Altera boards

© 2009 Altera Corporation—Public

More Information


- Board Design Resource Center
 - PDN tool
 - Channel design guidelines
 - PCB and stack-up design considerations
 - Memory interfacing, thermal considerations, and much more
 - www.altera.com/board
- Power distribution network design tool
 - Altera PDN Design Tool
 - Altera PDN Design Tool User Guide
 - Online training <u>Power Distribution Network Design for Stratix III and</u> <u>Stratix IV FPGAs</u>
 - For more information on FDTIM (method behind PDN tool), refer to <u>Comparison of Power Distribution Network Design</u> <u>Methods (PDF)</u>

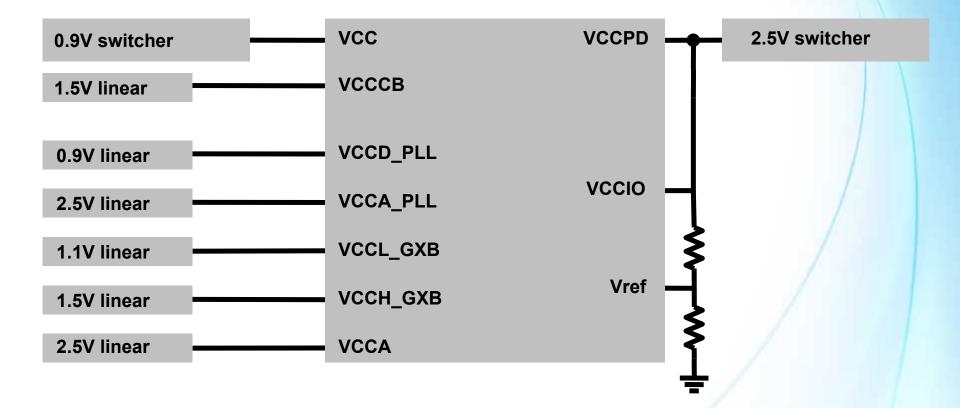
© 2009 Altera Corporation—Public

Stratix IV GX Power Rails

VCCBAT not shown

© 2009 Altera Corporation—Public

Stratix IV GX Power Rails (Min. Combined)


No	Rail name	Voltage	Voltage ripple tolerance	Description
1	VCC	0.9V	\$ 3.3%	Core and periphery
	VCCHIP	0.9V	+ 5%*	*Transceiver PCI Express hard IP block
2	VCCPD	2.5V	\$ 5%	I/O pre-drivers
	VCCPGM	2.5V	\$ 5%	Configuration I/Os
	VCC_CLKIN	2.5V	\$ 5%	VIO clock input pins
3	VCCPT	1.5V	+ 3.3%	Programmable Power Technology
4	VCCAUX	2.5V	\$ 5%	Programmable Power Technology aux.
5	VCCD_PLL	0.9V	+ 3.3%	PLL digital
6	VCCA_PLL	2.5V	\$ 5%	PLL analog
7	VCCR	1.1V	\$ 5%	Transceiver analog receive
	VCCT	1.1V	\$ 5%	Transceiver analog transmit
	VCCL_GXB	1.1V	\$ 5%	Transceiver clock distribution
8	VCCH_GXB	1.5V	\$ 5%	Transceiver block buffers
9	VCCA	3.0V	\$ 5%	Transceiver analog Tx/Rx driver
10	VCCIO[23:0]	1.2V-3.0V	\$ 5%	24 I/O banks

* If connected to VCC – supply must support tighter VCC tolerance (3.3%)

© 2009 Altera Corporation—Public

Arria II GX Power Rails

VCCBAT not shown

© 2009 Altera Corporation—Public

Arria II GX Power Rails (Min. Combined)

No	Rail name	Voltage	Voltage ripple tolerance	Description
1	VCC	0.9V	\$ 3.3%	Core, periphery, PCIe hard IP, and transceiver PCS
2	VCCPD	2.5V	\$ 5%	I/O pre-drivers
3	VCCCB	1.5V	\$ 5%	Configuration RAM supply
4	VCCD_PLL	0.9V	\$ 3.3%	PLL digital supply
5	VCCA_PLL	2.5V	\$ 5%	PLL analog supply
6	VCCL_GXB	1.1V	\$ 5%	Transceiver PMA Tx/Rx and clock supply
7	VCCH_GXB	1.5V	\$ 5%	Transceiver PMA Tx buffer supply
8	VCCA	2.5V	\$ 5%	Transceiver PMA regulator supply
9	VCCIO[23:0]	1.2V-3.0V	\$ 5%	24 I/O banks

© 2009 Altera Corporation—Public

