
   
 

   

 
 
 
 

MAX+PLUS II 
Laboratory Exercise Manual 

for 
Introduction to Verilog 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

2



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
3

 

Introduction to Verilog Lab Overview 

Objective : Build a sequential 8 X 8 multiplier 
 
 
The objective of the following exercises is to build an 8 X 8 multiplier.  The input to the multiplier consists 
of two 8-bit multiplicands (a[7:0], b[7:0]) and the output from the multiplier is a 16-bit result (result[15:0]).  
Additional outputs are a done bit (DONE_FLAG) and seven signals to drive a seven segment display, 
(A,B,C,D,E,F,G).   
 
There are several methods of implementing a multiplier, the method chosen for the Verilog labs is the 
sequential multiplier method.  This 8 X 8 multiplier requires four clock cycles to perform the full 
multiplication.  During each cycle, a pair of 4-bit portion of the multiplicands are multiplied in a 4 X 4 
multiplier.  The multiplication result of these 4 bit slices are then accumulated.  At the end of the four 
cycles, the full composed 16-bit result can be read at the output. 
 
The following equations illustrate the mathematical principles supporting this implementation: 
 
result[15:0] = a[7:0] * b[7:0] 
 
 =  ( ( a[7:4] * 2 ^ 4) + a[3:0] * 2 ^ 0 ) 
  * ( ( b[7:4] * 2 ^ 4) + b[3:0] * 2 ^ 0 ) 
 
 =  ( ( a[7:4] * b[7:4] ) * 2 ^ 8 ) 
  + ( ( a[7:4] * b[3:0] ) * 2 ^ 4 ) 
  + ( ( a[3:0] * b[7:4] ) * 2 ^ 4 ) 
  + ( ( a[3:0] * b[3:0] ) * 2 ^ 0 ) 
 
Figure 1 in the following page illustrates the top level block diagram of the 8 X 8 multiplier. 
 
The labs are structured as a bottom-up design approach.  In each of the first seven exercises, you will use 
targeted features of the Verilog language to build the individual components of the 8 X 8 multiplier.  Then, 
in exercise 5 you will put everything together in a top level design.  You will then compile and simulate to 
verify the completeness of your design. 
 
Good luck and have fun going through the exercises! 
 
 
 
 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

4

 
 

Figure 1 - 8 X 8 multiplier top level design block diagram  



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
5

 
 
 
 
 

 
 

Exercise 1 

 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

6

Exercise 1 

Part 1: 

Objective:  Build a 16-bit adder 
 
The 16-bit adder can be constructed using the + operator.  It is used to perform the additions in the 
following equation: 
 
result[15:0] = a [7:0] * b[7:0] 
 
 =  ( ( a[7:4] * b[7:4] ) * 2 ^ 8 ) 
  + ( ( a[7:4] * b[3:0] ) * 2 ^ 4 ) 
  + ( ( a[3:0] * b[7:4] ) * 2 ^ 4 ) 
            + ( ( a[3:0] * b[3:0] ) * 2 ^ 0 ) 
 
 
 
 

 
Figure 1-1a. 

 
 
 
 

 
Step 1 (Create new text file and set to current project) 
 
1.  Create a new VERILOG text file.  

2.  Under File Type:  Choose Text Editor File.  Click OK. 

3.  Save new VERILOG text file to <path>\altera_trn\ver\lab1\adder.v.                                                                  

Go to File menu and Choose Save As. 

4.  Set adder.v as the current project.  

5.  Write your code. 

Remember to use the same input and output port names as shown in Figure 1-1a. 
 
 
 
 



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
7

Step 2 (Save and check design) 
 
Save and check adder.v. 

 
 

Save and check checks for syntax and semantic errors.  The compiler should stop on the Compiler 

Netlist Extractor if there are no error messages. 
 
 
 
Step 3 (Do a functional compilation) 
 
1.  Bring the compiler to the foreground.  

2.  Go to Processing menu and Turn on Functional SNF Extractor. 

3.  Run the compiler.  

 
 
Step 4 (Do a functional simulation) 
 
1.  The stimulus file has been created for you to verify the functionality of your design.  If you are 

interested in learning how to create your own stimulus file, please go to the Appendix of this manual.   

2.  Open simulator.  

3.  In the simulator window, next to Simulation Input:, it should say adder.scf.  If it doesn’t, Go to File 

menu and Choose Inputs/Outputs.  Choose adder.scf.   

4.  Click on START. 
5.  Check to see if you get the same results shown in Figure 1-1b. 

 

 

 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

8

 
Figure 1-1b. 

 
 
 

Part 2: 

Objective:  Build a 4x4 multiplier  
 
The last component you will build is a 4x4 multiplier.  
 
The 4x4 multiplier will be used to perform the 4-bit slice multiplication operation of the following equation: 
 
result[15:0] = a [7:0] * b[7:0] 
 
 =  ( ( a[7:4] * b[7:4] ) * 2 ^ 8 ) 
  + ( ( a[7:4] * b[3:0] ) * 2 ^ 4 ) 
  + ( ( a[3:0] * b[7:4] ) * 2 ^ 4 ) 
            + ( ( a[3:0] * b[3:0] ) * 2 ^ 0 ) 
 
 

 
Figure 1-2a. 

 
 
 



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
9

Step 1 (Create new text file and set to current project) 
 
1.  Create a new VERILOG text file.  

2.  Under File Type:  Choose Text Editor File.  Click OK. 

3.  Save new VERILOG text file to <path>\altera_trn\ver\lab1\mult4x4.v.                                                                  

Go to File menu and Choose Save As. 

4.  Set mult4x4.v as the current project.  

5.  Write your code. 

Remember to use the same input and output port names as shown in Figure 1-2a. 
 
 
Step 2 (Save and check design) 
 
Save and check mult4x4.v. 

 
 

Save and check checks for syntax and semantic errors.  The compiler should stop on the Compiler 

Netlist Extractor if there are no error messages. 
 
 
 
Step 3 (Do a functional compilation) 
 
1.  Bring the compiler to the foreground.  

2.  Go to Processing menu and Turn on Functional SNF Extractor. 

3.  Run the compiler.  

 
 
Step 4 (Do a functional simulation) 
 
1.  The stimulus file has been created for you to verify the functionality of your design.  If you are 

interested in learning how to create your own stimulus file, please go to the Appendix of this manual.   

2.  Open simulator.  

3.  In the simulator window, next to Simulation Input:, it should say mult4x4.scf.  If it doesn’t, Go to File 

menu and Choose Inputs/Outputs.  Choose mult4x4.scf.   

4.  Click on START. 
5.  Check to see if you get the same results shown in Figure 1-2b. 

 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

10

 
Figure 1-2b. 

 
 
 



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
11

 
 
 
 
 

 
 

Exercise 2 

 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

12

Exercise 2 

Part 1: 

Objective:  Build a four input 2:1 multiplexer using IF-ELSE statement 
 
The first component you will build is a four input 2:1 multiplexer. 
 
The input to the multiplexer consists of two 4-bit data buses ( a[3:0] and b[3:0] ).  The output ( y[3:0] ) is 
a[3:0] if the select control ( sel ) is low ( 0 ).  The output is b[3:0] if sel is high ( 1 ). 
 
The four input 2:1 multiplexer will be used in the top level design for selecting the 4-bit slices a[7:4], 
a[3:0], b[7:4], and b[3:0] as inputs to the 4 X 4 multiplier. 
 
 
The following equations are for your reference: 
 
result[15:0] = a[7:0] * b[7:0] 
 
 =  ( ( a[7:4] * 2 ^ 4) + a[3:0] * 2 ^ 0 ) 
  * ( ( b[7:4] * 2 ^ 4) + b[3:0] * 2 ^ 0 ) 
 
 =  ( ( a[7:4] * b[7:4] ) * 2 ^ 8 ) 
  + ( ( a[7:4] * b[3:0] ) * 2 ^ 4 ) 
  + ( ( a[3:0] * b[7:4] ) * 2 ^ 4 ) 
  + ( ( a[3:0] * b[3:0] ) * 2 ^ 0 ) 
 

     
           Figure 2-1a. 

 
 
 
 
 
 

Step 1 (Create new text file and set to current project) 
1.  Create a new VERILOG text file.  

2.  Under File Type:  Choose Text Editor File.  Click OK. 

3.  Save new VERILOG text file to <path>\altera_trn\ver\lab2\mux4.v.  Go to File menu and Choose 

Save As. 

4.  Set mux4.v as the current project.  



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
13

 

5.  Write your code. 

Remember to use the same input and output port names as shown in Figure 2-1a. 
 

 
Step 2 (Save and check design) 
 
Save and check mux4.v. 

 
 

Save and check checks for syntax and semantic errors.  The compiler should stop on the Compiler 

Netlist Extractor if there are no error messages. 
 
 
 
Step 3 (Do a functional compilation) 
 
1.  Bring the compiler to the foreground.  

2.  Go to Processing menu and Turn on Functional SNF Extractor. 

3.  Run the compiler.  

 
 
Step 4 (Do a functional simulation) 
 
1.  The stimulus file has been created for you to verify the functionality of your design.  If you are 

interested in learning how to create your own stimulus file, please go to the Appendix of this manual.   

2.  Open simulator.  

3.  In the simulator window, next to Simulation Input:, it should say mux4.scf.  If it doesn’t, Go to File 

menu and Choose Inputs/Outputs.  Choose mux4.scf.   

4.  Click on START. 
5.  Check to see if you get the same results shown in Figure 2-1b. 

 

 

 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

14

 
 Figure 2-1b. 

 

 

 

Part 2: 

Objective : Build an 8-bit to 16-bit shifter using IF-ELSE statement and 
shifting operators 
 
In this exercise, you will build an 8-bit to 16-bit shifter using IF-ELSE statements and the shift-left operator 
(<<).  This shifter will be capable of perform three types of shifter operations:  no shift, left shift by 4 bit 
positions, and left shift by 8 bit positions. 
 
The input to the shifter consists of a single 8-bit data bus ( in[7:0] ).  The shift operation is controlled by the 
control signal cnt[1:0]. 
 
When cnt[1:0] == 0, the no shift operation will be selected.  
 
When cnt[1:0] == 1, the left shift by 4 operation will be selected.   
 
When cnt[1:0] == 2, the left shift by 8 operation will be selected.   
 
When cnt[1:0] == 3, the no shift operation will be selected.   
 
 
 
 
 
 



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
15

This 8-bit to 16-bit shifter will be used to perform the * 2 ^ 0 (no shift), * 2 ^ 4 (left shift by 4 bit positions), 
and * 2 ^ 8 (left shift by 8 bit positions) operations of the following equation: 
 
result[15:0] = a[7:0] * b[7:0] 
 
 =  ( ( a[7:4] * 2 ^ 4) + a[3:0] * 2 ^ 0 ) 
  * ( ( b[7:4] * 2 ^ 4) + b[3:0] * 2 ^ 0 ) 
 
 =  ( ( a[7:4] * b[7:4] ) * 2 ^ 8 ) 
  + ( ( a[7:4] * b[3:0] ) * 2 ^ 4 ) 
  + ( ( a[3:0] * b[7:4] ) * 2 ^ 4 ) 
  + ( ( a[3:0] * b[3:0] ) * 2 ^ 0 ) 

 

 
 

Figure 2-2a. 
 
 
 
Step 1 (Create new text file and set to current project) 
 
1.  Create a new VERILOG text file.  

2.  Under File Type:  Choose Text Editor File.  Click OK. 

3.  Save new VERILOG text file to <path>\altera_trn\ver\lab2\shifter.v.                                                             

Go to File menu and Choose Save As. 

4.  Set shifter.v as the current project.  

 

5.  Write your code. 

Remember to use the same input and output port names as shown in Figure 2-2a. 
 
 
Step 2 (Save and check design) 
 
Save and check shifter.v. 

 
 

Save and check checks for syntax and semantic errors.  The compiler should stop on the Compiler 

Netlist Extractor if there are no error messages. 
 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

16

Step 3 (Do a functional compilation) 
 
1.  Bring the compiler to the foreground.  

2.  Go to Processing menu and Turn on Functional SNF Extractor. 

3.  Run the compiler.  

 
 
Step 4 (Do a functional simulation) 
 
1.  The stimulus file has been created for you to verify the functionality of your design.  If you are 

interested in learning how to create your own stimulus file, please go to the Appendix of this manual.   

2.  Open simulator.  

3.  In the simulator window, next to Simulation Input:, it should say shifter.scf.  If it doesn’t, Go to File 

menu and Choose Inputs/Outputs.  Choose shifter.scf.   

4.  Click on START. 
5.  Check to see if you get the same results shown in Figure 2-2b. 

 

 

 

 
      Figure 2-2b. 



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
17

 
 
 
 
 

 
 

Exercise 3 

 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

18

Exercise 3 

Objective:  Build a 7-segment display using CASE statement 
. 
 
The 7-segment display shall display 0, 1, 2, 3, and E. 
 

 
INPUTS OUTPUTS  

IN2 IN1 IN0 a b c d e f g DISPLAY 
0 0 0 1 1 1 1 1 1 0 0 
0 0 1 0 1 1 0 0 0 0 1 
0 1 0 1 1 0 1 1 0 1 2 
0 1 1 1 1 1 1 0 0 1 3 
1 X X 1 0 0 1 1 1 1 E 

 

 

 
Figure 3-1. 

 

 
Step 1 (Create new text file and set to current project) 
 
1.  Create a new VERILOG text file.  

2.  Under File Type:  Choose Text Editor File.  Click OK. 

3.  Save new VERILOG text file to <path>\altera_trn\ver\lab3\seven.v.                                                              

Go to File menu and Choose Save As. 

4.  Set seven.v as the current project.  

 

5.  Write your code. 

Remember to use the same input and output port names as shown in Figure 3-1. 



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
19

Step 2 (Save and check design) 
 
Save and check seven.v. 

 
 

Save and check checks for syntax and semantic errors.  The compiler should stop on the Compiler 

Netlist Extractor if there are no error messages. 
 
 
 
Step 3 (Do a functional compilation) 
 
1.  Bring the compiler to the foreground.  

2.  Go to Processing menu and Turn on Functional SNF Extractor. 

3.  Run the compiler.  

 
 
Step 4 (Do a functional simulation) 
 
1.  The stimulus file has been created for you to verify the functionality of your design.  If you are 

interested in learning how to create your own stimulus file, please go to the Appendix of this manual.   

2.  Open simulator.  

3.  In the simulator window, next to Simulation Input:, it should say seven.scf.  If it doesn’t, Go to File 

menu and Choose Inputs/Outputs.  Choose seven.scf.   

4.  Click on START. 
5.  Check to see if you get the same results shown in Figure 3-2. 

 

 

 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

20

 
Figure 3-2. 

 



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
21

 
 
 
 
 

 
 

Exercise 4 

 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

22

Exercise 4 
 

Part 1: 

Objective:  Build a 16-bit register  
 
It is used to store intermediate results. 
 
 
 

      
       Figure 4-1a. 
 
 
 
 
 
Step 1 (Create new text file and set to current project) 
 
1.  Create a new VERILOG text file.  

2.  Under File Type:  Choose Text Editor File.  Click OK. 

3.  Save new VERILOG text file to <path>\altera_trn\ver\lab4\reg.v.                                                                  

Go to File menu and Choose Save As. 

4.  Set reg.v as the current project.  

 

5.  Functionality of the 16-bit register: 

        If clr==1 && clken==0, then in_reg will be loaded into register at the rising edge of clock. 

        Otherwise, if clr==0, then the register is cleared. 

Note:  This is a synchronous clear and clock enable register.    

6.  Write your code. 

Remember to use the same input and output port names as shown in Figure 4-1a. 
 
 



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
23

Step 2 (Save and check design) 
 
Save and check reg.v. 

 
 

Save and check checks for syntax and semantic errors.  The compiler should stop on the Compiler 

Netlist Extractor if there are no error messages. 
 
 
 
Step 3 (Do a functional compilation) 
 
1.  Bring the compiler to the foreground.  

2.  Go to Processing menu and Turn on Functional SNF Extractor. 

3.  Run the compiler.  

 
 
Step 4 (Do a functional simulation) 
 
1.  The stimulus file has been created for you to verify the functionality of your design.  If you are 

interested in learning how to create your own stimulus file, please go to the Appendix of this manual.   

2.  Open simulator.  

3.  In the simulator window, next to Simulation Input:, it should say reg.scf.  If it doesn’t, Go to File menu 

and Choose Inputs/Outputs.  Choose reg16.scf.   

4.  Click on START. 
5.  Check to see if you get the same results shown in Figure 4-1b. 

 

 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

24

 
Figure 4-1b. 

 
 
 

 

Part 2: 

Objective:  Build a 2-bit counter  
 
The 2-bit counter can be constructed using the +1 operation.  It is used to help the state machine track the 
cycles of the sequential multiplication. 
 
 
 

      
      Figure 4-2a. 
 
 
 



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
25

Step 1 (Create new text file and set to current project) 
 
1.  Create a new VERILOG text file.  

2.  Under File Type:  Choose Text Editor File.  Click OK. 

3.  Save new VERILOG text file to <path>\altera_trn\ver\lab4\counter.v.                                                                  

Go to File menu and Choose Save As. 

4.  Set counter.v as the current project.  

 

5.  Functionality of the 2-bit counter: 

        If clr==1, then the counter counts at the rising edge of clock. 

        Otherwise, if clr==0, then the counter is cleared. 

Note:  This is a synchronous clear.   

6.  Write your code. 

Remember to use the same input and output port names as shown in Figure 4-2a. 
 
 
Step 2 (Save and check design) 
 
Save and check counter.v. 

 
 

Save and check checks for syntax and semantic errors.  The compiler should stop on the Compiler 

Netlist Extractor if there are no error messages. 
 
 
 
Step 3 (Do a functional compilation) 
 
1.  Bring the compiler to the foreground.  

2.  Go to Processing menu and Turn on Functional SNF Extractor. 

3.  Run the compiler.  

 
 
 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

26

Step 4 (Do a functional simulation) 
 
1.  The stimulus file has been created for you to verify the functionality of your design.  If you are 

interested in learning how to create your own stimulus file, please go to the Appendix of this manual.   

2.  Open simulator.  

3.  In the simulator window, next to Simulation Input:, it should say counter.scf.  If it doesn’t, Go to File 

menu and Choose Inputs/Outputs.  Choose counter.scf.   

4.  Click on START. 
5.  Check to see if you get the same results shown in Figure 4-2b. 

 

 

 

 
Figure 4-2b. 

 
 



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
27

 
 
 
 
 

 
 

Exercise 5 

 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

28

Exercise 5 

Objective:  Putting all together by instantiating the lower-level components 
 
You have now completed building all of the components necessary to build the 8x8 multiplier, except for 
the controlling state machine.  Due to time, the controlling state machine has been written for you and is 
located in c:\alter\int_Verilog\lab6\control.v.   
 
This state machine will manage all the operation that occurs within the 8 X 8 multiplier. 
 
The state machine will perform the ( (a[3:0] * b[3:0] ) * 2 ^ 0 ) multiplication in the first cycle (LSB state) 
after the input signal start becomes a ‘1’.  This intermediate result is saved in an accumulator. 
 
In the second clock cycle (MID state), the ( ( a[3:0] * b[7:4] ) * 2 ^ 4 ) multiplication is performed.  The 
multiplication result is added with the content of the accumulator and clocked back into the accumulator. 
 
In the third clock cycle (MID state), the ( ( a[7:4] * b[3:0] ) * 2 ^ 4 ) multiplication is performed.  The 
multiplication result is added with the content of the accumulator and clocked back into the accumulator. 
 
In the fourth clock cycle (MSB state), the ( (a[7:4] * b[7:4] ) * 2 ^ 8 ) multiplication is performed.  The 
multiplication result is added with the content of the accumulator and clocked back into the accumulator.  
This result is the final result: 
 
result[15:0] = a [7:0] * b[7:0] 
 
 =  ( ( a[7:4] * b[7:4] ) * 2 ^ 8 ) 
  + ( ( a[7:4] * b[3:0] ) * 2 ^ 4 ) 
  + ( ( a[3:0] * b[7:4] ) * 2 ^ 4 ) 
  + ( ( a[3:0] * b[3:0] ) * 2 ^ 0 ) 
 
NOTE: There are two inputs to the state machine start and count[1:0].  The start signal is a single cycle 
high-true signal.  When start becomes a ‘1’, it indicates that multiplication can begin at next clock cycle.  
The start signal can only be asserted for one clock cycle.  The start signal shall stay a ‘0’ until next 8 x 8 
multiplication is to be performed.  The count[1:0] signal is the output of a free running 2-bit counter.  The 
count[1:0] signal is synchronously initialized by the start signal.  Count[1:0] is used by the state machine to 
track the cycles of the multiplication. 
 
Please also note that this is NOT the optimal design.  The state machine design as you see it is intended for 
exercising your VERILOG skills and not the ability to perform optimum solution. 
 



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
29

 
Figure 5. 

Refer to the state diagram on the next page. 

IDLE
state_out[2..0]=000

LSB
state_out[2..0]=001

MID
state_out[2..0]=010

START=1
COUNT=X
---------------
in_sel[1..0]=X
shif[1..0]=x
done=0
clken=1
regclr=0

START=0
COUNT=X
---------------
in_sel[1..0]=X
shif[1..0]=x
done=0
clken=1
regclr=1

START=0
COUNT=0
---------------
in_sel[1..0]=0
shif[1..0]=0
done=0
clken=0
regclr=1

MSB
state_out[2..0]=011

START=0
COUNT=2
---------------
in_sel[1..0]=2
shif[1..0]=1
done=0
clken=0
regclr=1

START=0
COUNT=3
---------------
in_sel[1..0]=3
shif[1..0]=2
done=1
clken=0
regclr=1

START=0
COUNT=1
---------------
in_sel[1..0]=1
shif[1..0]=1
done=0
clken=0
regclr=1

ERR
state_out[2..0]=100

others
---------------
in_sel[1..0]=x
shif[1..0]=x
done=0
clken=1
regclr=1

others
---------------
in_sel[1..0]=x
shif[1..0]=x
done=0
clken=1
regclr=1

others
---------------
in_sel[1..0]=x
shif[1..0]=x
done=0
clken=1
regclr=1

START=1
COUNT=x
---------------
in_sel[1..0]=x
shif[1..0]=x
done=0
clken=1
regclr=0

START=x
COUNT=x
---------------
in_sel[1..0]=x
shif[1..0]=x
done=0
clken=1
regclr=1

 
 
X means a “don’t care” in this state diagram. 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

30

Making use of the knowledge you have gained up to this point, you should instantiate each component in a 
top-level design and connect all signal as shown in Figure 6-1.  You have successfully completed the 
Introduction to VERILOG class once your top-level design is compiled and simulated correctly. 
 
Congratulations! 
 
You have completed the implementation of the following 8x8 multiplier. 
 
result[15:0] = a [7:0] * b[7:0] 
 
 =  ( ( a[7:4] * b[7:4] ) * 2 ^ 8 ) 
  + ( ( a[7:4] * b[3:0] ) * 2 ^ 4 ) 
  + ( ( a[3:0] * b[7:4] ) * 2 ^ 4 ) 
            + ( ( a[3:0] * b[3:0] ) * 2 ^ 0 ) 
 
 



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
31

 
Figure 5-1. 

 
 
 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

32

Step 1 (Create new text file and set to current project) 
 
1.  Create a new VERILOG text file.  

2.  Under File Type:  Choose Text Editor File.  Click OK. 

3.  Save new VERILOG text file to <path>\altera_trn\ver\lab5\mult8x8.v.                                                                  

Go to File menu and Choose Save As. 

4.  Set mult8x8.v as the current project.  

5.  The lower-level components have been created in different directories than the current directory.  

In order for MAX+plus II to find these lower-level components, it must have a search path.  

Therefore, you must do the following: 

a)  Go to Options menu and Choose User Libraries. 

b)  Choose the directory structure <path>\altera_trn\ver\lab1.  Click on ADD. 

c)  Choose the directory structure <path>\altera_trn\ver\lab2.  Click on ADD. 

d)  Choose the directory structure <path>\altera_trn\ver\lab3.  Click on ADD. 

e)  Choose the directory structure <path>\altera_trn\ver\lab4.  Click on ADD. 

f)  Click OK. 

 

7.   Write your code. 

Remember to use the same input and output port names as shown in Figure 5-1. 
 
 
 
Step 2 (Save and check design) 
 
Save and check mult8x8.v. 

 
 

Save and check checks for syntax and semantic errors.  The compiler should stop on the Compiler 

Netlist Extractor if there are no error messages. 
 
 
 
 
 
 
 



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
33

Step 3 (Do a functional compilation) 
 
1.  Bring the compiler to the foreground.  

2.  Go to Processing menu and Turn on Functional SNF Extractor. 

3.  Go to Processing menu and Turn on Preserved All Node Name Synonyms. 

This option will preserve buried signal names. 

4.  Run the compiler.  

 
Step 4 (Do a functional simulation) 
 
1.  The stimulus file has been created for you to verify the functionality of your design.  If you are 

interested in learning how to create your own stimulus file, please go to the Appendix of this manual.   

2.  Open simulator.  

3.  In the simulator window, next to Simulation Input:, it should say mult8x8.scf.  If it doesn’t, Go to File 

menu and Choose Inputs/Outputs.  Choose mult8x8.scf.   

4.  Click on START. 
5.  Check to see if you get the same results shown in Figure 5-2. 

 

 

 
Figure 5-2. 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

34



Introduction to Verilog   Exercises 
   

  Copyright © 2000 Altera Corporation 
35

 
 
 
 
 

 
 

APPENDIX 

 
 



Exercises  Introduction to Verilog 

Copyright © 2000 Altera Corporation   
 

36

How to create a stimulus file: 
 

1.  Create a new waveform stimulus for simulation.  

2.  Under File Type:  Choose Waveform Editor File 

3.  Click OK. 

4.  Save file as mux4.scf.  File menu -> Save As  

5.  Enter nodes into the waveform file.  Node menu -> Enter Nodes from SNF 

a.  Go to Type section. 
b.  Turn on Inputs,Outputs,  and Groups. 
c.  Click on List. 
d.  Highlight the nodes (you want to see in the waveform display)  listed on Available Nodes & 

Groups:   
e.  Click on   =>    to bring nodes to Selected Nodes & Groups. 
f.  Click on OK. 

4.  Set the inputs to the appropriate values. 

5.  Open simulator.  

6.  Click on START. 
 
 
 


	MAX+PLUS II
	Laboratory Exercise Manual
	for
	Introduction to Verilog
	Introduction to Verilog Lab Overview
	Objective : Build a sequential 8 X 8 multiplier

	Exercise 1
	Part 1:
	Objective:  Build a 16-bit adder

	Part 2:
	Objective:  Build a 4x4 multiplier

	Exercise 2
	Part 1:
	Objective:  Build a four input 2:1 multiplexer using IF-ELSE statement

	Part 2:
	Objective : Build an 8-bit to 16-bit shifter using IF-ELSE statement and shifting operators

	Exercise 3
	Objective:  Build a 7-segment display using CASE statement

	Exercise 4
	Part 1:
	Objective:  Build a 16-bit register

	Part 2:
	Objective:  Build a 2-bit counter

	Exercise 5
	Objective:  Putting all together by instantiating the lower-level components

	How to create a stimulus file:

