Understand and Design for High-Speed Memory Interfaces
Agenda

- Introduction
- Design challenges
- Overcoming design challenges
- Conclusion
More Than 90% of the Designs Use Double Data Rate (DDR) or DDR2 SDRAM

Source: Gartner Dataquest
Mainstream Memory Trends

Memory performance set to double every 3 years

Source: Micron
Memory System Design: No Longer Separate Tasks

Year 1995:
66 MHz, 66 Mbps
Single Data Rate

Year 2006:
267 MHz, 533 Mbps
Double Data Rate (DDR)

A Complete Memory Interface Solution Enables Success
Why a Dynamic System?

- Memory & board uncertainties do not scale with frequency
- Effects designers could once ignore are now significant proportions of the cycle

Year 1995: 66 MHz, 66 Mbps
Single Data Rate

Year 2006: 267 MHz, 533 Mbps
Double Data Rate
Design Challenges
1. I/O interface challenges
2. Controller design challenges
3. Board design challenges

Printed Circuit Board
DDR2-533 Interface Design Challenges

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O interface</td>
<td>1. Maintaining DQ – DQS phase relationship</td>
</tr>
<tr>
<td></td>
<td>2. Analyzing timing margin and meeting time requirements at the controller and memory I/Os</td>
</tr>
<tr>
<td>Controller design</td>
<td>1. Designing memory controllers</td>
</tr>
<tr>
<td></td>
<td>2. Verifying functionality</td>
</tr>
<tr>
<td></td>
<td>3. Managing clock domains</td>
</tr>
<tr>
<td>Board level</td>
<td>1. Maintaining signal integrity</td>
</tr>
<tr>
<td></td>
<td>2. Managing skew between signals</td>
</tr>
</tbody>
</table>
I/O Interface Challenge #1: DQ-DQS Phase Relationship

- Write Operation
 - DQ and DQS to the memory are 90° apart
 - Memory can easily capture write data
I/O Interface Challenge #1: DQ-DQS Phase Relationship

- Read Operation
 - DQ and DQS signals from the memory are edge aligned
 - DQS needs to be realigned to the center of data valid window
I/O Interface Challenge #1: DQ-DQS Phase Relationship

Traditional techniques to realign DQS for read operation

<table>
<thead>
<tr>
<th>Phase Shift Technique</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>90° trace skew between DQ and DQS signals</td>
<td>▪ DQS signal is 6 inches longer than DQ signals*</td>
</tr>
<tr>
<td></td>
<td>▪ Complicated board design</td>
</tr>
<tr>
<td>Add fixed delay element to the DQS signal path on board</td>
<td>▪ Susceptible to process, voltage, and temperature (PVT) variations</td>
</tr>
<tr>
<td>Use on-chip delay elements</td>
<td>▪ Not suitable for high-performance applications</td>
</tr>
<tr>
<td></td>
<td>▪ Susceptible to PVT variations</td>
</tr>
</tbody>
</table>

* Calculation is based on approximate delay of 160 ps/inch for an FR4 laminate microstrip with a 50-Ω characteristic impedance at 533 Mbps data rate.
I/O Interface Challenge #2: Timing Margin Analysis

- Parameters that affect timing margin
 - Skew between first data valid and last data valid
 - Board trace skew
 - DLL jitter for DQS phase shift circuitry
 - Internal skew between DQS and DQ
 - Setup and hold time
I/O Interface Challenge #2: Timing Margin Analysis

- Timing margin = data valid window at memory - 2 x (board trace skew + DLL jitter + internal DQ and DQS skew) - setup and hold time

![Timing Margin Diagram]

- DQS
- DQ (Last Data Valid)
- DQ (First Data Valid)
- Data Valid at Memory
- Data Valid at FPGA
- Total Timing Margin
- DLL Jitter from the Phase Shift Circuitry
- Setup and Hold Time
- Internal Skew between DQS and DQ
- Data Valid at Memory
- Data Valid at FPGA
DDR2-533 Interface Design Challenges

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O interface</td>
<td>1. Maintaining DQ – DQS phase relationship</td>
</tr>
<tr>
<td></td>
<td>2. Analyzing timing margin and meeting time requirements at the controller and memory I/Os</td>
</tr>
<tr>
<td>Controller design</td>
<td>1. Designing memory controllers</td>
</tr>
<tr>
<td></td>
<td>2. Verifying functionality</td>
</tr>
<tr>
<td></td>
<td>3. Managing clock domains</td>
</tr>
<tr>
<td>Board level</td>
<td>1. Maintaining signal integrity</td>
</tr>
<tr>
<td></td>
<td>2. Managing skew between signals</td>
</tr>
</tbody>
</table>
Controller Design Challenge #1: Designing Memory Controller

- DDR2 memory controller block diagram

Source: Samsung. Simplified state diagram for illustration only.
Controller Design Challenge #2: Verify Controller Functionality

- Three major components in testbenches
 - Memory controller instance (unit under rest)
 - Test drivers
 - Memory models

![Testbench Diagram]

- **Pnf (Pass not Fail)**
- **Test_Complete**
- **Ref_CLK**
Controller Design Challenge #3: Clock Management

- Resynchronization using clock feedback is essential for high-speed interface
 - Compensate PVT variations for I/Os
 - Achieve high-speed data rate (400 Mbps and above)
DDR2-533 Interface Design Challenges

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O interface</td>
<td>1. Maintaining DQ – DQS phase relationship</td>
</tr>
<tr>
<td></td>
<td>2. Analyzing timing margin and meeting time requirements at the controller and memory I/Os</td>
</tr>
<tr>
<td>Controller design</td>
<td>1. Designing memory controllers</td>
</tr>
<tr>
<td></td>
<td>2. Verifying functionality</td>
</tr>
<tr>
<td></td>
<td>3. Managing clock domains</td>
</tr>
<tr>
<td>Board level</td>
<td>1. Maintaining signal integrity</td>
</tr>
<tr>
<td></td>
<td>2. Managing skew between signals</td>
</tr>
</tbody>
</table>
Board-Level Challenges

- Maintaining signal integrity
 - Selecting right termination scheme
 - Minimizing noise and signal crosstalk
 - Minimizing signal attenuation
- Managing skew between signals
 - Making signal traces equal length
Factors Affecting Signal Integrity

<table>
<thead>
<tr>
<th>Design Item</th>
<th>Effect on Performance/Reliability of the System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data width</td>
<td>Increasing data width increases simultaneously switching output (SSO) noise and increases board design complexity</td>
</tr>
<tr>
<td>Noise</td>
<td>Causes bit errors, affects signal integrity, and degrades performance and reliability</td>
</tr>
<tr>
<td>Loading</td>
<td>Increasing number of devices or modules will reduce performance</td>
</tr>
<tr>
<td>I/O performance</td>
<td>Drive strength affects quality of signals and maximum clock rate</td>
</tr>
<tr>
<td>Termination scheme</td>
<td>Termination scheme and resistor values affect signal quality and performance</td>
</tr>
</tbody>
</table>

Board Simulations Should Be Performed to Check for Signal Integrity
Data Valid Window Shifts

Data valid window shifts with PVT variations

Data Valid Window A

Data Valid Window B

Optimum resynchronization clock position shifts
Overcoming Design Challenges
Tool Support

- TimeQuest – Timing Analyzer
- Signal Integrity Analyzer

Automatic Self-Calibrating Integrated System

- Soft Intellectual Property (IP) Core
- Dedicated Hard I/O Structures
- Reconfigurable Phase-Locked Loop (PLL)

FPGA

- External Double Data Rate Memory

Delay-Locked Loop (DLL)

- Modular I/O Banks
- On-Chip Termination

Signal Integrity Enhancements

Per I/O Trace Compensation

I/O Standards and Performance

SOPC World

© 2006 Altera Corporation
FPGA I/O Capabilities

External memory interfaces support on all I/O banks

<table>
<thead>
<tr>
<th>Interconnect</th>
<th>Device Family</th>
<th>Memory Interface Standard</th>
<th>I/O Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stratix® III</td>
<td>Stratix II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Performance*</td>
<td>Performance</td>
<td></td>
</tr>
<tr>
<td>DDR III</td>
<td>400 MHz</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>DDR II</td>
<td>400 MHz</td>
<td>333 MHz</td>
<td></td>
</tr>
<tr>
<td>DDR</td>
<td>200 MHz</td>
<td>200 MHz</td>
<td></td>
</tr>
<tr>
<td>QDR II</td>
<td>350 MHz</td>
<td>300 MHz</td>
<td></td>
</tr>
<tr>
<td>QDR II+</td>
<td>400 MHz</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>RLDRAM II</td>
<td>400 MHz</td>
<td>300 MHz</td>
<td></td>
</tr>
</tbody>
</table>

*Stratix III left and right banks support 300-MHz DDR rates.
Specialized I/O Structures

- Dedicated hard I/O structures
 - Characterized over process, voltage, and temperature (PVT)
- DDR support on all I/O
 - Flexibility in positioning interface
 - Predefined DQS locations
- Built-in capability
 - On-chip termination
 - Parallel, serial, and dynamic on-chip termination (OCT)
 - Trace compensation
 - Compensate for board mismatch
 - Deliberately skew DQ data output to reduce simultaneous switch noise (SSN)
 - Read write leveling capability
 - Compensates for DDR3 (JEDEC) fly-by topology used for clock signals, which causes skew between clock and DQS across DIMM
 - Half- and full-rate registered outputs
 - Run at 2x lower frequency and 4x wider data bus than memory interface
- 4-, 8-, 9-, 16-, 18-, 32-, or 36-bit programmable DQ group widths
Meeting Timing Margins

- Used to maintain best setup and hold margins
 - Voltage and temperature variations cause data valid window to shift
 - Shifting resynchronization clock edge by same amount maintains best setup and hold margins
 - Free soft IP core monitors voltage and temperature variations and automatically adjusts resynchronization clock phase

- One PLL drives all clock signals required for interface
 - Stratix III PLLs have 7 to 10 outputs
 - DDR uses 3 to 7 clocks; QDR uses 4 to 5 clocks
 - Only 1 PLL required per interface
 - 2 required for >200 MHz in Stratix II devices

- No interruption of external memory interface operation when PLL reconfigured
Maintaining Phase Shift Relations

- DLL dynamically adjusts DQS delay chain to maintain phase shift over PVT

- 4 DLLs
 - Each has 2 independent outputs
 - Each I/O bank can access 2 DLLs
 - Allows external memory interfaces with different frequencies and phase shifts to coexist on same side
Efficient Modular I/O Banks

- New modular bank structure
 - Many small I/O banks
 - Fixed bank widths: 24, 32, 36, 40, or 48 user I/Os per bank
 - 16 to 24 banks
 - Greater pin efficiency
 - Common bank structure
 - Eases device migration

Example showing how to combine various sized interfaces

F1760 FBGA
1056 User IO
24 banks

Bottom I/O: Same as Top

Right I/O: Same as Left

18 Read/18 Write
QDR I/II/II+
9 Read/9 Write
QDR I/II/II+
32 bit PCI
36 bit DDR I/II/III
64 bit PCI
72 bit DDR I/II/III
Requires ? 120 I/O
On-Chip Termination on All Banks

- Parallel serial and dynamic on-chip termination for single ended DQ pins

- Dynamic termination for better control of reflections
 - Writes
 - Series termination enabled
 - Parallel termination disabled
 - Reads
 - Series disabled
 - Parallel termination enabled

- Calibrated for repeatable and predictable termination
 - Tolerance controlled with digital auto calibration circuits
Integrated System for Rapid Implementation

- Altera offers free ALTMEMPHY megafuction to maximize performance
 - **ALTera** external **MEMory PHYsical layer interface**
 - Integrates hard I/O blocks and soft logic data path section
 - Self-calibrating
 - Optimized to take advantage of Stratix III silicon features
 - Simple user interface
 - Complexity kept inside
Self-Calibrating for Highest Reliable Frequency of Operation Across PVT

Self-calibrating control block

- Training pattern
 - Calibrates out process differences on both FPGA and external memory
 - Works on a pin-by-pin basis
- Monitor and Adjust
 - Monitors voltage and temperature variations during operation via mimic path
 - Adjust resynchronization phase of PLL output without interrupting operation
Configurable Megafunction

- Quickly and easily configure physical layer interface to match desired memory
- Optimized to take advantage of Stratix III I/O structures and hard blocks
- Constrained with Synopsys design constraints (SDC)
 - Industry standard
 - Easy to constrain data with respect to sourced clock
TimeQuest Timing Analysis Tool

- ASIC strength timing analysis tool
 - Native support for industry-standard SDC timing constraints
 - Easily constrain source synchronous interface
 - Constrain data with respect to clock
Robust Signal Integrity Tool Support

- Quartus II signal integrity analyzer
 - Drives signal integrity analysis and automatic optimization

- Signal integrity advisor
 - Provides design-specific guidance
Per I/O Trace Compensation

- Programmable single-ended I/O features that help compensate for trace characteristics
 - Controllable slew rate
 - 4 settings to match desired I/O standard and control noise and overshoot
 - Programmable output drive strength
 - Match desired I/O standard
 - Programmable output delay
 - Board trace mismatch compensation
 - Deliberately skew DQ data output
 - Reduce simultaneous switching noise (SSN)

<table>
<thead>
<tr>
<th>I/O Standard</th>
<th>mA</th>
<th>mA</th>
<th>mA</th>
<th>mA</th>
<th>mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSTL-18 Class I</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>SSTL-18 Class II</td>
<td></td>
<td>8</td>
<td></td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Settings depend on standard, SSTL-18 example shown.
Board Trace Mismatch Compensation

- Output delay per I/O: 0 to 1000 ps
- Input delay per I/O: 0 to 800 ps
- Digitally programmable in 50 ps steps
- Compensation for 0 to 5 ½ inches
 - FR4 delay: ~170 ps/inch
Deliberately Skew DQ Data Output

- **Reduce SSN**
 - Delaying adjacent edges reduces total number of simultaneous switching output (SSO) edges
 - Controllable in 50 ps steps

![Diagram showing I/O Group 2.5 V 200 MHz with 700 ps and 5000 ps delays]
Signal Integrity Enhancements

- Programmable slew rate
 - Lowering signal rise time reduces $\frac{\partial i}{\partial t}$

- Signal integrity die and package enhancements
 - Increased number of power/ground pairs reduces L

- Deliberately skew DQ data output
 - Delaying adjacent edges to reduce simultaneous edges

SSN Depends on Loop Inductance and Signal Rise Time

$L \cdot \frac{\partial i}{\partial t}$
Signal Integrity Package and Die Enhancements

- **Package enhancements**
 - 8:1:1 user I/O-ground-power ratio
 - Limited number of I/Os per bank
 - Maximum distance between I/O and GND = 1
 - Reduced loop inductance in package

- **Die enhancement**
 - Extensive distributed ground bumps
 - Enhanced return path
 - Programmable edge rate control
 - Programmable staggered outputs
 - Control SSO noise
667-Mbps DDR2 SDRAM Interface

DDR2 SDRAM Write Data Eye 667 Mbps

*For Stratix II Devices
Conclusion

- Interfacing with external memory devices has I/O timing, controller design, and board design challenges
- Stratix series FPGAs from Altera provide advanced features to meet I/O interface challenges
- Fully verified hardware platforms including Altera IP and board design tools simplify memory interface design
Thank You
Q & A