Why Does Power Matter?

Agenda

- Introduction
- Power in low-end applications
- Power in high-end applications
- Designing for power

2

Conclusion

Applications Demand Lower Power

Low-End Applications

Example:

• Portable media players

• Modems and customer's premises equipment (CPE)

Software-defined radio

Battery operated

Form factor restrictions

Operating conditions

High-End Applications

Example:

- Core routers
- Backplanes
- High-performance digital signal processing (DSP)

High performance

- New process nodes
- Operating conditions

Operating Power

Analysis of 99 User Designs

Core dynamicCore staticI/O

Dynamic Power Dominates

Power in Low-End Applications

Low-End Applications

- Meet customer performance and power/thermal requirements simultaneously
- Eliminate or reduce cost of cooling systems
- Enable operation in thermally challenged and space-constrained environments
 - Airplane cockpits, software-defined radios
- Extend battery life for portable applications

7

Portable Applications

Point of Sale

- Scanners
- RF identification device (RFID)
 - device (RFID)

- Credit checks
- ATM PIN terminal

OS processor

- Industrial PDA
- Test equipment
- Remote terminal
- GPS
- Portable media player

Everything wireless

- Bluetooth
- Wireless fidelity (WiFi)
- 802.11x
- Headphones
- Camera
- Game controllers

Sensors

Gas

- 8-0
 - Machine-vision

Temperature

- Location/GPS
- RF signal
- RFID

8

Portable Applications and Requirements

		Requireme	nts
Applications	3.3 V	High I/O Count	High Density
Consumer handheld (Educational toys and portable media players)	v		 Image: A set of the set of the
Handheld instrumentation (Bar code scanners and handheld testers)			
Industrial computer (Meter readers and industrial PDAs)			~
Industrial cameras (Camera modules)			
Wireless and wireline (Optical modules and PCMCIA express cards)	✓		

9

Portable Design Challenges

Cost

- System integration
- Power rails

Power

• Battery life

Size

• Board space

© 2006 Altera Corporation 10

Low-Power Considerations

Reduce power consumption in devices

- How portable, consumer products designers model power consumption
- Using this model to evaluate CPLDs
- Manage power for entire system
 - Self power down
 - Auto power up
 - Power management

Power Consumption Model

Mode	Definition	Power Consumption	
Active	Part is being used	Dynamic power Application dependent	
Standby	Part is powered, but not being used	Static I _{CC} , but only valid if no inputs are switching	
Sleep/ Hibernate	Inactive, but retains information	< 50 - 100 uA	
Off	Powered off	Zero power	

Static I_{CC} Is Difficult to Achieve

- Low static I_{CC} depends on:
 - Small density: limits PLD usefulness
 - Quiescent I/Os: but "don't care" inputs are often toggling
- Customers prefer to power off the device when not used

Off Mode Constraints

- CPLD core and I/O can be powered off and on in any sequence
 - Outputs must not affect the system operation
- When CPLD is powered off, inputs can be driven with
 - No damage to part
 - No power consumption

MAX[®] II CPLDs in Off Mode

No power sequence requirements

- Outputs: stable and do not affect the rest of the system
- Well-behaved I/O
 - Active inputs: no damage
 - Active inputs: no power consumption

Dynamic Operation Power Consumption

CPLD Power-Down Mode

- Auto power down and instant-on (300 us)
- Internal oscillator makes system self contained
- Hot socket + power down mode
 - OK to drive CPLD I/Os: no damage and no power consumption
- Concept can be expanded to overall system power management

MAX II Power-Down Mode Design

Application note and design files

Available Now OC NOT FOR RETAIL TRADE Industria Back Front

Auto Power Up

- Extends MAX II CPLDs to include auto power up (APU)
- Numerous applications
 - Self-optimized power management
 - Multiple input power up
 - Periodic status checks

Controlling System Power

Extend MAX II power-down design to include complete system power management

MAX II CPLD is always the first to power up and the last to power down

VORLD

Power in High-End Applications

Factors Affecting Power

New process technologies

- Voltage and dimension scaling
- Silicon characteristic changes
- Novel materials used
- Higher performance and higher density
 - Affects dynamic power
 - Process changes
 - Geometry shrink

Power Challenge

Leading Edge Process Technology

Process or Design Technology	When Altera Introduced	Benefit
All Copper Routing	180nm	Increased performance
Low-K Dielectric	130nm	Increased performance Reduced power
Multi-Threshold Transistors	90nm	Reduced power
Variable Gate-Length Transistors	90nm	Reduced power
Triple Gate Oxide	65nm	Reduced power
Super-thin Gate Oxide	65nm	Increased performance
Strained Silicon	65nm	Increased performance

Leading-Edge Process Technology

Increased Performance, Reduced Power

- Advanced 65-nm process
 - 15% capacitance reduction \rightarrow reduces dynamic power 15%
- Strained silicon
 - Increased performance
- Multiple-gate oxide thicknesses (triple oxide)
 - Tradeoff: power vs. speed per transistor
- Multiple-threshold voltages
 - Tradeoff: power vs. speed per transistor
- Low-k inter-metal dielectric
 - Reduces dynamic power, increases performance
- Copper interconnect
 - Increased performance, reduced IR drop

Altera at 65 nm

Maximum performance with minimum power

- Innovative architecture and circuit techniques
- The latest process optimizations
- Integrated software solutions
- Customers get:
 - Performance they need with the minimum power
 - High productivity with automated tools that meet target performance and minimize power

Industry-Leading Low-Power Technology

Stratix [®] III Power Reduction Technique	Lower Static Power	Lower Dynamic Power
Silicon Process Optimizations	\checkmark	\checkmark
Programmable Power Technology	\checkmark	✓
Selectable Core Voltage (0.9 V or 1.1 V)	✓	✓
Quartus [®] II PowerPlay Power Optimization		~

Stratix III FPGAs Are the Lowest Power High-End FPGAs Available

Individual Block Optimization

- All core blocks completely redesigned for 65nm process AND power reduction
 - Adaptive logic module (ALM), memories, DSP, CRAM, etc.
- Every mode of operation is optimized for:
 - AC: Least amount of switching activity
 - DC: Low-power mode setting for all unused circuitry
- Combined hardware hooks and Quartus II software intelligence to achieve power savings

Dynamic Power

15% Reduced Capacitance

- 15% power reduction proportional to reduction in capacitance
- Source of lower capacitance
 - Process scaling
 - Design improvements

Power Challenge

Selectable Core Voltage

User selects core voltage operation – 0.9 V* or 1.1 V

Core Voltage	Dynamic Power Reduction** from 1.2 V	Static Power Reduction*** from 1.2 V
1.1 V	16%	20%
0.9 V	44%	51%

* 0.9 V requires an additional power supply
** Dynamic power decreases by square of voltage reduction
*** Static power decreases by ^2.5 of voltage reduction

Core Voltage Component

Design-Specific Power Optimization

Only a small proportion of logic is performance-critical

Programmable Power Technology

- Block-level adjustments lower total power consumption
 - Automatically programmed via Quartus II software based on design's performance requirements
- Puts the performance where you need it
 - Minimizes power everywhere else
- Patented techniques exclusively used by Altera

Reduces Power Without Impacting Performance

Programmable Power Technology

Logic Array

High-Speed Logic

Timing-Critical Path

Low-Power Logic

Unused Low-Power Logic

Performance Where You Need It, Lowest Power Everywhere Else

High-Speed vs. Low-Power Logic

*All designs compiled for maximum performance.

High-Resolution Power Control

Speed of the Fastest LABs, Power of the Slowest

Designing for Power

Designing For Power

- Need to plan for power right from the beginning of the design
 - Cannot wait until board bring-up
 - Design tools available for managing power in FPGAs
 - PowerPlay Analyzer
 - Power-based design optimization possible
 - PowerPlay Advisor

Automated Power Optimization

PowerPlay Power Analysis Tools

PowerPlay Early Power Estimator

- Quartus II software generates file and macro to import into web-based Excel spreadsheet
- Can estimate performance for partially complete designs
 - User can modify number of logic elements (LEs), etc. in Excel
 - Computes power as a function of number of LEs, I/Os, clock frequencies, activities, etc.

PowerPlay Power Analyzer

***VCD: Vector Change Description**

PowerPlay Power Optimization

Power Optimization Advisor

Recommended settings and design changes to minimize power

Y Power Optimization Advisor		
Power Optimization Advisor	Clock Enables on	Logic
 How to use the Power Optimizatic General Recommendations Stage 1 Appropriate Device Family Dynamic Power Power-Driven Synthesis Design Space Explorer Minimum Area Synthesis Static Power Static Power Static Power Static Power Static Power Static Power 	Recommendation	Whenever logic is not used on a significant fraction of clock cycles, specify a clock enable in your design HDL, schematic or megafunction instantiations so that the appropriate registers are shut down on these cycles.
	Description	Using a clock enable to shut down registers reduces power even when the data input to those registers is not changing on a given clock cycle, since the portion of a clock inside the LAB or DSP block is shut down by the enable, and hence clock power is reduced by clock enables. <u>More Info</u>
	Summary	The following areas will be affected by the recommended changes: = Delay is unaffected (fmax is unaffected) = Logic element usage is unaffected = Compilation time is unaffected
Use RAM Blocks	Action	Write your Hardware Description Language (or other design entry format) code such that clock enables are used whenever appropriate on registers.
Clock Enables on Logic Pipeline Logic to Reduce Glitch		

Conclusion

- Power optimization and power management is becoming a critical aspect of system design
- Stratix III FPGAs provide innovative programmable power technology for power optimization
 - Industry leading PowerPlay tools from Altera enable optimum power

Thank You Q & A

