Implement System-on-a-Programmable Chip (SOPC) Designs in Minutes

The Embedded Revolution

- FPGAs offer a new way to develop embedded systems
- Widely adopted:
 - Over 15,000 development kits shipped
 - Many products already in the market

Embedded Design Challenges

FPGA-Based Solution

4

- Reduced power
- Reduced cost
- Reduced PCB size
- Easier to support
- Add new features
- Smaller B.O.M.
- Obsolescence protected

System Level Integratio Replace External Devices with Programmable Logic

Traditional System Design

What If...

Processor (Bus Master) 32-Bit

What If...

Basic Integration

- Bus width matching
- Address decoding
- Interrupt controller

Advanced Tasks

- Arbitration logic
- Clock domain crossing
- Burst transfers

Optimization

System throughput

Resource utilization

System Concept

© 2006 Altera Corporation

Design Flow

1. Select Intellectual Property (IP)

© 2006 Altera Corporation

Component Selection

- Extensive portfolio of system components
- Component editor imports user-designed functions

Name	Interface	Signal Type	Width	Direct	
🕅 clk	avalon slave 0	E cik	1	input	RQ 31 1
1 reset	avalon_slave_0	reset	1	input	
🖾 chipselect	avalon_slave_0	chipselect	1	input	Oversteerer
🖾 write	avalon_slave_0	write	1	input	GAOL ITTTT
🖾 read	avalon_slave_0	read	1	input	0.00000000
💹 address	avalon_slave_0	address	1	input	0x02217777
🛛 writedata	avalon_slave_0	writedata	32	input	0x0222081F
🖾 readdata	avalon_slave_0	readdata	32	output	0x02220867 1 0x0222086F 2
E Ethernet Ethernet Extra Utilities Legacy Components Memory	Done checking for updates		Up Move Dover	<u>.</u>	0:022203F

Design Flow

1. Select IP

2. Select Connections

Interrupt System Editor **Controller (IRQ) Priorities Clock Domains Connection Panel Address Map** Module Name Description IRQ Use Clock Base End V E cpu Nios II Processor - Altera Corpora ... clk 85 instruction master Master port IRQ 0 < data master Master port IRQ 31 6 0x02220000 0x022207FF jtag_debug_module Slave port V Avalon Tri-State Bridge ext ssram bus clk 85 avalon slave Slave port < tristate master Master port V + ext ssram Cypress CY7C1380C SSRAM ▲ 0x02000000 0x021FFFFF V ext flash enet bus Avalon Tri-State Bridge clk 85 avalon slave Slave port tristate_master Master port V + ext flash Flash Memory (Common Flash Int... ▲ 0×00000000 0x00FFFFFF V -(+) lan91c111 0x02210000 0×0221FFFF 6 LAN91c111 Interface (Ethernet) V - epcs controller EPCS Serial Flash Controller clk 85 0x02200000 0x022007FF 5 V - sys clk timer Interval timer clk 85 0x02220800 0x0222081F 0 V -⊞itag uart JTAG UART clk 85 0x022208B0 0x022208B7 1 V PIO (Parallel I/O) clk 85 0×0222086F 2 - button pio 0x02220860 V Hed pio PIO (Parallel I/O) clk 85 0x02220870 0x0222087F V Character LCD (16x2, Optrex 162... clk_85 - Icd display 0x02220880 0x0222088F V 0x0222083F 3 H high_res_timer Interval timer clk_85 0x02220820 V PIO (Parallel I/O) E seven seg pio clk 85 0x02220890 0x0222089F 1.1 E reconfig request nic DIA (Devellat 10) oll 85 0-00000880 0~022208AE

Design Flow

1. Select IP

2. Select Connections

3. Generate System

Integrated Hardware/Software Flow

Automatic Board Support Package (BSP) Generation

Avalon® System Interconnect

- Automatically generated for system
- Switches connect components not a bus
- Slave side arbitration
 - Enables concurrent accesses
- Avalon functions
 - Arbitration
 - Multiplexing
 - Address decoding
 - Wait-state generation
 - Dynamic bus sizing

System Interconnect

Video System Built "Conventionally"

Typical system construction steps

- 1. Specify external components and peripherals
- 2. Select processor with right...
 - Performance needed for application
 - Peripheral controller bus for controllers (i.e., PCI, PCIX, etc.)
 - Memory controllers

Video System Built With SOPC Builder

SOPC Builder-based construction

- 1. Specify external components and peripherals
- 2. Use SOPC Builder to:
 - Add peripherals and memory controllers
 - Add Nios II CPU
 - Configure system for maximum performance

Nios II Processor Block Diagram

Nios II: Classic RISC CPU

- Soft-core reconfigurable CPU
- Classic RISC architecture optimized for FPGA
 - 32-bit instruction set
 - 32-bit data path
 - 32 general-purpose registers
 - 3 instruction formats
 - 82 instructions
 - Instruction set is not configurable
 - Provides code compatibility for all implementations
 - Up to 256 custom instructions
 - 3 operand instructions (2 source, 1 destination)
 - Optional multiply and divide

 Strong performance (up to 225 DMIPS)

NOW What We're Going to Do...

Build a system with SOPC Builder

- Add and parameterize peripherals
 - Nios II processor
 - Memory (DDR SDRAM)
 - Timer
 - JTAG UART
 - Pulse width modulator (custom peripheral)
- Connect peripherals with Avalon switch fabric
- Configure system for operation

Benefits of FPGA-Based Embedded Systems

- FPGA hardware, configurable processor and automated system generation deliver:
 - Fast development time
 - Reduced costs
 - Product differentiation
 - High performance
 - New features
 - Product life management
 - Protection against obsolescence
 - In-field upgrades

Thank You Q & A

