Accelerate High-Performance Real-Time Video & Imaging Applications with FPGA & Programmable DSP
Agenda

• Overview

• FPGA/PDSP HW/SW Development System Platform: TI EVM642 + Xilinx XEVM642-2VP20

• FPGA for Algorithm Acceleration: H.264/AVC SD Video Encoder

• Xilinx MPEG-4 Codec Reference Design

• Xilinx SysGen Co-Sim Design and C/C++
Analysts See Explosive Growth in Digital Media Market

Advanced Codec Unit Shipments (in millions)

Source: In-Stat/MDR, 6/04

Advanced Codecs Include:
- MPEG-4
- H.264
- WMV9
Using FPGAs and DSPs Together for Video Processing

Application examples
- **DSP only**
- **DSP + FPGA**

- **Codecs**
 - H.264
 - MPEG4
 - MPEG2
 - JPEG
 - H.263

- **Coding**
 - Encode
 - Decode
 - Simultaneous encode/decode

- **Channels**
 - Few
 - Many
 - HD
 - SD
 - CIF
 - QCIF
 - D1

- **Resolution**
 - HD
 - SD
 - CIF
 - QCIF
 - D1

Codec Examples
- JPEG
- MPEG2
- MPEG4
- H.263
- H.264

Coding Examples
- Encode
- Decode
- Simultaneous encode/decode

Channels Examples
- Few
- Many
- HD
- SD
- CIF
- QCIF
- D1
Targeted Video Applications

- Real-time 30fps TV/VGA resolution encode & decode
- Integrated audio, video & streaming DSP controller
- Headroom available for High-Def feature enhancements & codec extensions

Features
- 30fps CIF resolution encode & decode
- Integrated audio, video & streaming DSP controller
- Headroom available for feature enhancements & codec extensions

Features
- Real-time 30fps TV/VGA resolution encode & decode
- Integrated audio, video & streaming DSP controller
- Headroom available for High-Def feature enhancements & codec extensions
DSPs and FPGAs: Complementary Solutions

• FPGAs Suitable for Parallel Data-Path Bound Functions/Problems

• SW/HW Co-Design Inner-Loop Rule: “Any C/C++ that requires tight inner-loop assembly codes probably should be in hardware”

• FPGAs typically complement programmable DSPs in high-performance real-time systems in one or more of the following ways:
 – System logic muxing and consolidation
 – New peripheral or bus interface implementation
 – Performance acceleration in the signal processing chain
TI DSP Architecture

Multiple bus architecture
- Large number of simultaneous inputs and outputs (avoids bottleneck in processing)
- Allows parallel fetching of an instruction and data

Extensive pipelining
- Executes parts of several instructions in a single cycle

Special instructions
- Combines several operations into a single cycle

TMS320C64x™

Peripherals
- Video port-0
- Video port-1
- Video port-2
- 10/100 Ethernet MAC
- 66 MHz PCI
- 64-Bit EMIF

L1 Program Cache

VelociTI.2™
- Instruction Fetch
- Instruction Dispatch Packet Boundary Span
- Instruction Decode
- Control Registers
- Advanced Emulation
- Interrupt Control

Data Path 1
- Register File A
 - A15-A0
 - A31-A16

Data Path 2
- Register File B
 - B15-B0
 - B31-B16

L1 Data Cache

Courtesy of Texas Instruments

Copyright 2004. All rights reserved
FPGAs for High-Performance Co-DSP Applications

FPGA
- Internal Memory
 - BRAM
 - Video Line buffers/deep and wide
 - Cache tag memory/dual port RAM
 - Large FIFOs/packet buffers
- Memory interface
 - SDRAM/DDR

 DSP
- Serial Interfaces
 - Rapid I/O, SR I/O
 - 10GigBit Ethernet
 - HyperTransport
- Internal memory
 - L1/L2 cache memory
 - 256K RAM
 - Configurable cache/RAM
- Memory interface
 - SDRAM
 - 4 CE spaces

Copyright 2004. All rights reserved
The SX family emphasizes Xilinx commitment to Co-DSP applications by providing a strong skew toward dedicated arithmetic units versus logic.

- **4VSX25**
 - 2,650 CLB
 - 128 BRAM
 - 128 XtremeDSP Slices to augment DSP Math

- **Largest device - 4VSX55**
 - 6,144 CLB
 - 320 BRAM
 - 512 XtremeDSP Slices to augment DSP Math
Agenda

• Overview

• **FPGA/TI-DSP HW/SW Development System Platform: TI EVM642 + Xilinx XEVM642-2VP20**

• FPGA for Algorithm Acceleration: H.264/AVC SD Video Encoder

• Xilinx MPEG-4 Codec Reference Design

• Xilinx SysGen Co-Sim Design and C/C++
Xilinx Daughter Card & TI EVM Board Reference Design

- TI TMS320DM642 EVM Board getting excitement and traction at TI DSP accounts
 - Texas Instruments TMS320DM642 specifically designed for video DSP
 - 720 MHz, 8 instructions per clock, 5.7 GIPS
 - Designed by Spectrum Digital
 - TI’s primary DSP Board and Board Sales Channel
 - Designed to support DSP algorithm development and demonstration for streaming video

- Xilinx Daughter Card to augment DSP Math
 - P20, 88 x 200 MHz = 17 GMACs
 - P50, 232 x 200 MHz = 46 GMACs
 - SX55, 512 x 500 MHz = 256 GMACs
 - High bandwidth, large depth Frame Buffer Memory
FPGA as DSP Accelerator

Xilinx XEVM642-2VP20 daughter card

- V2P20-50 1st G
- V4SX25-55 2nd G
- H.264/AVC SD Codec
- Microsoft WMV-9 (VC-9) SD Codec

Source: Spectrum Digital
TI EVM642 and Xilinx XEVM642-2VP20
XEVM642-2VP20 as a Video DSP Pre-processor

FPGA Pre-processor

XEVM642-2VP20 Board

EVM Interface

TI DM642

EVM Board

To Display
XEVM642-2VP20 as a Video DSP Co-processor
The FPGA consists of two functional blocks that control the arbitration of the DMA Engines of the HDD and the DM642 DSP:

- DM642 EDMA State Machine controls the continuous streaming of Data to/from the EMIF A Peripheral of the DM642 DSP.
- UltraDMA HDD State Machine controls the continuous streaming of Data from the FIFO to/from the HDD Sectors.
Virtex-4 SX/DM642 Cable Box

Statistical-Remultiplexor:
Cable head-end box, residing with the local cable-service provider that
- Takes in multiplexed digital channels
- Incorporates local/targeted advertisements
- Uses FPGAs in Design
- Encodes & inserts local programming content
- Outputs a specific subscriber’s cable package

Satellite
- DVB ASI/DHEI
- 12-18 channels/Transponder

Input/Output Control
- Virtex-4 SX
- 800 Mbps
- Local Bus

Video Processing Units
- Transrating/transcoding
- DM642
- SDRAM
- DM642
- SDRAM
- DM642
- SDRAM

Host I/F Bridge
- Video Buffer
- RISC
- ROM

Ethernet
- 10/100Mbps

Copyright 2004. All rights reserved
Video Solution Support

- Video DSPs
 - Texas Instruments
- Board & Manufacturing
 - Spectrum Digital, Inc.
- DSP Algorithm Support
 - Ittiam
 - UBVideo
 - W&W Communications (DSP Research)
- Xilinx Expert Design Services
 - Nuvation
- Reference Designs Available
 - H.264/AVC SD Codec (Q1’05)
 - Multi-channel Video PIP + JPEG Web Server (Q4’04)
- Contact Xilinx DSP Marketing for Details
Demo #1
Agenda

• Overview

• FPGA/PDSP HW/SW Development System Platform: TI EVM642 + Xilinx XEVM642-2VP20

• FPGA for Algorithm Acceleration: H.264/AVC SD Video Encoder

• Xilinx MPEG-4 Codec Reference Design

• Xilinx SysGen Co-Sim Design and C/C++
Applications for H.264/AVC

• Entertainment Video (1 - 8+ Mbps, higher latency)
 – Broadcast / Satellite / Cable / DVD / VoD / FS-VDSL / …

• Conversational H.32X Services (usu. <1Mbps, low latency)
 – H.320 Conversational
 – 3GPP Conversational H.324/M
 – H.323 Conversational Internet/unmanaged/best effort IP/RTP
 – 3GPP Conversational IP/RTP/SIP

• Streaming Services (usu. lower bit rate, higher latency)
 – 3GPP Streaming IP/RTP/RTSP
 – Streaming IP/RTP/RTSP (without TCP fallback)

• Other Services
 – 3GPP Multimedia Messaging Services
H.264/AVC Overview

- Video coding layer is based on hybrid video coding and similar in spirit to other standards but with important differences

- New key features are:
 - Enhanced motion compensation
 - Small blocks for transform coding
 - Improved deblocking filter
 - Enhanced entropy coding

- Bit-rate savings generally 50% or better against any other standard for the same perceptual quality (especially for higher-latency applications allowing B pictures)

- Increased complexity relative to prior standards

- Standard of both ITU-T VCEG and ISO/IEC MPEG

- Standardization completed in May 2003
H.264 Major Gains

H.264, MPEG 4 part 10, AVC Acceleration: Combining the Advantages of Hardware and Software

- De-blocking Filter, CAVLC and CABAC Entropy coding
- Enhanced Motion prediction
 - Intra-prediction for I frames using 4X4 blocks
 - Spatial and temporal prediction using multiple block sizes and ¼ pel

Source: Diagram by Nikkei Electronics, based on data released by Sony Computer Entertainment
Strategy and Advantages of FPGA/DSP Combination

Strategy:

• Migrate computationally intensive modules such as Motion estimation, Intra prediction and CABAC to the FPGA
 – DSP orchestrates synchronization of these modules
• The result is a much faster, higher quality and more powerful implementation of H.264

Advantages:

• Move computational intensive modules to FPGA
• Can achieve D1/HD resolution
• Enhances a DSP software only solution with co-processing parallelism
H.264/AVC SD System

Texas Instruments DM642

Video /in

Video /out

Video /in

Video /out

VLC Rate Ctrl Ref Index

SDRAM Shared Memory

Ctrl Registers

flags/ref_ptr/orig_ptr/rec_ptr/ref_index

Arb DMA

Dual-Port RAM Orig/Ref/Rec MV Level/Run Coef 70 KB

Diff

RLC (CAVLC/CABAC)

Xilinx FPGA V2P50

IT/ZZ/Q

Buffer

MV Predict

ME/MC

Intra_Pred

SAD

SAD

SAD

IIT/IZZ/IQ

Buffer

ADD

De-Block Filter

Mode Decision

Buffer

Buffer

Buffer

Buffer

Buffer
Key Modules for Hardware Acceleration

Motion compensation/estimation
- H.264 Motion compensation block size has 8 modes: 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4 and skip mode
- Previous standards: MPEG 1/2/4, H.263 three modes at most
- SUB-pel MC for H.264 is ¼ pixel

Intra Prediction
- 4x4 blocks are used for luma prediction, and all 9 modes for luma at 4x4
 four modes for chroma 8x8

Entropy Coding
- Two options in H.264: CAVLC (Context Adaptive Variable Length Coding) and CABAC (Context-based Adaptive Binary Arithmetic Coding)
- CABAC utilizes arithmetic coding with probability models as opposed to variable length coding
Complexity of Codec Design

- New design includes relaxation of traditional bounds on complexity (memory & computation) – rough guess 2-3x the MIPS, ROM & RAM requirements of MPEG-2 for decoding, 3-4x for encoding
- Particularly an issue for low-power (e.g. mobile) devices
- Problem areas
 - Smaller block sizes for motion compensation (cache access issues)
 - Longer filters for motion compensation (more memory access)
 - Multi-frame motion compensation (more memory for reference frame storage)
 - In-loop deblocking filter (more processing & memory access)
 - More segmentations of macroblock to choose from (more searching in the encoder)
 - More methods of predicting intra data (more searching)
 - Arithmetic coding (adaptivity, computation on output bits)
Video Industry Roadmap

- MPEG-4 Simple Profile/Advanced Simple Profile
- H.264 – JVT – MPEG-4 Part 10
 - About 40% compression gain over MPEG-2
 - 50% gain with CABAC
 - Likely successor to MPEG-2
 - Quite complex at resolution greater than SIF (D1, HD)
- WMV (aka WMV-9 / VC-9)
 - Between ASP and H.264, closer to ASP (no CABAC)
- HD-DVD initiatives (DVD-Forum)
- Broadcast Infrastructure
 - In the US, High Definition mandated by FCC
Agenda

• Overview

• FPGA/PDSP HW/SW Development System Platform: TI EVM642 + Xilinx XEVM642-2VP20

• FPGA for Algorithm Acceleration: H.264/AVC SD Video Encoder

• Xilinx MPEG-4 Codec Reference Design

• Xilinx SysGen Co-Sim Design and C/C++
MPEG-4 SP Video Codec

HW on FPGA
SW on DSP
MPEG-4 SP Video Codec

HW on FPGA
SW on Host PC
MPEG-4 SP Codec FPGA HW Place & Route Floor Plan

Encoder

Decoder

FPGA Device: XC2V3000-4; 14336 total slices

- mpeg4 decoder
- memory controller
MPEG-4 SP Codec FPGA HW
Resources & Performance

<table>
<thead>
<tr>
<th>Encoder Hardware Block</th>
<th>memory</th>
<th>bits</th>
<th>BRAMs</th>
<th>Slices</th>
<th>MULTs</th>
<th>ZBT SRAM (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture Controller</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Input Controller</td>
<td>(64x8)x6x8</td>
<td>24576</td>
<td>2</td>
<td>400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Copy Controller</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>750</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>New MB</td>
<td>2x(16x16)x8</td>
<td>4096</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Current MB</td>
<td>3x6x(8x8)x8</td>
<td>9216</td>
<td>1</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Search Area</td>
<td>3x6x(16x16)x8</td>
<td>36864</td>
<td>3</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Buffer Y</td>
<td>(2^45+3+2)x(16x16)x8</td>
<td>194560</td>
<td>12</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Buffer U</td>
<td>(2^45+3+2)x(8x8)x8</td>
<td>48640</td>
<td>3</td>
<td>70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Buffer V</td>
<td>(2^45+3+2)x(8x8)x8</td>
<td>48640</td>
<td>3</td>
<td>70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Motion Estimation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1200</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Motion Compensation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>700</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Error Block</td>
<td>2x(8x8)x8</td>
<td>1152</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Comp Block</td>
<td>2x(8x8)x8</td>
<td>1024</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Texture Coding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Texture Block</td>
<td>2x(8x8)x12</td>
<td>1536</td>
<td>1</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Texture Update</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Quantised MB</td>
<td>2x6x(8x8)x12</td>
<td>9216</td>
<td>1</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VLC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Packetisation</td>
<td>2k</td>
<td>16384</td>
<td>1</td>
<td>250</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>New Frame Memory</td>
<td>2x(720x576x1,5)x8</td>
<td>9953280</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1244100</td>
</tr>
<tr>
<td>Reconstructed Frame Memory</td>
<td>(720x576x1,5)x8</td>
<td>4976640</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>622000</td>
</tr>
<tr>
<td>Memory Controller</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15325824</td>
<td>38</td>
<td>7335</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decoder Hardware Block</th>
<th>BRAMs</th>
<th>Slices</th>
<th>MULTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Interface</td>
<td>8</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Parser/VLD</td>
<td>0</td>
<td>1680</td>
<td>2</td>
</tr>
<tr>
<td>Copy Controller</td>
<td>0</td>
<td>700</td>
<td>1</td>
</tr>
<tr>
<td>Motion Compensation</td>
<td>0</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>Texture/IDCT</td>
<td>6</td>
<td>2060</td>
<td>22</td>
</tr>
<tr>
<td>Texture Update</td>
<td>0</td>
<td>150</td>
<td>2</td>
</tr>
<tr>
<td>Auxiliary Controllers</td>
<td>5</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>Communication/Memory</td>
<td>21</td>
<td>390</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>6500</td>
<td>27</td>
</tr>
</tbody>
</table>

- Full SD Enc/Dec Reference Design; Multi-channel decode cap.
- Enc @ ~47,520 MB/s; Dec @ ~190,000 MB/s; Target Clock Rates: 100-133 MHz
- Encoder core is estimated at ~7400+ Slices, 38 Block RAMs, 2 MULTs
- Decoder core is estimated at ~6500 Slices, 40 Block RAMs, 27 MULTs
Demo #2
Agenda

• Overview

• FPGA/PDSP HW/SW Development System Platform: TI EVM642 + Xilinx XEVM642-2VP20

• FPGA for Algorithm Acceleration: H.264/AVC SD Video Encoder

• Xilinx MPEG-4 Codec Reference Design

• Xilinx SysGen Co-Sim Design and C/C++
Xilinx System Generator

- A complete system design requires high level of abstraction that’s independent of implementation details.
- System level approach enables development and understanding from block diagram perspective.
- Hence, there is a need for high-level design environments to model and simulate mathematical theories, systems, signals, and algorithms.
Simulink to Target Design Flow

System and Algorithm Specification & Partitioning (Floating point)

Subsystem Design (Cycle accurate, bit true)

Code Generation, Verification (HDL, C, ASM)

Simulink Development Environment

Real-Time Workshop

System Generator for DSP

Microcontroller

TI DSP

Xilinx FPGA
MPEG & H.26x C/C++ Reference Software Code

• Provide Shared Memory Architecture
• Provide DLL Library for API Calls from C/C++ Code
• Provide Xilinx Block Sets for Shared Memory in Matlab/Simulink/SysGen
• Example based on Xilinx Own C/C++ Video Codec Software Model
• Replace SW to HW Co-Sim for Motion Estimation Function Block
More Information on the Joint Video Solution

• Register for Xilinx DSP Technical Training
 – Simulink for DSP
 – DSP Design Flow
 – Advanced DSP Implementation Techniques
• Evaluate Xilinx IP cores
• Evaluate System Generator for DSP
 www.xilinx.com/dsp

• Register for Texas Instruments Developers Conference (TIDC)
• Register for Video Seminars
 www.ti.com/videoseminars
• Download App notes:
 EMIF interface
 LVDS High-Speed AD Converter
 www.ti.com/dm64xpr
Thank You
XEVM642-2VP20 I/O Expansion

I/O Expansion Using Cable Between Two Cards
I/O Expansion Using Top and Bottom EVM Connector Between Two Cards
XEVM642-4VSX25 I/O and TI DSP Expansion

TI EVM642 Board

Xilinx XEVM642-4VSX25 or TI I/O Expansion Card(s)
High-Performance Real-Time Video & Imaging Applications

• Professional Audio/Video Broadcast Encoders and Head-end Equipments (i.e. Tandberg TV, Motorola, Scientific Atlanta, Thomson)

• Professional Digital Video Editing Equipments (i.e. Avid, Matrox)

• Professional Audio/Video Test Equipments (i.e. Tektronix, Agilent)

• Professional Digital Video Cameras and Recorders (i.e. Sony, Panasonic)

• Audio/Video Teleconferencing Systems (i.e. Polycom, Sony, Tandberg TV)

• High-Quality Video Surveillance & CCTV Systems (i.e. Pelco, Axis)
Xilinx 2VP20/TI DM642 PIP Reference Design

- 2VP20 DaughterCard
 - De-interlacing
 - Resizing
 - Merging PIP
 - Interlacing
 - Back to DM642
 - Video signal over Ethernet
- Available for Free Download