
© 1995 Steve Golson Page 1

Abstract†: You can makedc_shell do amazing and wonderful things.

1.0 Lists
dc_shell supports lists using list expressions delineated by curly braces:

dc_shell> list1 = {a, b, c d e}
{"a", "b", "c", "d", "e"}

You can separate list elements with either commas or spaces, butdc_shell always uses commas when
displaying a list.

Lists can be concatenated using the+ operator:

dc_shell> list2 = {f g h}
{"f", "g", "h"}
dc_shell> list3 = list1 + list2
{"a", "b", "c", "d", "e", "f", "g", "h"}

You can add elements to a list in a similar way:

dc_shell> list2 = list1 + f + g
{"a", "b", "c", "d", "e", "f", "g"}

but watch what happens if you put the new elements at the beginning:

dc_shell> list2 = f + g + list1
{"fg", "a", "b", "c", "d", "e"}

The first + concatenates the two strings"f" and"g" into a single string"fg" , and then the new string is
added to the beginning of the list. Instead try

dc_shell> list2 = {f g} + list1
{"f", "g", "a", "b", "c", "d", "e"}

You can also subtract elements from a list:

dc_shell> list2 = {f g a b c d e}
{"f", "g", "a", "b", "c", "d", "e"}
dc_shell> list3 = list2 - a
{"f", "g", "b", "c", "d", "e"}

This can be very useful for reordering the elements of a list. We can move element"a" to the end by
subtracting it and adding it in a single command1:

dc_shell> list2 = {f g a b c d e}
{"f", "g", "a", "b", "c", "d", "e"}
dc_shell> list3 = list2 - a + a
{"f", "g", "b", "c", "d", "e", "a"}

†. An earlier version of this paper was presented at the 1995 Synopsys User’s Group Conference.
1. I keep my module names in an alphabetical list, and use this trick to reorder the list so that certain modules are at

the end (e.g. if I want to compile all modules using a singleforeach loop, but hierarchical modules need to compile
after all the leaf modules).

My Favorite dc_shell Tricks
Steve Golson

Trilobyte Systems, 33 Sunset Road, Carlisle MA 01741
Phone: 508/369-9669
Fax: 508/371-9964

Email: sgolson@trilobyte.com

My Favoritedc_shell Tricks

Page 2 © 1995 Steve Golson

If you have duplicate elements they will all be removed with a single subtraction:

dc_shell> list2 = {a b a b c d a}
{"a", "b", "a", "b", "c", "d", "a"}
dc_shell> list3 = list2 - a
{"b", "b", "c", "d"}

Remember that objects can be typed, and that the typing is invisible. The subtraction only removes elements
with the proper type:

dc_shell> list2 = find(net,clk) + find(port,clk) + find(clock,clk)
{"clk", "clk", "clk"}
dc_shell> list3 = list2 - find(net,clk)
{"clk", "clk"}

but subtracting a string constant will remove all objects with that name, regardless of type:

dc_shell> list2 = find(net,clk) + find(port,clk) + find(clock,clk)
{"clk", "clk", "clk"}
dc_shell> list3 = list2 - "clk"
{}

Here is how to use list subtraction to ensure that the current directory is at the beginning of your search path:

dc_shell> search_path = search_path - "."
{"/usr/synopsys/libraries/syn"}
dc_shell> search_path = "." + search_path
{".", "/usr/synopsys/libraries/syn"}

You can have lists of lists:

dc_shell> list2 = {a b c {d e f}}
{"a", "b", "c", {"d", "e", "f"}}
dc_shell> foreach (element, list2) {
 list element
 }
element = "a"
element = "b"
element = "c"
element = {"d", "e", "f"}

Here is how to extract the first element of a list2:

dc_shell> foreach (first_element, list2) {
 break
 }
1
dc_shell> list first_element
first_element = "a"

Exercise for the reader: build a function that returns everythingexcept the first element of a list3. You must
handle duplicates and lists of lists correctly.

2. car, for all you LISP hackers.
3. cdr, for all you LISP hackers.

My Favoritedc_shell Tricks

© 1995 Steve Golson Page 3

2.0 Wildcards
dc_shell supports wildcards using the* character. Thus if you want to find all the designs loaded into
memory you can say

all_the_designs = find(design,"*")

Actually, if you givefind no argument at all, the"*" is implied. Thus we can be a bit more succinct:

all_the_designs = find(design)

If we want to find all designs except those created by DesignWare (adders, comparators, etc.) we can say:

all_the_designs = find(design) - find(design,"*DW*")

3.0 Variable names
Be careful using names likedesign . It is a bad idea to do things like

design = current_design

because further in your script you will no doubt try

find(design,foobar)

which will die mysteriously. Always use names likethe_design or my_design ; they are much safer.

Another problem occurs due to variable typing. Consider the variable assignment

dc_shell> foo = lkj
"lkj"

But we might just as easily get

dc_shell> foo = lkj
{"lkj"}

In the first case,foo was initialized as a string variable:

dc_shell> remove_variable foo
Removing variable 'foo'.
1
dc_shell> foo = ""
Warning: Defining new variable 'foo'. (EQN-10)
""
dc_shell> foo = lkj
"lkj"

and in the second case as a list variable:

dc_shell> remove_variable foo
Removing variable 'foo'.
1
dc_shell> foo = {}
Warning: Defining new variable 'foo'. (EQN-10)
{}
dc_shell> foo = lkj
{"lkj"}

This can cause many mysterious errors, particularly inforeach constructs. Useremove_variable if
you aren’t sure.

My Favoritedc_shell Tricks

Page 4 © 1995 Steve Golson

4.0 Quoting
dc_shell has a few special characters. The double quote mark" is used to delineate a string expression.
The semicolon; is a terminate statement and can be used to separate commands on a single line:

dc_shell> current_design ; pwd
Current design is 'foo'.
{"foo"}
"/home/sgolson/play"

But what if we want to use these characters in analias definition, or pass them tosh 4? They must be
escaped with a backslash. Let’s say we want to use the shellecho command to echo a single semicolon.
From a regular shell prompt we can say

$ echo ";"
;

In order to pass this tosh from insidedc_shell , the quotes must be escaped:

dc_shell> sh "echo \";\""
;

Rather than quoting, we can escape the semicolon in the shell:

$ echo \;
;

The correspondingdc_shell version requires both the backslash and the semicolon to be escaped:

dc_shell> sh "echo \\\;"
;

Now if we want to create an alias that does this, we have yet another level of quoting:

dc_shell> alias semicolon "sh \"echo \\\"\;\\\"\""
1
dc_shell> alias semicolon
sh "echo \";\""
1
dc_shell> semicolon
;

and the second version looks like

dc_shell> alias semicolon "sh \"echo \\\\\\\;\""
1
dc_shell> alias semicolon
sh "echo \\\;"
1
dc_shell> semicolon
;

5.0 Fun aliases
Put this alias in your.synopsys_dc.setup file

alias sys_stat "sh \"(date ; ps xv | egrep 'dc_shell|PID')\""

4. Remember thatsh invokes the Bourne shell,not csh.

My Favoritedc_shell Tricks

© 1995 Steve Golson Page 5

Then at interesting points in your script you can get a record of wall clock time, CPU time, and process
statistics:

dc_shell> sys_stat
Thu Mar 2 17:28:14 EST 1995
 PID TT STAT TIME SL RE PAGEIN SIZE RSS LIM %CPU %MEM COMMAND
6805 p4 S 0:20 0 3 242 4676 660 xx 0.0 2.2 dc_shel

Here are some more fun ones:

alias tokyo_time "sh \"env TZ=Japan date\""
alias newfie_time "sh \"env TZ=Canada/Newfoundland date\""

6.0 Things to do at startup
If you have many servers that you rundc_shell from, you might want to put the following in your
.synopsys_dc.setup file:

sh "echo Running on `hostname`"
sh cat /etc/motd

This leaves a nice record in your log file.

Sometimes you can have mysterious initialization problems. It may be helpful to put messages like

echo End of ~sgolson/.synopsys_dc.setup

at the end of each.synopsys file.

7.0 How to get the cell name when you have the pin name
Given a list namedthepins , thisdc_shell alias creates a list namedthecells which has the last
hierarchical element (i.e. the pin name) stripped off, thus leaving only the cell names.

alias get_thecells " \
 sh \" \
 (echo -n \\\"thecells = \\\" \\\; \
 echo \"thepins\") | \
 sed -e 's?/[^,}/][^,}/]*[,}]?,?g' -e 's/,$/}/' > tmp \" \; \
 include tmp \; \
 sh /bin/rm tmp "

Caveats:thepins must be a list, i.e. it must have{} around it. There might be only one element in the list,
however. Ifthecells already exists, it had better be a list as well. Also,sed may die if you pass it a list
that is too many characters long.

Here is an example. Assume we want to find all the cells connected to porta. First useall_connected
to find the pins that porta is wired up to:

dc_shell> thepins = all_connected(find(port,a))
{"n123"}

Not quite right. Whatall_connected finds is netn123 . It appears that what we really want is to find out
what is connected to netn123 . We can do this by passing the output of the firstall_connected to
anotherall_connected :

dc_shell> thepins = all_connected(all_connected(find(port,a)))
{"U4/d", "U5/g", "U6/i", "U7/U8/a", "a"}

My Favoritedc_shell Tricks

Page 6 © 1995 Steve Golson

Almost. Now we have porta itself showing up. So subtract that off, and we’ll have only the pins connected
to porta, which is what we want:

dc_shell> thepins = all_connected(all_connected(find(port,a))) \
 - find(port,a)
{"U4/d", "U5/g", "U6/i", "U7/U8/a"}

Now invokeget_thecells :

dc_shell> get_thecells
1
list thecells
thecells = {"U4", "U5", "U6", "U7/U8"}

8.0 Returning a result fromsh into dc_shell
In the previous example we passed the result of a shell command back intodc_shell by writing to a temp
file that later gets included indc_shell . This is necessary because there is no way to pass an arbitrary
output from a shell command back intodc_shell (i.e. there is nothing analogous to using backquote in
the shell for command substitution)5.

You might think that you could set an environment variable insh , and then useget_unix_variable to
read it in. This doesn’t work, becausesh can only affect the environment of the subshell it executes in, and
not the parent shell:

dc_shell> sh "(FOO=help \; echo $FOO)"
help
1
dc_shell> get_unix_variable("FOO")
""

Normallysh returns a status back todc_shell : 0 if no arguments are given, and 1 otherwise. This is not
very useful. We can instead makesh give us the 8-bit status returned by the shell command itself, by setting
this variable:

sh_returns_process_status = "true"

Now we can do fun things like use the UNIXfind command to compare the date stamps on two files. Let’s
say we are reading in our Verilog source files, but this takes a long time. We might want to save each design
as an intermediate db file, and only read in the source if it is newer than the corresponding db file.

Thefind command in UNIX would look something like this:

find db_file -newer verilog_file -print

To generate the process status we usetest and command substitution:

test `find db_file -newer verilog_file -print`

From withindc_shell this looks like

sh(test `find db_file -newer verilog_file -print`)

so by passing the status ofsh to if we can determine which file is newer:

if (! sh(test `find db_file -newer verilog_file -print`)) {
 /* db_file is newer */
 } else {
 /* verilog_file is newer */
 }

5. There is now! Newer versions of Design Compiler have theexecute -s command.

My Favoritedc_shell Tricks

© 1995 Steve Golson Page 7

Notice the! that sneaked in. This is becausesh defines a “true” result as 0, and “false” otherwise.
dc_shell is the opposite! So we need to perform a boolean inversion.

What happens ifdb_file doesn’t exist? Then thefind command will fail, and thus theverilog_file
is newer. This is why we don’t say

find verilog_file -newer db_file -print

because ifdb_file doesn’t exist, thefind will fail, but we interpret that to meandb_file is newer,
when actually it doesn’t exist!

So we can conditionally read in all our modules as follows:

foreach (module, the_modules) {
 verilog_file = sources_dir + "/" + module + ".v"
 db_file = db_dir + "/" + module + ".db"

 echo ##### looking for db_file newer than verilog_file
 if (! sh(test `find db_file -newer verilog_file -print`)) {
 echo ##### found it -- reading db_file
 read db_file
 } else {
 echo ##### not found -- reading verilog_file
 read -format verilog verilog_file
 write -out db_file module
 }
 }

9.0 RTFM
Sure, the on-line manuals are nifty. Even so, you can still access the old reference manual pages using
help 6 in dc_shell . Furthermore, you can display these manual pages from your UNIX prompt just like
all the other UNIX man pages! Put the following in your.cshrc (or whatever) file:

alias synman "/usr/ucb/man -M $SYNOPSYS/doc/syn/man"

Now synman command_name from your UNIX prompt will call up the appropriate Synopsys manual
pages.

This is preferable to adding the Synopsys directory to your normalMANPATH variable, because there are too
manydc_shell commands that have the same name as UNIX commands (e.g.find).

10.0 Thermonuclearungroup
If you wish to completely remove all hierarchy in a design, usually all you need to do is

ungroup -flatten -all

but adont_touch attribute on a design, cell, or reference will prevent theungroup from proceeding.

Here is a script that will completely ungroup a design, no matter what. First it removes anydont_touch
attribute on designs in the hierarchy. Then it does the usualungroup -flatten -all .

Now, as long as there is any hierarchy remaining (i.e.find(-hierarchy design) is true) thewhile
loop will be active and thedont_touch attribute is removed from the cells and references that still have it.
Thenungroup again, and repeat until no more hierarchy remains.

6. Orman.

My Favoritedc_shell Tricks

Page 8 © 1995 Steve Golson

The redirection to/dev/null prevents the (sometimes long!) lists of cells and references from being
echoed to the log file.

/* remove dont_touch from designs in hierarchy */
remove_attribute -quiet find(-hierarchy design) dont_touch
/* and ungroup */
ungroup -flatten -all
/* now ungroup any remaining hierarchical cells and references */
while (find(-hierarchy design)) {
 echo "#### find hierarchical cells and references on this level ####"
 hier_cells = filter(find(cell), \
 "@is_hierarchical==true") > /dev/null
 hier_refs = filter(find(reference), \
 "@is_hierarchical==true") > /dev/null
 echo "#### remove dont_touch from cells ####"
 remove_attribute -quiet find(cell,hier_cells) dont_touch
 remove_attribute -quiet find(reference,hier_refs) dont_touch
 echo "#### and ungroup ####"
 ungroup -flatten -all
 }

11.0 Converting a list to a string
Somedc_shell commands always return a list, but you may want a string. Let’s say you want to take the
output ofget_attribute , and use it as an argument to anotherdc_shell command:

/* find the direction of the pin */
direction = get_attribute(pin_name, pin_direction)

/* create a port in the current design */
create_port port_name -dir direction

This won’t work, because variabledirection is a list, and when you pass it tocreate_port bad
things will happen.

To get around this, if you know what values are expected, you can build anif-else construct that tries out
all the possible values in turn, and creates a new string variable:

/* find the direction of the pin */
dirlist = get_attribute(pin_name, pin_direction)

/* convert the direction from a list to a value */
if (dirlist == {in}) {
 direction = "in"
} else if (dirlist == {out}) {
 direction = "out"
} else {
 direction = "inout"
 }

/* create a port in the current design */
create_port port_name -dir direction

Another way is to usesh to run ased script on the list variable that strips off the braces.

My Favoritedc_shell Tricks

© 1995 Steve Golson Page 9

12.0allcells.ss script
Here is a script that uses some of the tricks outlined here.

Given a technology library, it creates a design that contains one cell of each type in the library. This is useful
when you are creating a new library.

/* @(#)allcells.ss 1.1 11/21/94 19:27:15 */

/*
** allcells.ss
**
** This script creates a new design containing one cell of each type
** in a given library. This is useful for testing new libraries.
*/

/* change this to whatever library you want */
thelib = "vlib"

read thelib + ".db"

/* create a new design */
remove_design allcells
create_design allcells

current_design = allcells

/* initialize the port names and instance names */
portnum = 0
unum = 0

/* find all the cells in the library */
foreach(cell, find(lib_cell, thelib + "/*")) {

 /* instance name */
 instance_name = U + unum
 unum = unum + 1

 /* create a cell in the current design */
 create_cell instance_name cell

 /* find all the pins on the library cell */
 foreach(thepin, find(lib_pin, cell + "/*")) {
 port_name = "p_" + portnum
 net_name = "net" + portnum
 portnum = portnum + 1

 pin_name = cell + "/" + thepin

 /* find the direction of the pin */
 dirlist = get_attribute(pin_name, pin_direction)

 /* convert the direction from a list to a value */
 if (dirlist == {in}) {
 direction = "in"

My Favoritedc_shell Tricks

Page 10 © 1995 Steve Golson

 } else if (dirlist == {out}) {
 direction = "out"
 } else {
 direction = "inout"
 }

 instance_pin = instance_name + "/" + thepin

 /* create a port in the current design */
 create_port port_name -dir direction

 /* and a net */
 create_net net_name

 /* now wire up the port and the pin */
 connect_net net_name { instance_pin port_name }
 }
 }

write
/* end of script allcells.ss */

exit

